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Topic 2

Topic 2 — Internet and Architecture

* Protocol Standardization

* Internet Philosophy and Tensions

* The architects process
— How to break system into modules
— Where modules are implemented
— Where is state stored

Recall What is a protocol?

human protocols:
* “what’s the time?”

* “l'have a question”
* introductions

... specific msgs sent

... specific actions taken
when msgs received, or
other events

network protocols:

* machines rather than
humans

¢ all communication activity
in Internet governed by
protocols

protocols define format, order of msgs sent
and received among network entities,
and actions taken on msg transmission,
receipt

So many Standards Problem

* Many different packet-switching networks
* Each with its own Protocol
* Only nodes on the same network could communicate
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Topic 2

A Multitude of Apps Problem

Application Skype SSH NFS HTTP
e -

'ﬁr ===
Transmission Coaxnal Fiber Radio
Media cable optic

* Re-implement every application for every technology?
» No! But how does the Internet design avoid this?

Solution: Intermediate Layers

 Introduce intermediate layers that provide set of abstractions

for various network functionality and technologies
— A new app/media implemented only once
— Variation on “add another level of indirection”

Application |SSH| | NFS | |H1'I'P|

Intermediate

layers @ TN o __.
Transmission Coaxial Fiber Packet
Media cable optic radio

The Internet Hourglass

Waist

Ethernet I SONET

|CopperH Fiber ‘ ‘ Radio ‘ The Hourglass Model

There is just one network-layer protocol, IP.

.The “narrow waist” facilitates interoperability.

Protocol Standardization

* All hosts must follow same protocol
— Very small modifications can make a big difference
— Or prevent it from working altogether
— Cisco bug compatible!
* This is why we have standards
— Can have multiple implementations of protocol
* Internet Engineering Task Force

— Based on working groups that focus on specific
issues

— Produces “Request For Comments” (RFCs)
— IETF Web site is http://www.ietf.org
— RFCs archived at http://www.rfc-editor.org
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Internet Motto

We reject kings, presidents, and voting. We
believe in rough consensus and running
code.”

David Clark

D. Clark, "The Design Philosophy of the DARPA Internet Protocols", Sigcomm'88,
106-114, Palo Alto, CA, Sept 1988.

Alternative to Standardization?

Have one implementation used by everyone

Open-source projects
— Which has had more impact, Linux or POSIX?

Or just sole-sourced implementation

— Skype, many P2P implementations, etc.

Client-Server Communication

 Client “sometimes on”
— Initiates a request to the
server when interested
- E.g., Web browser on your
laptop or cell phone www.cnn.com Web site
— Doesn’t communicate — Doesn't initiate contact with
directly with other clients the clients

— Needs to know the server’s — Needs a fixed, well-known
address address

ﬁgﬁ /\.

- Server is “always on”
— Services requests from
many client hosts
— E.g., Web server for the

Peer-to-Peer Designs

No always-on server at the center of it all

— Hosts can come and go, and change addresses
— Hosts may have a different address each time
Example: peer-to-peer file sharing

— All hosts are both servers and clients!

— Scalability by harnessing millions of peers

— “self-scaling”

Not just for file sharing!

— This is how many datacenter applications are built

— Better reliability, scalability, less management...
+ Sound familiar?
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Internet Design Goals (Clark ‘88)

Connect existing networks

Robust in face of failures

Support multiple types of delivery services
Accommodate a variety of networks

Allow distributed management

Easy host attachment

Cost effective

Allow resource accountability

Connect Existing Networks

Internet (e.g., IP) should be designed such that
all current networks could support IP.

Robust

As long as the network is not partitioned, two
endpoints should be able to communicate

Failures (excepting network partition) should
not interfere with endpoint semantics

Very successful, not clear how relevant now

Second notion of robustness is
underappreciated

Types of Delivery Services

Use of the term “communication services”
already implied an application-neutral
network

Built lowest common denominator service

— Allow end-based protocols to provide better
service

Example: recognition that TCP wasn’t
needed (or wanted) by some applications
— Separated TCP from IP, and introduced UDP

17
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Variety of Networks

* Incredibly successful!

— Minimal requirements on networks

— No need for reliability, in-order, fixed size packets,

etc.

— A result of aiming for lowest common
denominator

IP over everything

— Then: ARPANET, X.25, DARPA satellite network..
— Now: ATM, SONET, WDM...

Decentralized Management

* Both a curse and a blessing
— Important for easy deployment
— Makes management hard today

Host Attachment

Clark observes that cost of host
attachment may be higher because hosts
have to be smart

But the administrative cost of adding hosts
is very low, which is probably more
important

20

Cost Effective

* Cheaper than telephone network
* But much more expensive than circuit

switching

* Perhaps it is cheap where it counts (low-end)

and more expensive for those who can pay....

21/01/2013



Topic 2

Resource Accountability

» Failure!

— No coordinated resource accounting

— No coordinated resource management
— No coordinated resource control

— No coordinated resource ....

BUT Failure is information too

Real Goals
Internet Motto

We reject kings , presidents, and voting. We believe in
rough consensus and running code.“ — David Clark

* Build something that works!

» Connect existing networks

* Robust in face of failures

» Support multiple types of delivery services

» Accommodate a variety of networks

 Allow distributed management

» Easy host attachment

+ Cost effective

» Allow resource accountability

Questions to think abouit....

What priorities would a commercial design
have?

What would the resulting design look like?
* What goals are missing from this list?

» Which goals led to the success of the
Internet?

2

The Networking Dilemma

» Many different networking technologies
» Many different network applications

» How do you prevent incompatibilities?

25
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26

The Problem

Application Skype | | SSH NFS HTTP

Transmission Coaxial Fiber Radio
Media cable optic

* Re-implement every application for every technology?
» No! But how does the Internet design avoid this?

Solution: Intermediate Layers

 Introduce intermediate layers that provide set of abstractions
for various network functionality and technologies
— A new app/media implemented only once
— Variation on “add another level of indirection”

Application |SSH| | NFS | |H1'I'P|

Intermediate

layers @ TN o __.
Transmission Coaxial Fiber Packet
Media cable optic radio

27
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Network Architecture
Architecture is not the implementation itself

Architecture is how to organize/structure the
elements of the system and their
implementation

What interfaces are supported?

— Using what sort of abstractions

Where functionality is implemented?

— The modular design of the network

Computer System Modularity

Partition system into modules & abstractions:
» Well-defined interfaces give flexibility
— Hides implementation - can be freely changed

— Extend functionality of system by adding new
modules

* E.g., libraries encapsulating set of
Furgc‘tionality P 9

» E.g., programming language + compiler
abstracts away how the particular CPU works

29
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Computer System Modularity (cnt’ d)

Well-defined interfaces hide information
— Isolate assumptions
— Present high-level abstractions

But can impair performance!

Ease of implementation vs worse
performance

30

Network System Modularity

Like software modularity, but:

* Implementation is distributed across many
machines (routers and hosts)
* Must decide:
— How to break system into modules
* Layering
— Where modules are implemented
* End-to-End Principle
— Where state is stored
* Fate-sharing

31

Remember that slide!

* The relationship between architectural
principles and architectural decisions is crucial
to understand
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Topic 3: The Data Link Layer

Our goals:
¢ understand principles behind data link layer services:
(these are methods & mechanisms in your networking toolbox)
— error detection, correction
— sharing a broadcast channel: multiple access
— link layer addressing
— reliable data transfer, flow control: \
— instantiation and implementation of various link
layer technologies
— Wired Ethernet (aka 802.3)
— Wireless Ethernet (aka 802.11 WiFi)

Link Layer: Introduction

* hosts and routers are nodes jp‘,‘%
* communication channels that
connect adjacent nodes along
communication path are links
— wired links
— wireless links &E_ | 1
— LANs

* layer-2 packet is a frame,
encapsulates datagram

data-link layer has responsibility of
transferring datagram from one node
to adjacent node over a link

Link Layer (Channel) Services

* framing, link access:
— encapsulate datagram into frame, adding header, trailer
— channel access if shared medium
— “MAC” addresses used in frame headers to identify source, dest
* different from IP address!
* reliable delivery between adjacent nodes
— we learned how to do this already (chapter 3)!
— seldom used on low bit-error link (fiber, some twisted pair)
— wireless links: high error rates

* Q: why both link-level and end-end reliability?

Link Layer (Channel) Services - 2

e flow control:
— pacing between adjacent sending and receiving nodes

e error detection:
— errors caused by signal attenuation, noise.
— receiver detects presence of errors:
* signals sender for retransmission or drops frame

¢ error correction:
— receiver identifies and corrects bit error(s) without resorting to
retransmission
e half-duplex and full-duplex

— with half duplex, nodes at both ends of link can transmit, but not at same
time
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Where is the link layer implemented?

* in each and every host

¢ link layer implemented in
“adaptor” (aka network

host schematic

interface card NIC) application
transport
— Ethernet card, PCMClI card, network cpu memory
802.11 card
— implements link, physical Zosr
us
layer (e.g. PCI)

* attaches into host’s system
buses

* combination of hardware, network adapter

] » card
software, firmware L‘LI{ ; \w

Adaptors Communicating

controller

sending fost

controller

receiving post

N oegran ] —

frame

¢ sending side:

— encapsulates datagram in
frame

— encodes data for the physical
layer

— adds error checking bits,
provide reliability, flow control,
etc.

* receiving side
— decodes data from the
physical layer
— looks for errors, provide
reliability, flow control, etc
— extracts datagram, passes to
upper layer at receiving side

Coding — a channel function

Change the representation of data.

Given Data

)
|

Changed Data |

[Encoding |
== )

|

AASSS ST
|

AASSS SFfff

http:/

-

!
AASSS S
!

AASSS SFfff

21/01/2013



Topic 3

Coding

Change the representation of data.

=

Given Data Changed Data
1. Encryption: MyPasswd <-> AASSSSff

2. Error Detection: AASSSSHf <-> AASSSSTff

3. Compression: AASSSSFFff <-> A2S4f4

4. Analog: A254f4 <->

Line Coding Examples - 1l
Non-Return-to-Zero (NRZ) (Baud = bit-rate)

Clock

Manchester example (Baud = 2 x bit-rate)

Clock

0 1 0 0 1 0 0 1

U

Quad-level code (2 x Baud = bit-rate)

0 1 0 0
1

-
o
o

Line Coding Examples
where Baud=bit-rate

Non-Return-to-Zero (NRZ)

0 1 0 1 1 0 0 1 0 1

Non-Return-to-Zero-Mark (NRZM) 1 = transition 0 = no transition

0 1 0 1 1 0 0 1 0 1

Non-Return-to-Zero Inverted (NRZI) (note transitions on the 1)

0 1T 0 1 1 0 0

Line Coding Examples - 111
Data to send

0 1 0 0 1 0 0 1 1 1

Line-(Wire) representation

——
Name 4b sb Description Name 4b 5b Description . " 3
0 0000 11110 hexduao o NONE 00000 Quiet Block coding transfers data with a fixed
10001 01001 hexdatal ! “NONE- 11111 - Idie overhead: 20% less information per Baud in
2 0010 10100 hex data 2 J -NONE- 11000 SSD #1
3 0011 10101 hexdata3 K -NONE- 10001 SSD #2 the case of 4B/5B
4 0100 01010 hexdatad T -NONE- 01101 ESD#1
5 0101 01011 hexdata 5 R -NONE- 00111 ESD #2
6 0110 01110 hexdata6 H -NONE- 00100 Halt .
S ol onll hendates . So to send data at 100Mbps; the line rate
8 1000 10010 hexdata 8
o 1000 10011 hexeatas (the Baud rate) must be 125Mbps.
A 1010 10110 hexdata A
B 1011 10111 hexdataB R
¢ o ol hexdata 1Gbps uses an 8b/10b codec; encoding
ex data - g N
3 1110 11100 hexdataE entire bytes at a time but with 25% overhead
F 1111 11101 hexdata F

21/01/2013



Topic 3

Line Coding Examples - IV

Scrambling Scrambling
Sequence Sequence
M A Communications M
essage '\1] Channel essage
: XOR
Q_ Sequence

Line Coding Examples - V

Scrambling Scrambling
Sequence Sequence
A Communications
Wiz Y/ Channel
XOR XOR
Sequence Sequence

e.g. (Self-synchronizing) scrambler 4/\

&)

Message

Line Coding Examples — VI
(Hybrid)
..100111101101010001000101100111010001010010110101001001110101110100...
..10011110110101000101000101100111010001010010110101001001110101110100...

