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Complexity Classes

We have established the following inclusions among complexity

classes:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP

Showing that a problem is NP-complete or PSPACE-complete, we

often say that we have proved it intractable.

While this is not strictly correct, a proof of completeness for these

classes does tell us that the problem is structurally difficult.

Similarly, we say that PSPACE-complete problems are harder than

NP-complete ones, even if the running time is not higher.
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Provable Intractability

Our aim now is to show that there are languages (or, equivalently,

decision problems) that we can prove are not in P.

This is done by showing that, for every reasonable function f , there

is a language that is not in TIME(f(n)).

The proof is based on the diagonal method, as in the proof of the

undecidability of the halting problem.
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Constructible Functions

A complexity class such as TIME(f(n)) can be very unnatural, if

f(n) is.

We restrict our bounding functions f(n) to be proper functions:

Definition

A function f : IN → IN is constructible if:

• f is non-decreasing, i.e. f(n + 1) ≥ f(n) for all n; and

• there is a deterministic machine M which, on any input of

length n, replaces the input with the string 0f(n), and M runs

in time O(n + f(n)) and uses O(f(n)) work space.
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Examples

All of the following functions are constructible:

• ⌈log n⌉;

• n2;

• n;

• 2n.

If f and g are constructible functions, then so are

f + g, f · g, 2f and f(g) (this last, provided that f(n) > n).
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Using Constructible Functions

NTIME(f(n)) can be defined as the class of those languages L

accepted by a nondeterministic Turing machine M , such that for

every x ∈ L, there is an accepting computation of M on x of

length at most O(f(n)).

If f is a constructible function then any language in NTIME(f(n))

is accepted by a machine for which all computations are of length

at most O(f(n)).

Also, given a Turing machine M and a constructible function f , we

can define a machine that simulates M for f(n) steps.
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Inclusions

The inclusions we proved between complexity classes:

• NTIME(f(n)) ⊆ SPACE(f(n));

• NSPACE(f(n)) ⊆ TIME(klog n+f(n));

• NSPACE(f(n)) ⊆ SPACE(f(n)2)

really only work for constructible functions f .

The inclusions are established by showing that a deterministic

machine can simulate a nondeterministic machine M for f(n) steps.

For this, we have to be able to compute f within the required

bounds.
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Time Hierarchy Theorem

For any constructible function f , with f(n) ≥ n, define the

f -bounded halting language to be:

Hf = {[M ], x | M accepts x in f(|x|) steps}

where [M ] is a description of M in some fixed encoding scheme.

Then, we can show

Hf ∈ TIME(f(n)3) and Hf 6∈ TIME(f(⌊n/2⌋))

Time Hierarchy Theorem

For any constructible function f(n) ≥ n, TIME(f(n)) is properly

contained in TIME(f(2n + 1)3).
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Strong Hierarchy Theorems

For any constructible function f(n) ≥ n, TIME(f(n)) is properly

contained in TIME(f(n)(log f(n))).

Space Hierarchy Theorem

For any pair of constructible functions f and g, with f = O(g) and

g 6= O(f), there is a language in SPACE(g(n)) that is not in

SPACE(f(n)).

Similar results can be established for nondeterministic time and

space classes.
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Consequences

• For each k, TIME(nk) 6= P.

• P 6= EXP.

• L 6= PSPACE.

• Any language that is EXP-complete is not in P.

• There are no problems in P that are complete under linear time

reductions.
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Descriptive Complexity

Descriptive Complexity is an attempt to study the complexity of

problems and classify them, not on the basis of how difficult it is to

compute solutions, but on the basis of how difficult it is to describe

the problem.

This gives an alternative way to study complexity, independent of

particular machine models.

Based on definability in logic.
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Graph Properties

As an example, consider the following three decision problems on

graphs.

1. Given a graph G = (V, E) does it contain a triangle?

2. Given a directed graph G = (V, E) and two of its vertices

s, t ∈ V , does G contain a path from a to b?

3. Given a graph G = (V, E) is it 3-colourable? That is,

is there a function χ : V → {1, 2, 3} so that whenever

(u, v) ∈ E, χ(u) 6= χ(v).
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Graph Properties

1. Checking if G contains a triangle can be solved in polynomial

time and logarithmic space.

2. Checking if G contains a path from a to b can be done in

polynomial time.

Can it be done in logarithmic space?

Unlikely. It is NL-complete.

3. Checking if G is 3-colourable can be done in exponential time

and polynomial space.

Can it be done in polynomial time?

Unlikely. It is NP-complete.
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Logical Definability

In what kind of formal language can these decision problems be

specified or defined?

The graph G = (V, E) contains a triangle.

∃x ∈ V ∃y ∈ V ∃z ∈ V (x 6= y∧y 6= z∧x 6= z∧E(x, y)∧E(x, z)∧E(y, z))

The other two properties are provably not definable with only

first-order quantification over vertices.
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Second-Order Quantifiers

3-Colourability and reachability can be defined with quantification

over sets of vertices.

∃R ⊆ V ∃B ⊆ V ∃G ⊆ V

∀x(Rx ∨ Bx ∨ Gx)∧

∀x(¬(Rx ∧ Bx) ∧ ¬(Bx ∧ Gx) ∧ ¬(Rx ∧ Gx))∧

∀x∀y(Exy → (¬(Rx ∧ Ry)∧

¬(Bx ∧ By)∧

¬(Gx ∧ Gy)))

∀S ⊆ V (a ∈ S ∧ ∀x∀y((x ∈ S ∧ E(x, y)) → y ∈ S) → b ∈ S)
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Descriptive Complexity

Any property of graphs that is expressible in first-order logic is in L.

A property of graphs is definable in existential second-order logic if,

and only if, it is in NP.

Is there a logic, intermediate between first and second-order logic

that expresses exactly graph properties in P?
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The End

Please provide feedback, using the link sent to you by e-mail.
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