Inserted bits marking “start of frame/block/sequence”

..0100010110011101000101001011010100100111010111010010010111011101111000...

Scramble / Transmit / Unscramble

=/

Identify (and remove) “start of frame/block/sequence”
This gives you the Byte-delineations for free

64b/66b combines a scrambler and a framer. The start of frame is a pair of bits 01 or 10: 01 means “this frame is
data” 10 means “this frame contains data and control” — control could be configuration information, length of
encoded data or simply “this line is idle” (no data at all)

Patented Aug. 11, 1942

UNITED STATE‘; }{r OFFICE

I\

10, 1041, 5
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Multiple Access Mechanisms

frequency frequency

FDMA time TDMA time

Each dimension is orthogonal (so may be trivially combined)
There are other dimensions too; can you think of them?

L. 8202090 AR 00 A——
. SN SSSS—
I G BN 2V B W
BN 2 W BN 02020 . .
HEENN 2 BN BN 020 BN S
M 2 NN NN 0O BN -
HEE 2 AN WL 2 A W
I 2 U
LA A
— ~— ~—

A —
A— —
EEEE-UNEER $Z 0
—_— ) I
— [
_— N
_—_— | NN W
\ W I

A4 | ——

21/01/2013



Topic 3

Code Division Multiple Access (CDMA)

* used in several wireless broadcast channels (cellular, satellite,
etc) standards

* unique “code” assigned to each user; i.e., code set partitioning

* all users share same frgequen%y, but each user has own
chipping” sequence (i.e., code) to encode data

e encoded signal = (original data) X (chipping sequence)

e decoding: inner-product of encoded signal and chipping
sequence

+ allows multiple users to “coexist” and transmit simu|taneously
with minimal interference (if codes are “orthogonal

22

CDMA Encode/Decode

channel output Z; |

sender ot
slot
adds code slot 1
channel channel
1 output output
slot 1 slot 0
i ‘ ‘ | M| |
received | Iy o P
input : 1h) d,=1
‘ | sot1 | slot0
channel channel
receiver output output

removes code

23

CDMA: two-sender interference

senders
data a= ]z =dic
bits L di=" -
Each ol channel,Z
sender code T[T~ i
0 e o
adds a @—o
unique data =1 =1 /
code bits b N\
M nlnaaiannlanalan
CCH W B OH 2 e
5
sender
removes d | re
its unique R receiver 1
code T[] [T [
cod FEEE O

24

Coding Examples summary

* Common Wired coding
— Block codecs: table-lookups
« fixed overhead, inline control signals
— Scramblers: shift registers
« overhead free

Like earlier coding schemes and error correction/
detection; you can combine these
— e.g, 10Gb/s Ethernet may use a hybrid

CDMA (Code Division Multiple Access)
— coping intelligently with competing sources
— Mobile phones
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Error Detection and Correction

e 0

0000 (0000 0001 |0000

Basic Idea :

1. Add additional information to a message.

2. Detect an error and re-send a message.
Or, fix an error in the received message.

Error Detection and Correction

e 0

e

0000 (0000 0000 (0000

Basic Idea :

1. Add additional information to a message.

2. Detect an error and re-send a message.
Or, fix an error in the received message.

Error Detection

EDC= Error Detection and Correction bits (redundancy = overhead)
D = Data protected by error checking, may include header fields

e Error detection not 100% reliable!
e protocol may miss some errors, but rarely
o larger EDC field yields better detection and correction

)
otherwise,
all N

bits in D’

—
OK detected
; ? error
<d data bits—

[ D [EDC [ D' [EDC']

L. ([Biterror prone Tk |

<

Error Detection Code

Sender: Receiver:

Y = generateCheckBit(X);

send(XY);
receive(X1Y1);
Y2=generateCheckBit(X1);
if (Y1 !=Y2) ERROR;
else NOERROR

i NI
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Error Detection Code: Parity

Noise

0000 |0 % (0001 (O
o[ [
1001 |0 v |1111 (O

{

Problem: This simple parity cannot detect two-bit errors.

Parity Checking

Two Dimensional Bit Parity:
Detect and correct single bit errors

Single Bit Parity:

Detect single bit errors

row

—ow___,
it q a parity
. ari .
<+— d data bits _’|En Y 1.1 15 | dq,ja1
doq o doj|dpiyg
0111000110101011| 0 T
co\umnl di1 co di dij+1
parity dizqq4 - dil; disd
101011 10101fr
ity
111100 110 gfr'['”
01110[1 01110[L
001010 cd1o01o
no errors parity
error
correctable

single bit error

Internet checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted packet
(note: used at transport layer only)

Sender: Receiver:
+ treat segment contents as * compute checksum of received
segment

sequence of 1bit integers
+ checksum: addition (1" s

complement sum) of segment
contents — NO - error detected

— YES - no error detected. But
maybe errors nonetheless?

« check if computed checksum
equals checksum field value:

* sender puts checksum value
into UDP checksum field

Error Detection Code: CRC

CRC means “Cyclic Redundancy Check”.

More powerful than parity.

* It can detect various kinds of errors, including 2-bit
errors.

More complex: multiplication, binary division.
Parameterized by n-bit divisor P.

e Example: 3-bit divisor 101.
¢ Choosing good P is crucial.
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CRC with 3-bit Divisor 101

o]
o]

1111

Parity

111same check bits from Parity,
( but different ones from CRC

—

Add three 0’ s at the end |

Kurose p478 §5.2.3

Peterson p97 §2.4.3*

The divisor (G) — Secret sauce of

CRC

* If the divisor were 100, instead of 101, data 1111 and

1001 would give the same check bit 00.
* Mathematical analysis about the divisor:

— Last bit should be 1.

— Should contain at least two 1’ s.

— Should be divisible by 11.

¢ ATM, HDLC, Ethernet each use a CRC with well-
chosen fixed divisors

Divisor analysis keeps mathematicians in jobs

(a branch of pure math: combinatorial mathematics)

35

Checksumming: Cyclic Redundancy Check
recap

view data bits, D, as a binary number
choose r+1 bit pattern (generator), G
goal: choose r CRC bits, R, such that

— <D,R> exactly divisible by G (modulo 2)

— receiver knows G, divides <D,R> by G. If non-zero remainder: error
detected!

— can detect all burst errors less than r+1 bits
widely used in practice (Ethernet, 802.11 WiFi, ATM)

d bits <— r bits —

bit
[ D: data bits to be sent| R:CRC bits|  pattern

r mathematical
D*2" XOR R formula

CRC Another Example — this time with long

division
Want:
D-2"XORR =nP 100 3;01122822
equivalently: P 4|:'_1| 1001 D
re 101
D-2"=nP XORR 000
equivalently: 1010
if we divide D-2" by P, = gi 0
want remainder R 000
1100
1001
. 1010
R = remainder[ 1 L %?_]i
R <

FYI: in K&R P is called the Generator: G
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Error Detection Code becomes....

Sender:
Y = generateCheckBit(X);
send(XY);

Receiver:

receive(X1Y1);
Y2=generateCheckBit(X1);
if (Y1 1= Y2) ERROR;

else NOERROR

A T

Noise

Forward Error Correction (FEC)

Sender:
Y = generateCheckBit(X);
send(XY);

Receiver:

receive(X1Y1);
Y2=generateCheckBit(X1);

if (Y1 1= Y2) FIXERROR(X1Y1);
else NOERROR

o2 i RV

Noise

Forward Error Correction (FEC)

Sender:
Y = generateCheckBit(X);
send(XY);

Receiver:

receive(X1Y1);
Y2=generateCheckBit(X1);

if (Y1 1= Y2) FIXERROR(X1Y1);
else NOERROR

2 i R

Noise

Basic Idea of Forward Error
Correction

Good Good
00 |ooo 10 |101
S ~ 3 o 2 Bad
a ™~ a 101

11

01 |000

4
01 (011 ‘|_

Good

11 |110

Gooda]

21/01/2013
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Error Detection vs Correction

Error Correction:

* Cons: More check bits. False recovery.

* Pros: No need to re-send.

Error Detection:

* Cons: Need to re-send.

* Pros: Less check bits.

Usage:

* Correction: A lot of noise. Expensive to re-send.
* Detection: Less noise. Easy to re-send.

* Can be used together.

Multiple Access Links and Protocols

1 ”
Two types of “links :
¢ point-to-point
— point-to-point link between Ethernet switch and host

* broadcast (shared wire or medium)
— old-fashioned wired Ethernet (here be dinosaurs — extinct)
— upstream HFC (Hybrid Fiber-Coax — the Coax may be broadcast)
— 802.11 wireless LAN

& <« & =%
i
X ¥ 5
) E 2 R & humans ata
shared wire (e.g., shared RF shared RF cocktail party
cabled Ethernet) (e.g., 802.11 WiFi) (satellite) (shared air, acoustical)

21/01/2013

Multiple Access protocols

¢ single shared broadcast channel

* two or more simultaneous transmissions by nodes:
interference
— collision if node receives two or more signals at the same time

multiple access protocol

 distributed algorithm that determines how nodes share
channel, i.e., determine when node can transmit

¢ communication about channel sharing must use channel itself!
— no out-of-band channel for coordination

44

Ideal Multiple Access Protocol

Broadcast channel of rate R bps

1. when one node wants to transmit, it can send at rate R

2. when M nodes want to transmit, each can send at average
rate R/M

3. fully decentralized:
— no special node to coordinate transmissions

— no synchronization of clocks, slots

4. simple

45
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MAC Protocols: a taxonomy

Three broad classes:
* Channel Partitioning
— divide channel into smaller “pieces” (time slots, frequency, code)
— allocate piece to node for exclusive use
* Random Access
— channel not divided, allow collisions
— “recover” from collisions
* “Taking turns”

— nodes take turns, but nodes with more to send can take longer
turns

46

Channel Partitioning MAC protocols: TDMA
(time travel warning — we mentioned this earlier)

TDMA: time division multiple access
* access to channel in "rounds"

» each station gets fixed length slot (length = pkt trans time)
in each round

* unused slots go idle
* example: station LAN, 1,3,4 have pkt, slots 2,5,6 idle

slot
frame

! 1

47

Channel Partitioning MAC protocols: FDMA
(time travel warning — we mentioned this earlier)

FDMA: frequency division multiple access

* channel spectrum divided into frequency bands

* each station assigned fixed frequency band

* unused transmission time in frequency bands go idle

* example: station LAN, 1,3,4 have pkt, frequency bands 2,5,6

idle
time
A - i —
©
[ =4
© _—-s
o
[
3 P s
o
[}
FDM cable =
IRYAV]
-

48

“Taking Turns” MAC protocols

channel partitioning MAC protocols:
— share channel efficiently and fairly at high load

— inefficient at low load: delay in channel access, 1/
N bandwidth allocated even if only 1 active node!
Random access MAC protocols

— efficient at low load: single node can fully utilize
channel

— high load: collision overhead
“taking turns” protocols

look for best of both worlds!

49

21/01/2013
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“Taking Turns” MAC protocols

Polling:

* master node “invites”
slave nodes to transmit
inturn

e typically used with
“dumb” slave devices

master

* concerns:
— polling overhead
— latency slaves

— single point of failure
(master)

“Taking Turns” MAC protocols

Token passing:

7 control token passed from
one node to next @
sequentially.

7 token message (nothing

7 concerns: tosend)

) token overhead @ ‘@

O latency
O single point of failure (token)
O concerns fixed in part by a slotted
ring (many simultaneous tokens)

B

Cambridge students — this is YOUR heritage
Cambridge RING, Cambridge Fast RING,
Cambridge Backbone RING, these things gave us ATDM (and ATM)

ATM

In TDM a sender may only use a pre-allocated slot
slot .
frame f

In ATM a sender transmits labeled cells whenever necessary

ATM = Asynchronous Transfer Mode — an ugly expression
think of it as ATDM — Asynchronous Time Division Multiplexing

That's PACKET SWITCHING to the rest of us — just like Ethernet
but using fixed length slots/packets/cells

Use the media when you need it, but
ATM had virtual circuits and these needed setup....
Worse ATM had an utterly irrational size

ATM Layer: ATM cell
(size = best known stupid feature)
¢ 48-byte payload
— Why?: small payload -> short cell-creation
delay for digitized voice

— halfway between 32 and 64 (compromise!)
e 5-byte ATM cell header (10% of payload)

40 bits

e ey bv e Lo L
<
[
;

|
1
J
HEC ‘

|
)
|
Cell header |

VCI ‘ PT

Cell format ‘ Cell Header ATM Cell Payload - 48 bytes ‘
1 Il

21/01/2013
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ATM —redux, the irony
(a 60 second sidetrack)

Size issues once plagued ATM
- too little time to do useful work

now plague the common Internet MTU

Even jumbo grams (9kB) are argued as not
big enough

Consider issues
 default Ethernet CRC not robust for 9k

pa.ckets Make it big!

IPv6 checksum implications
625kB @ 10 GigE = 500 pis

* MTU discovery ugliness
* (discovering MTU is hard anyway) http://www.psc.edu/~mathis/MTU

« Is time-per-packet a sensible justification?

None of these are the “Internet way”...

55

(Bezerkely, 60’s, free stuff, no G-man)

Seriously; why not?

S.
nedu'®
What's wrong with oS Rrules:
— TDMA onte Quite \(-\e(e a Qg
_ o
poing MBS eveV™
- . s\
— Token passing ST
— ATM

Turn to random access
— Optimize for the common case (no collision)
— Don’t avoid collisions, just recover from them....
* Sound familiar?

What could possibly go wrong....

Random Access Protocols

* When node has packet to send
— transmit at full channel data rate R.
— no a priori coordination among nodes
» two or more transmitting nodes =» “collision”,
* random access MAC protocol specifies:
— how to detect collisions
— how to recover from collisions (e.g., via delayed retransmissions)
¢ Examples of random access MAC protocols:
— ALOHA and slotted ALOHA
— CSMA, CSMA/CD, CSMA/CA

Random Access MAC Protocols

57

When node has packet to send

— Transmit at full channel data rate

— No a priori coordination among nodes
Two or more transmitting nodes = collision
— Data lost

Random access MAC protocol specifies:
— How to detect collisions

— How to recover from collisions
Examples

— ALOHA and Slotted ALOHA

— CSMA, CSMA/CD, CSMA/CA (wireless)

21/01/2013
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Key ldeas of Random Access

Carrier sense
— Listen before speaking, and don’t interrupt
— Checking if someone else is already sending data
— ... and waiting till the other node is done
Collision detection
— If someone else starts talking at the same time, stop
— Realizing when two nodes are transmitting at once
— ...by detecting that the data on the wire is garbled
Randomness
— Don’t start talking again right away
— Waiting for a random time before trying again

60

Aloha Signaling

Two channels: random access, broadcast

Sites send packets to hub (random)
— If received, hub sends ACK (random)
— If not received (collision), site resends

Hub sends packets to all sites (broadcast)
— Sites can receive even if they are also sending

Questions:
— When do you resend? Resend with probability p
— How does this perform? Need a clean model....

Where it all Started: AlohaNet

* Norm Abramson left
Stanford to surf

* Set up first data
communication system
for Hawaiian islands

* Hub at U. Hawaii, Oahu

* Had two radio
channels:
— Random access:

« Sites sending data

— Broadcast:
* Hub rebroadcasting data

59

Pure (unslotted) ALOHA

¢ unslotted Aloha: simple, no synchronization
* when frame first arrives
— transmit immediately
* collision probability increases:
— frame sent at t, collides with other frames sent in [t,-1,t,+1]
will overlap ~ will overlap

! withstartof | withendof }
i«—i's frame —»i+—i’s frame —

i node i frame |

to]. tO tO+1

61
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Pure Aloha efficiency

P(success by given node) = P(node transmits) -
P(no other node transmits in [py-1,p,] -
P(no other node transmits in [py-1,p,]
=p - (1-pVt- (1-p)Vt
=p- (1-p)NY

... choosing optimum p and then letting n -> oo ...

=1/(2e) =.18

Best described as unspectacular; but
better than what went before.

62

Assumptions

63

Slotted ALOHA
Operation

All frames same size transmits in next slot

Time divided into equal « No collision: success!

slots (time to transmit a * Collision: node retransmits
frame) with probability p until
Nodes are synchronized success

Nodes begin to transmit
frames only at start of slots
If multiple nodes transmit,
nodes detect collision

* When node gets fresh data,

Slot-by-Slot Example

node 1
node 2

node 3

— slots

64

Efficiency of Slotted Aloha

Suppose N stations have packets to send
— Each transmits in slot with probability p

Probability of successful transmission:
by a particular nodei: S, =p (1-p)N-2)
by any of N nodes: S= N p (1-p)N-2)

What value of p maximizes prob. of success:
— For fixed p, S = 0 as N increases
— Butif p=1/N, then S =» 1/e =0.37 as N increases

Max efficiency is only slightly greater than 1/3!

65
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Pros and Cons of Slotted Aloha
rocn 1 [1] N

moez [0 BRI
roces [ = =]
F—t—t+—t+—+—+—"+—+—"+—+ ot
C E C g E C E 8 S
Pros Cons
* Single active node can ¢ Wasted slots:
continuously transmit at full — Idle
rate of channel _ Collisions
* Highly decentralized: only « Collisions consume entire
need slot synchronization slot
e Simple

¢ Clock synchronization

66

Improving on Slotted Aloha

* Fewer wasted slots
— Need to decrease collisions and empty slots

* Don’t waste full slots on collisions
— Need to decrease time to detect collisions

* Avoid need for synchronization
— Synchronization is hard to achieve

67

CSMA (Carrier Sense Multiple Access)

CSMA: listen before transmit
— If channel sensed idle: transmit entire frame
— If channel sensed busy, defer transmission

* Human analogy: don’ t interrupt others!

Does this eliminate all collisions?
— No, because of nonzero propagation delay

68

CSMA Collisions

+— space —

Propagation delay: two A c

nodes may not hear each t t t
other’s before sending.

Would slots hurt or help? ¢
CSMA reduces but does not
eliminate collisions

Biggest remaining problem?

Collisions still take full slot!
dlow do you fix that?

21/01/2013
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CSMA/CD (Collision Detection)

* CSMA/CD: carrier sensing, deferral as in CSMA
— Collisions detected within short time
— Colliding transmissions aborted, reducing wastage

* Collision detection easy in wired LANs:
— Compare transmitted, received signals

* Collision detection difficult in wireless LANs:
— Reception shut off while transmitting (well, perhaps not)
— Not perfect broadcast (limited range) so collisions local
— Leads to use of collision avoidance instead (later)

70

CSMA/CD Collision Detection

and D can tell that « space —»
collision occurred. C

TO

Note: for this to work,

need restrictions on

minimum frame size and to
maximum distance. Why? t

«— time

71

Limits on CSMA/CD Network
Length

>
W)

/
LW‘
I

* Latency depends on physical length of link
— Time to propagate a packet from one end to the other

i

l

* Suppose A sends a packet at time t
— And B sees an idle line at a time just before t+d
— ... so B happily starts transmitting a packet
* B detects a collision, and sends jamming signal

T But A can’t see collision until t+2d

B
latency d |m Q

Limits on CSMA/CD Network
Length

>
W)

LW”{‘
1

)\

/

c A needs to wait for time 2d to detect collision
— So, A should keep transmitting during this period
— ... and keep an eye out for a possible collision

* Imposes restrictions. E.g., for 10 Mbps Ethernet:
— Maximum length of the wire: 2,500 meters

— Minimum length of a frame: 512 bits (64 bytes)
* 512 bits = 51.2 usec (at 10 Mbit/sec)

* For light in vacuum, 51.2 sec = 15,000 meters
vs. 5,000 meters “round trip” to wait for collision

— What about 10Gbps Ethernet?

i

l

73

B
latency d |m Q
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Performance of CSMA/CD

Time wasted in collisions

— Proportional to distance d

Time spend transmitting a packet

— Packet length p divided by bandwidth b

Rough estimate for efﬁ%ency (K some constant)

b
Note: %+ Kd
— For large packets, small distances, E~ 1
— As bandwidth increases, E decreases
— That is why high-speed LANs are all switched

5

Benefits of Ethernet

Easy to administer and maintain
Inexpensive

Increasingly higher speed
Evolvable!

76

Evolution of Ethernet

Changed everything except the frame format
— From single coaxial cable to hub-based star

— From shared media to switches

— From electrical signaling to optical

Lesson #1
— The right interface can accommodate many changes
— Implementation is hidden behind interface

Lesson #2
— Really hard to displace the dominant technology
— Slight performance improvements are not enough

77

Ethernet: CSMA/CD Protocol

Carrier sense: wait for link to be idle

Collision detection: listen while transmitting

— No collision: transmission is complete

— Collision: abort transmission & send jam signal
Random access: binary exponential back-off

— After collision, wait a random time before trying again
— After mthcollision, choose K randomly from {0, ..., 2™-1}

— ... and wait for K¥*512 bit times before trying again
* Using min packet size as “slot”

« If transmission occurring when ready to send, wait until end of
transmission (CSMA)

21/01/2013
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Binary Exponential Backoff (BEB)

Think of time as divided in slots
After each collision, pick a slot randomly within
next 2™Mslots

— Where m is the number of collisions since last
successful transmission

Questions:

— Why backoff?

— Why random?

— Why 2m?

— Why not listen while waiting?

78

Behavior of BEB Under Light Load

Look at collisions between two nodes
* First collision: pick one of the next two slots
— Chance of success after first collision: 50%
— Average delay 1.5 slots
* Second collision: pick one of the next four slots
— Chance of success after second collision: 75%
— Average delay 2.5 slots
* In general: after mt collision
— Chance of success: 1-2™
— Average delay (in slots): % + 2(m-1)

79

BEB: Theory vs Reality

In theory, there is no difference between theory
and practice. But, in practice, there is.

80

BEB Reality

* Performs well (far from optimal, but no one
cares)

— Large packets are ~23 times as large as minimal
slot

* Is now mostly irrelevant
— Almost all current ethernets are switched

81
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BEB Theory

A very interesting algorithm

Stability for finite N only proved in 1985
— Ethernet can handle nonzero traffic load without collapse

All backoff algorithms unstable for infinite N (1985)
— Poisson model: infinite user pool, total demand is finite

Not of practical interest, but gives important insight
— Multiple access should be in your “bag of tricks”

82

83

Question

Two hosts, each with infinite packets to send
What happens under BEB?
Throughput high or low?

Bandwidth shared equally or not?

MAC “Channel Capture” in BEB

* Finite chance that first one to have a
successful transmission will never relinquish
the channel

— The other host will never send a packet

* Therefore, asymptotically channel is fully
utilized and completely allocated to one host

84

85

Example

Two hosts, each with infinite packets to send

— Slot 1: collision

— Slot 2: each resends with prob %
* Assume host A sends, host B does not

— Slot 3: A and B both send (collision)

— Slot 4: A sends with probability %, B with prob. %
* Assume A sends, B does not

— Slot 5: A definitely sends, B sends with prob. %
* Assume collision

— Slot 6: A sends with probability %, B with prob. 1/8

Conclusion: if A gets through first, the prob. of B sending
successfully halves with each collision

21/01/2013

21



Topic 3
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Another Question

Hosts now have large but finite # packets to
send

What happens under BEB?

Throughput high or low?

87

Answer

Efficiency less than one, no matter how many
packets

Time you wait for loser to start is proportion
to time winner was sending....

88

Different Backoff Functions

Exponential: backoff ~ a
— Channel capture?
— Efficiency?

Superlinear polynomial: backoff ~ iP p>1
— Channel capture?
— Efficiency?

Sublinear polynomial: backoff ~ iP p<1
— Channel capture?
— Efficiency?

89

Different Backoff Functions

Exponential: backoff ~ a'
— Channel capture (loser might not send until winner idle)
- Efﬁciency less than 1 (time wasted waiting for loser to start)

Superlinear polynomial: backoff ~ i p>1
— Channel capture
— Efficiency is 1 (for any finite # of hosts N)

Sublinear polynomial: backoff ~ iP p<1
— No channel capture (ioser not shut out)

— Efficiency is less than 1 (and goes to zero for large N)
* Time wasted resolving collisions

21/01/2013
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Summary of MAC protocols

* channel partitioning, by time, frequency or code
— Time Division, Frequency Division

* random access (dynamic),
— ALOHA, S-ALOHA, CSMA, CSMA/CD

— carrier sensing: easy in some technologies (wire), hard in others
(wireless)

— CSMA/CD used in Ethernet
— CSMA/CA used in 802.11
* taking turns
— polling from central site, token passing
— Bluetooth, FDDI, IBM Token Ring

21/01/2013

MAC Addresses (and ARP)

or How do | glue my network to my data-link?

* 32-bit IP address:
— network-layer address

— used to get datagram to destination IP subnet

* MAC (or LAN or physical or Ethernet) address:

— function: get frame from one interface to another
physically-connected interface (same network)

— 48 bit MAC address (for most LANSs)
* burned in NIC ROM, also sometimes software settable

LAN Address (more)

MAC address allocation administered by IEEE

manufacturer buys portion of MAC address space (to assure
uniqueness)

analogy:
(a) MAC address: like Social Security Number
(b) IP address: like postal address

MAC flat address =¥ portability

— can move LAN card from one LAN to another

IP hierarchical address NOT portable

— address depends on IP subnet to which node is attached

LAN Addresses and ARP

Each adapter on LAN has unique LAN address
1A-2F-BB-709-AD
LAN

(wired or
wireless)

58-23-D7-FA-20-B0

71-6F7-2B-08-53

0C-C4-11-6F-E3-98

Ethernet
Broadcast address =
FF-FF-FF-FF-FF-FF

[ = adapter

23
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Address Resolution Protocol

Every node maintains an ARP table
— <IP address, MAC address> pair

Consult the table when sending a packet
— Map destination IP address to destination MAC address
— Encapsulate and transmit the data packet

But: what if IP address not in the table?

— Sender broadcasts: “Who has IP address 1.2.3.156?”
— Receiver responds: “MAC address 58-23-D7-FA-20-B0”
— Sender caches result in its ARP table

94

Example: A Sending a Packet to B

How does host A send an IP packet to host B?

88-B2-2F-54-1A-0F

EG-E9-00-17-BB-4B

1A-23-F9-CD-06-98

74-29-9C-E8-FF-55

222.222.222.221

A u ROUTE
222.222.222.222
222.222.222.23
111.111.111.4 -
111.111.111.110
R 49-BD-D2-C7-56-24
©C-49-DE-DO-AB-7D B

95

Example: A Sending a Packet to B

How does host A send an IP packet to host B?

88-B2-2F-54-1A-0F

EG-E9-00-17-BB-4B

222.222.222.221

74-29-9C-E8-FF-55

1A-23-F9-CD-06-98

222.222.222.222
T 1 l
111.111.111.110
R 49-BD-D2-C7-56-2A
CC-49-DE-D0-AB-7D B

1. A sends packet to R.
2. R sends packet to B.

96

Host A Decides to Send Through R

* Host A constructs an IP packet to send to B
— Source 111.111.111.111, destination 222.222.222.222
* Host A has a gateway router R
— Used to reach destinations outside of 111.111.111.0/24
— Address 111.111.111.110 for R learned via DHCP/config

74-20-0C-E8-FF-55 88-B2-2F-54-1A-0F

E6-E9-00-17-BB-4B I

1A-23-F9-CD-06-98 222.222.222.221

A |Ik
222.222.222.222
222.222.222.23
o B & b 6 | .
111.111.111.110
R 49-BD-D2-C7-56-2A
CC-48-DE-DO-AB-7D B

21/01/2013
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Host A Sends Packet Through R
* Host A learns the MAC address of R’s interface
— ARP request: broadcast request for 111.111.111.110
— ARP response: R responds with EE9-00-17-BB-4B
* Host A encapsulates the packet and sends to R

74-20-0C-ES-FF-55 88-B2-2F-54-1A-0F

E£6-E6-00-17-BB-4B -

1111111111 1A-23-F9-CD-06-98 222.222.222.221

222.222.222.222

R 49-BD-D2-C7-56-2A

222.222.222.22
111.111.111.110

©C-49-DE-DO-AB-7D B

R Decides how to Forward Packet

* Router R’s adaptor receives the packet
— R extracts the IP packet from the Ethernet frame

— R sees the IP packet is destined to 222.222.222.222
* Router R consults its forwarding table

— Packet matches 222.222.222.0/24 via other adaptor
74-20-0C-ES-FF-55 88-B2-2F-54-1A-0F

E£6-E6-00-17-BB-4B -

1111111111 1A-23-F9-CD-06-98 222.222.222.221

222.222.222.222

R 49-BD-D2-C7-56-2A

222.222.222.22
111.111.111.110

©C-49-DE-DO-AB-7D B

R Sends Packet to B
 Router R’ s learns the MAC address of host B
— ARP request: broadcast request for 222.222.222.222
— ARP response: B responds with 49-BD-D2-C7-52A
* Router R encapsulates the packet and sends to B

74-20-0C-E8-FF-55 88-B2-2F-54-1A-0F

E£6-E0-00-17-BB-4B -

111.111.111.1 1A-23-F9-CD-06-98 222.222.222.221

222.222.222.222

R 49-BD-D2-C7-56-2A

222.222.222.22
111.111.111.110

CC-48-DE-DO-AB-7D B

Security Analysis of ARP
* Impersonation

— Any node that hears request can answer ...
— ... and can say whatever they want

* Actual legit receiver never sees a problem

— Because even though later packets carry its IP

address, its NIC doesn’t capture them since not its
MAC address

101

21/01/2013

25



Topic 3

Key ldeas in Both ARP and DHCP

* Broadcasting: Can use broadcast to make contact
— Scalable because of limited size

* Caching: remember the past for a while
— Store the information you learn to reduce overhead
— Remember your own address & other host’s addresses

* Soft state: eventually forget the past
— Associate a time-to-live field with the information
— ... and either refresh or discard the information
— Key for robustness in the face of unpredictable change

102

Why Not Use DNS-Like Tables?

* When host arrives:

— Assign it an IP address that will last as long it is
present

— Add an entry into a table in DNS-server that maps
MAC to IP addresses

* Answer:
— Names: explicit creation, and are plentiful
— Hosts: come and go without informing network
* Must do mapping on demand
— Addresses: not plentiful, need to reuse and remap
* Soft-state enables dynamic reuse

103

Hubs

... physical-layer (“dumb”) repeaters:
— bits coming in one link go out all other links at same rate
— all nodes connected to hub can collide with one another
— no frame buffering
— no CSMA/CD at hub: host NICs detect collisions

Co;x or twisted pair

104

With HomePlug technology, the electrical wires
in your home can now distribute broadband
Internet, HD video, digital music & smart energy
applications.

21/01/2013
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Switch

(like a Hub but smarter)

* link-layer device: smarter than hubs, take active role
— store, forward Ethernet frames

— examine incoming frame’ s MAC address, selectively
forward frame to one-or-more outgoing links when
frame is to be forwarded on segment, uses CSMA/CD to
access segment

e transparent

— hosts are unaware of presence of switches
* plug-and-play, self-learning

— switches do not need to be configured

106

Switch: allows multiple simultaneous
transmissions

* hosts have dedicated, direct
connection to switch

* switches buffer packets

* Ethernet protocol used on each
incoming link, but no collisions;
full duplex
— each link is its own collision

domain

* switching: A-to-A’ and B-to-B’
Slm.UI.taneousw' without switch with six interfaces
collisions (1,2,3,4,5,6)
— not possible with dumb hub

107

Switch Table

Q: how does switch know that A’
reachable via interface 4, B’
reachable via interface 5?
A: each switch has a switch table,
each entry:
— (MAC address of host, interface to
reach host, time stamp)

looks like a routing table!

Q: how are entries created,
maintained in switch table?
— something like a routing protocol?

switch with six interfaces
(1,2,3,4,5,6)

108

rce: A

Switch: self-learning (recafpj«x

* switch learns which hosts can
be reached through which
interfaces

— when frame received, switch
“learns” location of sender:
incoming LAN segment

— records sender/location pair in
switch table

MAC addr | interface TTL

A 1 60 Switch table
(initially empty)

109
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Switch: frame filtering/forwarding

When frame received:

1. record link associated with sending host
2. index switch table using MAC dest address

3. if entry found for destination
then {

if dest on segment from which frame arrived
then drop the frame

else forward the frame on interface indicated

}
else flood \ forward on all but the interface
on which the frame arrived

110

Self'lea rn|ng, // S;euste/;'A
forwarding:
example

¢ frame destination
unknown: flood

7 destination A location
known:
selective send

MAC addr | interface | TTL

A 1 60 Switch table
A 4 60 (initially empty)

111

Interconnecting switches

* switches can be connected together

T Q:sending from A to G - how does S; know to forward
frame destined to F via S, and S,?

T A:self learning! (works exactly the same as in single-switch
case — flood/forward/drop)

112

Flooding Can Lead to Loops

* Flooding can lead to forwarding loops
— E.g., if the network contains a cycle of switches
— “Broadcast storm”

113 >
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L ]
&)

wee O0lution: Spanning Trees

» Ensure the forwarding topology has no loops
— Avoid using some of the links when flooding
— ... to prevent loop from forming

» Spanning tree

— Sub-graph that covers all vertices but contains no
cycles

— Links not in the spanning tree do not forward frames

N\ | /\‘_

\ Graph Has \

A

114

What Do We Know?

* Shortest paths to (or from) a node form a tree
* So, algorithm has two aspects :
— Pick a root

— Compute shortest paths to it

* Only keep the links on shortest-path

115

Constructing a Spanning Tree

« Switches need to elect a root
— The switch w/ smallest identifier (MAC addr)
» Each switch determines if each interface
is on the shortest path from the root
— Excludes it from the tree if not root

* Messages (Y, d, X) / \

— From node X
— Proposing Y as the root
— And the distance isd

116 Three hops

Steps in Spanning Tree Algorithm

« Initially, each switch proposes itself as the root
— Switch sends a message out every interface
— ... proposing itself as the root with distance 0
— Example: switch X announces (X, 0, X)

» Switches update their view of the root
— Upon receiving message (Y, d, Z) from Z, check Y’s id
— If new id smaller, start viewing that switch as root

» Switches compute their distance from the root
— Add 1 to the distance received from a neighbor
— Identify interfaces not on shortest path to the root
— ... and exclude them from the spanning tree

* If root or shortest distance to it changed, “flood”
updated message (Y, d+1, X

117
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Example From Switch #4’ s Viewpoint

» Switch #4 thinks it is the root
- ?ends (4, 0, 4) message to 2 and

* Then, switch #4 hears from #2 1

— Receives (2, 0, 2) message from
2 /

— ... and thinks that #2 is the root 3\ 5
— And realizes it is just one hop 2 \
away — \
* Then, switch #4 hears from #7 4\ 6
— Receives (2, 1,7) from 7 7
— And realizes this is a longer path
— So, prefers its own one-hop path

— And removes 4-7 link from the

tree
118

Example From Switch #4’ s Viewpoint

» Switch #2 hears about switch #1
— Switch 2 hears (1, 1, 3) from 3
— Switch 2 starts treating 1 as root
— And sends (1, 2, 2) to neighbors
» Switch #4 hears from switch #2
— Switch 4 starts treating 1 as root

7
3 \
— And sends (1, 3, 4) to neighbors 2
4 //
S !

\

5
» Switch #4 hears from switch #7 \\
— Switch 4 receives (1, 3, 7) from 7 6
— And realizes this is a longer path

— So, prefers its own three-hop path

— And removes 4-7 link from the

tree
119

Robust Spanning Tree Algorithm

» Algorithm must react to failures
— Failure of the root node
* Need to elect a new root, with the next lowest identifier
— Failure of other switches and links
» Need to recompute the spanning tree
* Root switch continues sending messages
— Periodically reannouncing itself as the root (1, 0, 1)
— Other switches continue forwarding messages
» Detecting failures through timeout (soft state)
— If no word from root, times out and claims to be the root
— Delay in reestablishing spanning tree is major problem
— Work on rapid spanning tree algorithms...

120

Switches vs. Routers Summary

* both store-and-forward devices
— routers: network layer devices (examine network layer headers)
— switches are link layer devices
e routers maintain routing tables, implement routing algorithms

* switches maintain switch tables, implement filtering, learning

algorithms
5 5
4 4
3 3 3
2 F2y 2 2
1 oyl 1 1
Host Bridge Router Host

121
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Wireless

iBurst

Metrics for evaluation / comparison of wireless
technologies

* Bitrate or Bandwidth

¢ Range - PAN, LAN, MAN, WAN

* Two-way / One-way

* Multi-Access / Point-to-Point

* Digital / Analog

* Applications and industries

* Frequency — Affects most physical properties:
Distance (free-space loss)
Penetration, Reflection, Absorption
Energy proportionality
Policy: Licensed / Deregulated
Line of Sight (Fresnel zone)
Size of antenna

» Determined by wavelength— \ = ;«)
124 :

Modern art?
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The Wireless Spectrum

100 km 10km Tkm 100m 10m Tm 10em 1 om

Wireless Communication Standards

+  Cellular (800/900/1700/1800/1900Mhz):
— 2G: GSM / CDMA / GPRS /EDGE
— 3G: CDMA2000/UMTS/HSDPA/EVDO
— 4G: LTE, WiMax

* IEEE 802.11 (aka WiFi):
— b: 2.4Ghz band, 11Mbps (~4.5 Mbps operating rate)
— g: 2.4Ghz, 54-108Mbps (~19 Mbps operating rate)
— a: 5.0Ghz band, 54-108Mbps (~25 Mbps operating rate)
— n: 2.4/5Ghz, 150-600Mbps (4x4 mimo).

* |EEE 802.15 — lower power wireless:
— 802.15.1: 2.4Ghz, 2.1 Mbps (Bluetooth)
— 802.15.4: 2.4Ghz, 250 Kbps (Sensor Networks)

127157
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Wireless Link Ch teristi

(Figure Courtesy of Kurose and Ross)

200 Mbps 802.11n

54 Mbps 802.11a,9 802.11a,g point-to-point

5-11 Mbps| 802.11b WiIMAX

4 Mbps UMTS/WCDMA-HSDPA, CDMA2000-1XEVDO ~ —3G

enhanced

1 Mbps 802.15.1

384 Kbps UMTS/WCDMA, CDMA2000 —3G

56 Kbps 15-95, CDMA, GSM —26

Indoor Outdoor Mid range Long range
outdoor outdoor
10-30m 50-200m 200m-4Km 5Km-20Km
Figure 6.2 ¢ Link characteristics of selected wireless network standards
12855

Antennas / Aerials
* An electrical device which converts electric
_currents into radio waves, and vice versa.

2-3dB 8-12dB 15-18dB  28-34dB

»Q: What does “higher-gain antenna” mean?
»A: Antennas are passive devices —
more gain means focused and more directional.
»Directionality means more energy gets to where it needs to go and less
interference everywhere.

»What are omni-directional antennas?
129
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What has changed?

130

How many radios/antennas ?

* WiFi 802.11n (maybe MiMo?)
-+ 2G-GSM

* 3G —HSDPA+

* 4G-LTE

* Bluetooth (4.0)

* NFC

* GPS Receiver

* FM-Radio receiver
(antenna is the headphones cable)

What Makes Wireless Different?

¢ Broadcast and multi-access medium...
Just like AlohaNet — isn’t this where we came in?

* Signals sent by sender don’ t always end up at
receiver intact

— Complicated physics involved, which we won’ t
discuss

— But what can go wrong?

132

Path Loss / Path Attenuation

2
* Free Space Path Loss: FSPL = (?)
d = distance o 9
A = wave length = (_47:’ f)
C

f = frequency
¢ = speed of light

* Reflection, Diffraction, Absorption
* Terrain contours (Urban, Rural, Vegetation).
* Humidity

133
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Multipath Effects

/ \(\ Ceiling
SN L

/
®\/ ®

Floor

* Signals bounce off surface and interfere with
one another

¢ Self-interference

1343,

Ideal Radios

(courtesy of Gilman Tolle and Jonathan Hui, ArchRock)

At

Real Radios

(courtesy of Gilman Tolle and Jonathan Hui, ArchRock)

The Amoeboed “cell”

(courtesy of David Culler, UCB)

Signal

Distance

21/01/2013
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Interference from Other Sources

* External Interference
— Microwave is turned on and blocks your signal
— Would that affect the sender or the receiver?
* Internal Interference

— Hosts within range of each other collide with one
another’ s transmission

* We have to tolerate path loss, multipath, etc.,
but we can try to avoid internal interference

138

SNR —the key to communication:

Signal to Noise Ratio

Bitrate (aka data-rate)
»The higher the SNR —
the higher the (theoretical) bitrate.

»Modern radios use adaptive /dynamic bitrates.

Q: In face of loss,
should we decrease or increase the bitrate?

A: If caused by free-space loss or multi-path fading
-lower the bitrate.
If external interference - often higher bitrates

3o (shorter bursts) are probabilistically better.

Wireless Bit Errors

* The lower the SNR (Signal/Noise) the higher the

Bit Error Rate (BER)
* We could make the signal stronger...
* Why is this not always a good idea?

— Increased signal strength requires more power

— Increases the interference range of the sender, so you

interfere with more nodes around you
* And then they increase their power.......

* How would TCP behave in face of losses?

— TCP conflates loss (congestion) with loss local errors

Local link-layer Error Correction schemes can
correct some problems (should be TCP aware).

1404

802.11

aka - WiFi ...
What makes it special?

Deregulation > Innovation > Adoption > Lower cost = Ubiquitous technology

141
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802.11 Architecture

802.11 frames
exchanges

802.3 (Ethernet) g

frames exchanged
Figure 6.7 ¢ IEEE 802.11 LAN architecture

¢ Designed for limited area
* AP’ s (Access Points) set to specific channel
* Broadcast beacon messages with SSID (Service Set Identifier) and MAC Address
periodically
 Hosts scan all the channels to discover the AP’ s
— Host associates with AP

14214,

Wireless Multiple Access Technique?

* Carrier Sense?
— Sender can listen before sending
— What does that tell the sender?

* Collision Detection?
— Where do collisions occur?
— How can you detect them?

143

21/01/2013

Hidden Terminals

transmit range

* Aand Ccan both send to B but can’ t hear each other
— A'is a hidden terminal for C and vice versa
e Carrier Sense will be ineffective

144,14,

Exposed Terminals

y

L

o

* Exposed node: B sends a packet to A; C hears this and decides

not to send a packet to D (despite the fact that this will not
cause interference)!
* Carrier sense would prevent a successful transmission.

145,
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Key Points

* No concept of a global collision
— Different receivers hear different signals
— Different senders reach different receivers

* Collisions are at receiver, not sender
— Only care if receiver can hear the sender clearly
— It does not matter if sender can hear someone else
— As long as that signal does not interfere with receiver

* Goal of protocol:
— Detect if receiver can hear sender

— Tell senders who might interfere with receiver to shut up

146

Basic Collision Avoidance

* Since can’ t detect collisions, we try to avoid
them

* Carrier sense:
— When medium busy, choose random interval
— Wait that many idle timeslots to pass before sending

* When a collision is inferred, retransmit with
binary exponential backoff (like Ethernet)
— Use ACK from receiver to infer “no collision”
— Use exponential backoff to adapt contention window

147

CSMA/CA -MA with Collision Avoidance

other node in

sender receiver ,
sender s range

* Before every data transmission

— Sender sends a Request to Send (RTS) frame containing the length of the
transmission

— Receiver respond with a Clear to Send (CTS) frame
— Sender sends data
— Receiver sends an ACK; now another sender can send data

» When sender doesn’ t get a CTS back, it assumes collision

14845

CSMA/CA, con’ t

other node in

sender sender’s range
RTS

receiver

data data

¢ |f other nodes hear RTS, but not CTS: send

—Presumably, destination for first sender is out of
node’ s range ...

149149
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CSMA/CA, con’ t

other node in

sender receiver ,
sender s range

 If other nodes hear RTS, but not CTS: send

— Presumably, destination for first sender is out of node’ s
range ...

—... Can cause problems when a CTS is lost

* When you hear a CTS, you keep quiet until scheduled
transmission is over (hear ACK)

1505,

RTS / CTS Protocols (CSMA/CA)

B sendsto C

Overcome hidden terminal problems with

contention-free protocol

1. Bsendsto C Request To Send (RTS)

A hears RTS and defers (to allow C to answer)
C replies to B with Clear To Send (CTS)

D hears CTS and defers to allow the data

B sends to C

uhwN

151,

Preventing Collisions Altogether

* Frequency Spectrum partitioned into several channels
— Nodes within interference range can use separate channels

— Now A and C can send without any interference!
* Most cards have only 1 transceiver
— Not Full Duplex: Cannot send and receive at the same time

— Aggregate Network throughput doubles

1525,

802.11: advanced capabilities

Rate Adaptation 10

* base station, mobile 1°'3 \ \\\
dynamically change & 124 \
transmission rate N |
(physical layer ol N\ b
modulation technique) as 1071 10\ 2'0 Eoi‘w
mobile moves, SNR varies SNR(dB)

1. SNR decreases, BER increase
as node moves away from base

----- QAM256 (8 Mbps) station
— = QAM16 (4 Mbps)

: BPSK (1 Mbps) 2. When BER becomes too high,
operating point switch to lower transmission
rate but with lower BER

153
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802.11: advanced capabilities

Power Management

7 node-to-AP: “I am going to sleep until next beacon
frame”

OAP knows not to transmit frames to this node
>node wakes up before next beacon frame

7 beacon frame: contains list of mobiles with AP-to-
mobile frames waiting to be sent

ynode will stay awake if AP-to-mobile frames to be
sent; otherwise sleep again until next beacon frame

154
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Topic 4: Network Layer
Our goals:

* understand principles behind network layer

services:

— network layer service models

— forwarding versus routing (versus switching)
— how a router works

— routing (path selection)

—IPv6

* For the most part, the Internet is our
example

Network layer
==

* transport segment from
sending to receiving host

* on sender side encapsulates -

network | _network

e ' |_datalink || data link |
H twork I
segments into datagrams —[‘k {_phrsical |
physical network
* onreceiver side, delivers

segments to transport layer p=y

* network layer protocols in
every host, router

network
data link
BOW| ehysical
n \

* router examines header
fields in all IP datagrams
passing through it

Name: a something
Address: Where a something is

Routing: How do | get to the
something

Addressing (at a conceptual level)
* Assume all hosts have unique IDs
* No particular structure to those IDs
* Later in topic | will talk about real IP addressing
* Dol route on location or identifier?

* If a host moves, should its address change?
— If not, how can you build scalable Internet?
— If so, then what good is an address for identification?

21/01/2013
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Packets (at a conceptual level)

* Assume packet headers contain:

— Source ID, Destination ID, and perhaps other

information Destination
Identifier Why include
Source this?
Identifier
Payload

Switches/Routers

* Multiple ports (attached to other switches or

hOStsqcoming links Switch outgoing links

* Ports are typically aupiex (iIncoming and

outgoing)

Example of Network Graph

Six ports, incoming/outgoing ]

Four ports, incoming/outgoing ]

A Variety of Networks

¢ ISPs: carriers

— Backbone
— Edge
— Border (to other ISPs)

* Enterprises: companies, universities

— Core
— Edge
— Border (to outside)

* Datacenters: massive collections of machines

— Top-of-Rack
— Aggregation and Core
— Border (to outside)

21/01/2013
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ISP networks

Enterprise Network

Partial Datacenter Network

10411 104,12 10421 10422

Core
S ;Aggregation
PR 00 906 &6
012 102021203
Pod 0 Pod 1 Pod2 Pod 3

Switches

Enterprise/Edge: typically 24 to 48 ports
Aggregation switches: 192 ports or more
Backbone: typically fewer ports
Border: typically very few ports

21/01/2013
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Forwarding Decisions

* When packet arrives, must choose outgoing port

incoming links Switch outgoing links
[ |
Consider
packet header -
and routing
table

* Decision is based on routing state (table) in
switch

Forwarding Decisions

* When packet arrives..
— Must decide which outgoing port to use
— In single transmission time
— Forwarding decisions must be simple

* Routing state dictates where to forward packets
— Assume decisions are deterministic

* Global routing state means collection of routing state
in each of the routers
— Will focus on where this routing state comes from
— But first, a few preliminaries....

Forwarding vs Routing

* Forwarding: “data plane”
— Directing a data packet to an outgoing link
— Individual router using routing state
* Routing: “control plane”
— Computing paths the packets will follow
— Routers talking amongst themselves
— Jointly creating the routing state

* Two very different timescales....

Interplay between routing and forwarding

analogy:
routing algorithm . .
T routing: process of planning

trip from source to dest

local forwarding table

header value i O forwarding: process of
negotiating each intersection

value in arriving % %
packet’ s header ;

21/01/2013
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Connection setup Network service model

Q: What service model for the “channel” transporting

* 3 important function in some network architectures: datagrams from sender to receiver?

— ATM, frame relay, X.25, Software Defined Networks

* before datagrams flow, two end hosts and intervening Example services for EX&TNE‘ services for a flow
routers establish virtual connection individual datagrams: of datagrams:
— routers get involved * guaranteed delivery * in-order datagram
. ; ; delivery
« network vs transport layer connection service: guaranteed delivery with o
. less than 40 msec delay * guaranteed minimum
— network: between two hosts (may also involve bandwidth to flow
intervening routers in case of VCs) - restrictions on changes in
— transport: between two processes inter-packet spacing

Remember: Ask youself “what is doing the multiplexing?”

. Network layer connection and connection-less
Network layer service models: .
service
Network  Service Guarantees ? Congestion e d k id k-|
Architecture  Model Bandwidth Loss Order Timing feedback atagrar_n networ PI"OVI es network- ayer
connectionless service
Internet  best effort none no no no no (inferred . . . . .
via loss) * Virtual Circuit (VC) — a connection-orientated
ATM  CBR constant  yes yes  yes  no network — provides network-layer connection
rate congestion H
ATM  VBR guaranteed yes  yes yes no service
rate congestion - i .
A ABR suaraneed o e o - * analogous to the transport-layer services, but:
minimum — service: host-to-host
ATM - UBR none ne.yesno no — no choice: network provides one or the other
— implementation: in network core

Topic4 5
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Virtual circuits

“source-to-dest path behaves much like telephone circuit”
— performance-wise
— network actions along source-to-dest path

* call setup, teardown for each call before data can flow

* each packet carries VC identifier (not destination host address)

* every router on source-dest path maintains “state” for each passing
connection

* link, router resources (bandwidth, buffers) may be allocated to VC
(dedicated resources = predictable service)

VC implementation

a VC consists of:
1. path from source to destination
2. VC numbers, one number for each link along
path
3. entries in forwarding tables in routers along path
* packet belonging to VC carries VC number
(rather than dest address)
* VC number can be changed on each link.
— New VC number comes from forwarding table

Forwarding table

VC number

\

@/izl E 2 32 @

interface
number

Forwarding table in

northwest router:

Incoming interface Incoming VC # Outg¢ing interface Outgoing‘VC#

1 12 3 22
2 63 1 18
3 7 2 17
1 97 3 87

Routers maintain connection state information!

Virtual circuits: signaling protocols

¢ used to setup, maintain teardown VC
¢ used in ATM, frame-relay, X.25
* not used in today’ s Internet

application ==
transort r. Data ﬂow begins
network 4§ Call connected transport
network

data link . Initiate call ]
physi::al L data link
physical
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Datagram networks

* no call setup at network layer
* routers: no state about end-to-end connections
— no network-level concept of “connection”
* packets forwarded using destination host address
— packets between same source-dest pair may take different paths

i:l) A lJ
application X
application
transport
transport
network k
data link || 1-Senddata 2. Receive data [AIIIL

physical

] data link
physical

Forwarding tables
[_paddress ] }32 bits wide - ~ 4 billion unique address

Naive approach:
One entry per address

Entry Destination Port
1 0.0.0.0 1

2 0.0.0.1 - .
. : ~ 4 billion entries

R 255.255.255.255 12

Improved approach:
Group entries to reduce table size

Entry Destination Port
1 0.0.0.0 - 127.255.255.255 1
2 128.0.0.1 —128.255.255.255 2
50 248.0.0.0 — 255.255.255.255 12

IP addresses as a line

Your computer My computer
kmbr'dge/Oxford
USA \ /Europe
| |
} o0& {
0 2321
\ J

Y
All P addresses

Entry Destination Port
1 Cambridge 1
2 Oxford 2
3 Europe 3
4 USA 4
5 Everywhere (default) 5

Longest Prefix Match (LPM)

Entry Destination Port
1 Cambridge 1 } . .
2 Oxford 2 Universities
g EUope 3 } Continents
4 USA 4
5 [/ —> Everywhere (default) 5 Planet

I- Cambridge Most specific ]

* Europe
* Everywhere

To:

Cambridge) Pata ‘

21/01/2013




Longest Prefix Match (LPM)
Entry Destination Port
1 Cambridge 1 . .
2 Oxford 2 } Universities
3 Europe 3 :
A VS A } Continents
5 [/—> Everywhere (default) 5 Planet
I * Europe Most specific ]
* Everywhere
To: France| Data ‘
30

Implementing Longest Prefix Match

Entry Destination Port
1 Cambridge 1 Searching Most specific
p] Oxtord 2z
2 Furone, 3
4 USA 4 FOUND |
5 Everywhere (default) 5 Least specific

Internet (datagram)

Datagram or VC network: why?

ATM (VC)

— “elastic” service, no strict
timing req.
« “smart” end systems
(computers)

— can adapt, perform control,
error recovery
— simple inside network,
complexity at “edge”
* many link types
— different characteristics

— uniform service difficult

ETHERNET

* data exchange among computers . eyolved from telephony

human conversation:
— strict timing, reliability
requirements
— need for guaranteed
service

“dumb” end systems
— telephones
— complexity inside network

aDsL

Router Architecture Overview

Two key router functions:

.

run routing algorithms/protocol (RIP, OSPF, BGP)
forwarding datagrams from incoming to outgoing link

input port output port
=08 [(H
o switching o
- L 2
L
input port fabric output port

|':’D'B

(H =

routing
processor

21/01/2013
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Input Port Functions

.
— Iookup‘
e data link forwarding switch

! eminaton 2 P55 1t [1THNNNN
t t
ermination (protocol, queveing fabric

/l/ decapsulation)

Physical layer:
bit-level reception

Data link layer: Decentralized switching:
e.g., Ethernet  given datagram dest., lookup output port using
see chapter 5 forwarding table in input port memory
« goal: complete input port processing at ‘line
speed’
¢ queuing: if datagrams arrive faster than
forwarding rate into switch fabric

Three types of switching fabrics
(comparison criteria: speed, contention, complexity)

—— X
[ Jmm- 11
B
~CCm- [memory T
C y4
-~ >
memory
-+
B
L crossbar
C
>~

x <%N
5

Switching Via Memory

First generation routers:

« traditional computers with switching under direct control of CPU

« packet copied to system’ s memory

« speed limited by memory bandwidth (2 bus crossings per datagram)

Input Memory Output
Port Port

System Bus

Switching Via a Bus

datagram from input port memory
to output port memory via a shared bus

bus contention: switching speed limited by
bus bandwidth

Lots of ports?? speed up the bus
no contention bus speed =
2 x port speed x port count

32 Gbps bus, Cisco 5600: sufficient speed for
access and enterprise routers
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Switching Via An Interconnection Network

* overcome bus bandwidth limitations

* Banyan networks, other interconnection nets initially
developed to connect processors in multiprocessor

* advanced design: fragmenting datagram into fixed length

cells, switch cells through the fabric.

Cisco 12000: switches 60 Gbps through the

interconnection network

Output Ports

.
, buffer e
fabric management (protocal, termination
decapsulation)

Buffering required when datagrams arrive from fabric faster than the
transmission rate

Scheduling discipline chooses among queued datagrams for
transmission
= Who goes next?

21/01/2013

Output port queueing

Switch ‘: *D>’ Switch 2 .
Fobrk/,‘ Fobric | :
HE ST

f

|
|

— T F

One Packe!
Time Loter

Py

=

Qutput Port Contention
ol Time t
¢ buffering when arrival rate via switch exceeds output line

speed
* queueing (delay) and loss due to output port buffer overflow!

Input Port Queuing

* Fabric slower than input ports combined -> queueing may
occur at input queues

¢ Head-of-the-Line (HOL) blocking: queued datagram at front
of queue prevents others in queue from moving forward

* queueing delay and loss due to input buffer overflow!

switch

switch.]
fabric

fabric__

plsln
ARG

b

green packet

output port contention
experiences HOL blocking

at time t - only one red
packet can be transferred

10
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Buffers in Routers

* So how large should the buffers be?

Buffer size matters
— End-to-end delay
* Transmission, propagation, and queueing de
* The only variable part is queueing delay
— Router architecture
* Board space, power consumption, and co
* On chip buffers: higher density, higher
 Optical buffers: all-optical routers

1.4m long spiral
waveguide with input
from HeNe laser

i

You are now touching the edge of the research zone...... >

«
N>
=)
A

21/01/2013

Continuous ARQ (TCP) adapting to congestion

W oaek Rule for adjusting W

Only W packets " .

may be outstanding — If an ACK is received: W & W+1/W
l — If a packet is lost: W < W/2

o ]

util = 0%

time

O(logW)
#of 2 w &
€] 1,000,000 10,000 20 - 50
packets E % %
ntuon 2T TCP m Sawtoqth m Non-pursty
o | Sawtooth = Smoothing >| Arrivals
1 c
% Single TCP €| Many Flows, |~ Paced TCP,
Assume 7 | Flow, 100% @ 100% 85-90%
Utilization Utilization Utilization
Simulations,
Simulati Test-bed and Simulations,
Evidence Elmﬂlgt:g:’ Real Test-bed
Network Experiments
Experiments o
Rule-of-thumb — Intuition
Rule for adjusting W
Only W packets

may be outstanding

!

o If a packet is lost:

Source

max

Window size

o Ifan ACK is received: W ¢ W+1/W
W < W/2

Dest

2T xC

11
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Small Buffers — Intuition

Synchronized Flows Many TCP Flows

» Aggregate window has same * Independent, desynchronized
dynamics « Central limit theorem says the
Therefore buffer occupancy has aggregate becomes Gaussian
same dynamics + Variance (buffer size) decreases
Rule-of-thumb still holds. as N increases

The Internet version of a Network layer

Host, router network layer functions:

Routing protocols P protocpl X

«path selection eaddressing conventions
datagram format

*RIP, OSPF, BGP °

Network epacket handling conventions
layer \—» forwarding
table ICMP protocol

serror reporting
erouter “signaling”

IPv4 Packet Structure
20 Bytes of Standard Header, then Options

abit | 4bit 8-bit
Ve Header | Type of Service 16-bit Total Length (Bytes)
Length (TOS)
q po— 3-bit
16-bit Identification Flags | 13-bit Fragment Offset
8-bit Time to q a
Li:/e (I-l-n_) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload

(Packet) Network Tasks One-by-One

* Read packet correctly

* Get packet to the destination

* Get responses to the packet back to source

* Carry data

* Tell host what to do with packet once arrived

* Specify any special network handling of the
packet

* Deal with problems that arise along the path

21/01/2013
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Reading Packet
Correctly

* Version number (4 bits) —

— Indicates the version of the IP protocol

— Necessary to know what other fields to expect

— Typically “4” (for IPv4), and sometimes “6” (for IPv6)
* Header length (4 bits)

— Number of 32-bit words in the header

— Typically “5” (for a 20-byte IPv4 header)

— Can be more when IP options are used
* Total length (16 bits)

— Number of bytes in the packet

— Maximum size is 65,535 bytes (26 -1)

— ... though underlying links may impose smaller limits
50

Getting Packet to

Destination and Back

d

* Two IP addresses
— Source IP address (32 bits)

— Destination IP address (32 bits)
* Destination address
— Unique identifier/locator for the receiving host
— Allows each node to make forwarding decisions
* Source address
— Unique identifier/locator for the sending host
— Recipient can decide whether to accept packet
— Enables recipient to send a reply back to source

Telling Host How to

Handle Packet

* Protocol (8 bits)
— Identifies the higher-level protocol
— Important for demultiplexing at receiving host

* Most common examples
— E.g., “6” for the Transmission Control Protocol (TCP)
— E.g., “17” for the User Datagram Protocol (UDP)

protocol=6 protocol=17
IP header IP header
TCP header UDP header

52

Special Handling

* Type-of-Service (8 bits)
— Allow packets to be treated differently based on
needs

— E.g., low delay for audio, high bandwidth for bulk
transfer

— Has been redefined several times

* Options

53

21/01/2013
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Potential Problems

* Header Corrupted: Checksum
* Loop: TTL

* Packet too large: Fragmentation

Preventing Loops

(aka Internet Zombie plan)

21/01/2013

Header Corruption

* Checksum (16 bits)
— Particular form of checksum over packet header

* If not correct, router discards packets
— So it doesn’t act on bogus information

* Checksum recalculated at every router

* Forwarding loops cause packets to cycle forever
— As these accumulate, eventually consume all capacity

el

* Time-to-Live (TTL) Field (8 bits)
— Decremented at each hop, packet discarded if reaches 0
— ...and “time exceeded” message is sent to the source

56 * Using “ICMP” control message; basis for traceroute

Fragmentation

(some assembly required)

P
raions

* Fragmentation: when forwarding a packet, an
Internet router can split it into multiple pieces
(“fragments”) if too big for next hop link

* Must reassemble to recover original packet

— Need fragmentation information (32 bits)
— Packet identifier, flags, and fragment offset

57
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IP Fragmentation & Reassembly

network links have MTU
(max.transfer size) - largest
possible link-level frame.
— different link types, different
MTUs
large IP datagram divided
(“fragmented”) within net

fragmentation:
in: one large datagram
out: 3 smaller datagrams

— one datagram becomes
several datagrams

— “reassembled” only at final
destination

— IP header bits used to identify,
order related fragments

IPv6 does things differently

4-58

IP Fragmentation and Reassembly

]

length
=4000

offset
=0

fragflag
=0

Example |
7 4000 byte datagram
7 MTU = 1500 bytes

One large datagram becomes
several smaller datagrams

length fragflag offset
A1 =1500 =1
1480 bytes in
data field | length l fragflag of'fset
=1500_|.5X. f-wee =1 =185
Offset = oo\
1480/8 length fragflag | offset
=1040 |= =0 =370

Pop quiz question: What happens when a fragment is lost?

4-59

b
Type of Sevice
r0s)

Fragmentation

Details

Identifier (16 bits): used to tell which fragments
belong together

Flags (3 bits):

— Reserved (RF): unused bit

— Don’t Fragment (DF): instruct routers to not fragment
the packet even if it won’t fit

* Instead, they drop the packet and send back a “Too Large”
ICMP control message

* Forms the basis for “Path MTU Discovery”
— More (MF): this fragment is not the last one
Offset (13 bits): what part of datagram this
fragment covers in 8-byte units

60 Pop quiz question: Why do frags use offset and not a frag number?

Options

* End of Options List

* No Operation (padding between options)
* Record Route

 Strict Source Route

* Loose Source Route

* Timestamp

* Traceroute

* Router Alert

21/01/2013
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* |P address: 32-bit @3‘31141
identifier for host, router (

IP Addressing: introduction

interface

interface: connection

between host/router and

physical link

— router’ s typically have
multiple interfaces

— host typically has one
interface

— IP addresses associated

with each interface 223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 1 1

* |P address:
— subnet part (high order bits)
— host part (low order bits)
* What's a subnet ?
— device interfaces with same
subnet part of IP address

— can physically reach each
other without intervening
router

subnet host
ar par
11011111 00000001 00000011 00000000

223.1.3.0/24
CIDR: Classless InterDomain Routing
— subnet portion of address of arbitrary length

— address format: a.b.c.d/x, where x is # bits in
subnet portion of address

Subnets

223.1.1.0/24

223.1.1.1 @
223.1.2.]

@E,.m.z
114 2231.2.9

@— 223.1.2.2
223.1.13 223.13.27

subnet

223.13@@.1.3.2

223.1.3.0/24

223.1.2.0/24

Subnet mask: /24

network consisting of 3 subnets

IP addresses: how to get one?

Q: How does a host get IP address?

hard-coded by system admin in a file

— Windows: control-panel->network->configuration-
>tcp/ip->properties
— UNIX: /etc/rc.config

DHCP: Dynamic Host Configuration Protocol: dynamically get
address from as server

— “plug-and-play”

DHCP client-server scenario

Goal: allow host to dynamically  orcesener:223.1.25

obtain its IP address from network
server when it joins network
Can renew its lease on address in use
Allows reuse of addresses (only hold
address while connected an “on”)
Support for mobile users who want to
join network (more shortly)

223.1.1.1 DHCP 223.1.2.1
serve

223.1.1.2 )

- § arriving DHCP
E| N

client needs

address in this

network

223113 2231327

223.1.3. 223.13.2

arriving

DHCP discover client

src:0.0.0.0,68 «m

dest.: 255.255.255.255,67

yiaddr: 0.0.0.0 L
transaction ID: 654

src:223.1.2.5,67

dest: 255.255.255.255, 68
T | yiddm 223124
transaction ID: 654
Lifetime: 3600 secs

DHCP request

src: 0.0.0.0,68

dest:: 255.255.255.255, 67
yiaddrr: 223.1.2.4 [ —
transaction ID: 655
| Lifetime: 3600 secs

DHCP ACK

T [scasi2567

dest: 255.255.255.255, 68
yiaddrr: 2231.2.4
transaction ID: 655
Lifetime: 3600 secs

21/01/2013
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IP addresses: how to get one?

Q: How does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP’ s
address space

ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20

Organization 0 11001000 00010111 00010000 00000000 200.23.16.0/23
Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23
Organization 2 11001000 00010111 00010100 00000000 200.23.20.0/23

Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23

Hierarchical addressing: route aggregation

Hierarchical addressing allows efficient advertisement of routing
information:

Organization 0
200.23.16.0/23

with addresses
Organization 2 beginning
200.23.20.0/23

Fly-By-Night-ISP 00.23.16.0/20

Internet
Organization 7

Organization 1 \ rsong y
200.23.18.0/23 end me anything
—

200.23.30.0/23

“Send me anything
SR with addresses
beginning
199.31.0.0/16”

~

Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

\ “Send me anything

with addresses
Organization 2 beginning

200.23.20.0/23 . Fly-By-Night-Isp \%}

Organization 7

200.23.30.0/23

Organization 0
200.23.16.0/23

Internet

\

J— “Send me anything
P— with addresses
Organization 1 / beginning 199.31.0.0/16
200.23.18.0/23”
200.23.18.0/23 / or 200.23.18.0/23

IP addressing: the last word...

Q: How does an ISP get block of addresses?

& ICANN: Internet Corporation for Assigned
Names and Numbers
— allocates addresses
— manages DNS

— assigns domain names, resolves disputes

21/01/2013
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NAT: Network Address Translation

rest of local network —_—
Internet (e.g., home network)
10.0.0/24 1000.1
10.0.0.4
4 10.0.0.2
7
138.76.29.7
10.0.0.3

Datagrams with source or

destination in this network

have 10.0.0/24 address for
source, destination (as usual)

All datagrams leaving local
network have same single source NAT IP
address: 138.76.29.7,
different source port numbers

NAT: Network Address Translation

Motivation: local network uses just one IP address as far as
outside world is concerned:

— range of addresses not needed from ISP: just one IP
address for all devices

— can change addresses of devices in local network
without notifying outside world

— can change ISP without changing addresses of
devices in local network

— devices inside local net not explicitly addressable,
visible by outside world (a security plus).

NAT: Network Address Translation

Implementation: NAT router must:

— outgoing datagrams: replace (source IP address, port #)
g;‘ every outgoing datagram to (NAT IP address, new port

... remote clients/servers will respond using (NAT IP address,
new port #) as destination addr.

— remember (in NAT translation table) every (source IP
address, port #) to (NAT IP address, new port #)
translation pair

— incoming datagrams: replace (NAT IP address, new port
#) in dest fields of every incoming datagram with
colglresponding (source IP address, port #) stored in NAT
table

2: NAT router
changes datagram
source addr from
10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

NAT: Network Address Translation

NAT translation table
WAN side addr LAN side addr

138.76.29.7, 5001 [10.0.0.1, 3345
/

1: host 10.0.0.1
sends datagram to
128.119.40.186, 80

5:10.0.0.1, 3345
D:128.119.40.186, 80
10.0.0.1

@ 10.0.0.2

10.0.0.3

$:138.76.29.7, 5001
D: 128.119.40.186, 80

:&040,04

7
138.76.29.7 S:128.119.40.186, 80
F D:10.0.0.1, 3345
Y/

D: 138.76.29.7, 5001 4_ NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.1, 3345

3: Reply arrives
dest. address:
138.76.29.7, 5001

21/01/2013
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NAT: Network Address Translation

* 16-bit port-number field:
— 60,000 simultaneous connections with a single
LAN-side address!
* NAT is controversial:
— routers should only process up to layer 3

— violates end-to-end argument

* NAT possibility must be taken into account by app
designers, eg, P2P applications

— address shortage should instead be solved by IPv6

NAT traversal problem

¢ client wants to connect to
server with address 10.0.0.1

— server address 10.0.0.1 local to Client
LAN (client can’ t use it as ? @

destination addr)

— only one externally visible NATted \
address: 138.76.29.7

¢ solution 1: statically configure

NAT to forward incoming

connection requests at given

port to server

— e.g., (123.76.29.7, port 2500)

always forwarded to 10.0.0.1 port
25000

138.76.29.7 NAT

router

NAT traversal problem

¢ solution 2: Universal Plug and Play
(UPNP) Internet Gateway Device
(IGD) Protocol. Allows NATted host
to:

«*learn public IP address
(138.76.29.7) 13876297 NAT

«*add/remove port mappings router
(with lease times)

i.e., automate static NAT port
map configuration

@by client

NAT traversal problem

* solution 3: relaying (used in Skype)
— NATed client establishes connection to relay
— External client connects to relay
— relay bridges packets between to connections
/7

1. connection to
relay initiated
by NATted host

2. connection to
o=y relay initiated

3. relaying

Client established

7
138.76.29.7  NAT

router _@

21/01/2013
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ICMP: Internet Control Message Protocol

used by hosts & routers to
communicate network-level
information
— error reporting: unreachable
host, network, port, protocol
— echo request/reply (used by
ping)
network-layer “above” IP:
— ICMP msgs carried in IP
datagrams
ICMP message: type, code plus first 8
bytes of IP datagram causing error

PR
N = O

© oo hwwwwwwo}g
(0]

Code description

echo reply (ping)

dest. network unreachable
dest host unreachable
dest protocol unreachable
dest port unreachable
dest network unknown
dest host unknown

source quench (congestion
control - not used)

echo request (ping)

route advertisement
router discovery

TTL expired

bad IP header

ONOWNRFR OO

O o0oooo

Traceroute and ICMP

* Source sends series of UDP
segments to dest
— Firsthas TTL=1
— Second has TTL=2, etc.
— Unlikely port number
¢ When nth datagram arrives to
nth router:
— Router discards datagram
— And sends to source an ICMP
message (type 11, code 0)

— Message includes name of
router& IP address

¢ When ICMP message arrives,
source calculates RTT

* Traceroute does this 3 times

Stopping criterion

* UDP segment eventually arrives
at destination host

 Destination returns ICMP “host
unreachable” packet (type 3,
code 3)

¢ When source gets this ICMP,
stops.

80

IPve

SUEWSALITOFNLES
ONHER BT W DIONDIFID
WASTORGEPHRRINING.

Motivated (prematurely) by address exhaustion

— Addresses four times as big

Steve Deering focused on simplifying IP
— Got rid of all fields that were not absolutely necessary

— “Spring Cleaning” for IP

Result is an elegant, if unambitious, protocol

IPv4 and IPv6 Header Comparison

IPv4
Version HL Type of Service Total Length
Identification Flags Fragment Offset
Time to Live Protocol Header Checksum
Source Address
Destination Address
Options Padding

Field name kept from IPv4 to IPv6
Fields not kept in IPv6

Name & position changed in IPv6
New field in IPv6

AA0 |

IPv6

Version Traffic Class

Payload Length

Source Address

Destination Address

Next Header Hop Limit

21/01/2013
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Summary of Changes

Eliminated fragmentation (why?)

Eliminated header length (why?)

Eliminated checksum (why?)

New options mechanism (next header) (why?)
Expanded addresses (why?)

Added Flow Label (why?)

IPv4 and IPv6 Header Comparison

IPv4 IPv6
Version HL Type of Service Total Length - o
Identification Flags  Fragment Offset
E— Payload Length Next Header Hop Limit
Time to Live Protocol Header Checksum
Source Address
Source Address
Destination Address
Options Padding

Field name kept from IPv4 to IPv6
Fields not kept in IPv6 Destination Address

Name & position changed in IPv6

aEE0o

New field in IPv6

84

Philosophy of Changes

Don’t deal with problems: leave to ends
— Eliminated fragmentation
— Eliminated checksum
— Why retain TTL?
Simplify handling:
— New options mechanism (uses next header approach)
— Eliminated header length
* Why couldn’t IPv4 do this?
Provide general flow label for packet
— Not tied to semantics
— Provides great flexibility

Comparison of Design Philosophy

IPv4 IPv6

Identification Flags  Fragment Offset
Hop Limit
Time to Live - Header Checksum

Source Address

Source Address
Destination Address

To Destination and Back (expanded)
Deal with Problems (greatly reduced) Desﬁnaﬁon Address
Read Correctly (reduced)

Special Handling (similar)

O
™
™
=™

Topic4
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Transition From IPv4 To IPv6

* Not all routers can be upgraded simultaneous
—no “flag days”
— How will the network operate with mixed IPv4 and
IPV6 routers?
* Tunneling: IPv6 carried as payload in IPv4
datagram among IPv4 routers

Tunneling
A B E F
Logical view: ‘ - tunnel ._‘
IPv6 IPv6 IPV6 Pv6
A 8 £ F
Physical view: -_._\@/_\@/_‘_.
IPv6 IPV6 IPva4 IPva IPv6 IPv6

Tunneling
A B £ F
Logical view: ‘ - tunnel ._‘
IPV6 IPV6 IPv6 IPv6
A B C D E F
Physical view: -_._._._‘_‘
IPv6 IPv6 |Pv4 IPv4 IPV6
P o —
Flow: X Flow: X

Src: A
Dest: F

Src: A
Dest: F

data data

Mo e e 0T
IPV6 inside IPv6 inside v
1Pv4 IPv4

Improving on IPv4 and IPv6?

* Why include unverifiable source address?
— Would like accountability and anonymity (now neither)
— Return address can be communicated at higher layer
* Why packet header used at edge same as core?
— Edge: host tells network what service it wants
— Core: packet tells switch how to handle it
* Oneiis local to host, one is global to network
* Some kind of payment/responsibility field?
— Who is responsible for paying for packet delivery?
— Source, destination, other?
* Other ideas?

21/01/2013
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Interplay between routing and forwarding

routing algorithm

local forwarding table

header value |output link

value in arriving % %
packet’ s header
i . 1

“Valid” Routing State

Global routing state is “valid” if it produces
forwarding decisions that always deliver
packets to their destinations

— Valid is not standard terminology

Goal of routing protocols: compute valid state
— But how can you tell if routing state if valid?

Necessary and Sufficient Condition

* Global routing state is valid if and only if:
— There are no dead ends (other than destination)
— There are no loops

* Adead end is when there is no outgoing port

— A packet arrives, but the forwarding decision does not
yield any outgoing port

* Aloop is when a packet cycles around the same
set of nodes forever

Necessary: Obvious

If you run into a deadend before hitting
destination, you’ll never reach the destination

If you run into a loop, you’ll never reach

destination

— With deterministic forwarding, once you loop,
you’ll loop forever (assuming routing state is
static)

21/01/2013

23



Topic4

Wandering Packets

Packet reaches deadend and stops
Packet falls into loop and never reaches destination

Sufficient: Easy
* Assume no deadends, no loops

* Packet must keep wandering, without repeating
— If ever enter same switch from same port, will loop
— Because forwarding decisions are deterministic

* Only a finite number of possible ports for it to
visit
— It cannot keep wandering forever without looping
— Must eventually hit destination

The “Secret” of Routing

Avoiding deadends is easy
Avoiding loops is hard

The key difference between routing protocols
is how they avoid loops!

— Don’t focus on details of mechanisms

— Just ask “how are loops avoided?”

Will return to this later.... a little this term
a lot more in Part Il Principles of Communications

Making Forwarding Decisions

* Map PacketState+RoutingState into OutgoingPort
— Atline rates.....

* Packet State:
— Destination ID
— Source ID
— Incoming Port (from switch, not packet)
— Other packet header information?

* Routing State:
— Stored in router

21/01/2013
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Forwarding Decision Dependencies

depend on destination

* Could also depend on :

— Source: requires n? state
— Input port: not clear what this buys you
— Other header information: let’s ignore for now

* We will focus only on destination-based routing

— But first consider the alternative

Source/Destination-Based Routing

Paths from two different sources (to same
destination) can be very different

Destination-Based Routing

Paths from two different sources (to same destination)

)

must coincide once they overlap

Destination-Based Routing

¢ Paths to same destination never cross

* Once paths to destination meet, they never
split

* Set of paths to destination create a “delivery
tree”
— Must cover every node exactly once
— Spanning Tree rooted at destination

Topic4

21/01/2013
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A “Delivery Tree” for a Destination

Checking Validity of Routing State

* Focus only on a single destination
— Ignore all other routing state

* Mark outgoing port with arrow
— There can only be one at each node

Eliminate all links with no arrows

¢ Look at what’s left....

Example 1

Pick Destination

21/01/2013
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Put Arrows on Outgoing Ports

Remove Unused Links

Leaves Spanning Tree: Valid

Second Example

Second Example

Is this valid?

21/01/2013
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Lesson....

Very easy to check validity of routing state for

a particular destination

Deadends are obvious
— Node without outgoing arrow

Loops are obvious
— Disconnected from rest of graph

Computing Routing State

111

Forms of Route Computation

Learn from observing....

— Not covered in your reading
Centralized computation

— One node has the entire network map
Pseudo-centralized computation

— All nodes have the entire network map
Distributed computation

— No one has the entire network map

How Can You Avoid Loops?

* Restrict topology to spanning tree

— If the topology has no loops, packets can’t loop!
* Central computation

— Can make sure no loops
* Minimizing metric in distributed computation

— Loops are never the solution to a minimization
problem

21/01/2013
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Self-Learning on Spanning
Tree

114

Easiest Way to Avoid Loops

* Use a topology where loops are impossible!
* Take arbitrary topology

* Build spanning tree (algorithm covered later)
— Ignore all other links (as before)

* Only one path to destinations on spanning trees

* Use “learning switches” to discover these paths
— No need to compute routes, just observe them

Consider previous graph

A Spanning Tree

21/01/2013
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Another Spanning Tree

Yet Another Spanning Tree

Flooding on a Spanning Tree

If you want to send a packet that will reach all
nodes, then switches can use the following
rule:

— Ignoring all ports not on spanning tree
Originating switch sends “flood” packet out all
ports

When a “flood” packet arrives on one
incoming port, send it out all other ports

Flooding on Spanning Tree

21/01/2013
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Flooding on Spanning Tree (Again)

Flooding on a Spanning Tree

* This works because the lack of loops prevents
the flooding from cycling back on itself

* Eventually all nodes will be covered, exactly
once

24

This Enables Learning!

There is only one path from source to destination

Each switch can learn how to reach a another
node by remembering where its flooding packets
came from!

If flood packet from Node A entered switch from
port 4, then to reach Node A, switch sends
packets out port 4

Learning from Flood Packets

Node A

Once a node has sent a flood message, all other
switches know how to reach it....

21/01/2013
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General Approach

Flood first packet
* All switches learn where you are

* When destination responds, all switches learn
where it is...

* Done.

Self-Learning Switch
When a packet arrives
* Inspect source ID, associate with incoming port
» Store mapping in the switch table

* Use time-to-live field to eventually forget
mapping

Packet tells switch B
how to reach A.
—_—
|

A ’H@ ¢
&

Self Learning: Handling Misses
When packet arrives with unfamiliar destination
* Forward packet out all other ports
* Response will teach switch about that destination

B
When in doubt,
shout!

)
%IH@
@

General Rule

When switch receives a packet:
index the switch table using destination ID
if entry found for destination { Why do this?

if dest on port from wiiich packet arrived
then drop packet

else forward packet on port indicated

else flood

\ forward on all but the interface

129 on which the frame arrived

21/01/2013
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Summary of Learning Approach

Avoids loop by restricting to spanning tree
This makes flooding possible
Flooding allows packet to reach destination

And in the process switches learn how to
reach source of flood

No route “computation”

Weaknesses of This Approach?

Requires loop-free topology (Spanning Tree)
Slow to react to failures (entries time out)
Very little control over paths

Spanning Trees suck.

Other route protocols will be covered in
Principles of Communications (Part 1)

21/01/2013
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Our goals:

* understand principles
behind transport layer
services:

— multiplexing/
demultiplexing

— reliable data transfer

— flow control

— congestion control

Topic 5 —

Transport

* learn about transport layer
protocols in the Internet:
— UDP: connectionless transport

— TCP: connection-oriented
transport

— TCP congestion control

Transport services and protocols

provide logical communication

between app processes running

on different hosts

transport protocols run in end

systems

— send side: breaks app

messages into segments,
passes to network layer

— rcv side: reassembles

transport

segments into messages, ® =

passes to app layer ® =
more than one transport protocol @@ o €D @ :'
available to apps pss;

— Internet: TCP and UDP

* network layer: logical
communication between
hosts

* transport layer: logical
communication between
processes

— relies on, enhances, network
layer services

Transport vs.

network layer

Household analogy:

12 kids sending letters to 12
kids

* processes = kids

* app messages = letters in
envelopes

* hosts = houses
* transport protocol = Ann
and Bill

* network-layer protocol =
postal service

Topic 5

Internet transport-layer protocols

application

transport

[data i |
physical

reliable, in-order delivery
(TCP)

— congestion control

— flow control

— connection setup 43 2

unreliable, unordered ==

delivery: UDP

- no—fri[!s extension of “best-
effort” IP i)

services not available: B —

— delay guarantees BB P~ pe] @

— bandwidth guarantees




Demultiplexing at rcv host:

delivering received segments
to correct socket

Multiplexing/demultiplexing
(Transport-layer style)

Multiplexing at send host:

gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

[ =socket O = process
application @ @ application @ @ application
[ § [ 1
transport “Yransoort transport
network network network
link link link
physical physicat physical
host 1 host 2 host 3

How transport-layer demultiplexing works

* host receives IP datagrams

— each datagram has source IP .
address, destination IP address 32 bits

— each datagram carries 1

transport-layer segment source port # | dest port #

— each segment has source,
destination port number

* host uses IP addresses & port

numbers to direct segment to

other header fields

appropriate socket

application
data
(message)

TCP/UDP segment format

* Create sockets with port
numbers:

DatagramSocket mySocketl = new
DatagramSocket (12534) ;

DatagramSocket mySocket2 = new
DatagramSocket (12535) ;

* UDP socket identified by two-
tuple:

(dest IP address, dest port number)

Connectionless demultiplexing

When host receives UDP
segment:

— checks destination port
number in segment

— directs UDP segment to socket
with that port number
IP datagrams with different
source IP addresses and/or
source port numbers
directed to same socket

Topic 5

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket (6428);
= | 3

SP: 6428 SP: 6428
DP: 9157 DP: 5775

SP: 9157 SP: 5775
client DP: 6428 DP: 6428 Client

server
IP: A IP: C IP:B

SP provides “return address”




* TCP socket identified by 4-
tuple:
— source IP address
— source port number
— dest IP address
— dest port number
* recv host uses all four
values to direct segment to
appropriate socket

Connection-oriented demux

* Server host may support
many simultaneous TCP
sockets:

— each socket identified by its
own 4-tuple

* Web servers have different
sockets for each connecting
client

— non-persistent HTTP will have

different socket for each
request

10

Connection-oriented demux (cont)

SP: 5775
DP: 80
S-IP: B
D-IP:C

SP: 9157 SP: 9157
client DP: 80 server DP: 80 Client
IP: A S-IP: A P:C S-IP:B IP:B
D-IP:C D-IP:C

1

Connection-oriented demux: Threaded
Web Server

=
SP: 5775
DP: 80
S-IP: B
D-IP:C
/
SP: 9157 SP: 9157
client DP: 80 server DP: 80 Client
IP: A S-IP: A P:C S-IP: B IP:B
D-IP:C D-IP:C

12
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UDP: User Datagram Protocol [RFC 768]

” o«

* “nofrills,” “bare bones”

Internet transport protocol Why is there a UDP?

*+ besteffort” service, UDP *  no connection establishment
segments may be: (which can add delay)
— lost * simple: no connection state at
— delivered out of order to sender, receiver
app * small segment header
e connectionless: .

no congestion control: UDP can

— no handshaking between blast away as fast as desired

UDP sender, receiver
— each UDP segment handled
independently of others

13
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UDP: more

* often used for streaming
multimedia apps

+———— 32 bits ———

— loss tolerant Length, in source port # dest port #
— rate sensitive bytes of UDP |~ length checksum
segment,
* other UDP uses including
— DNS header
— SNMP
« reliable transfer over UDP: add Application
reliability at application layer data

— application-specific error (message)

recovery!

UDP segment format

14

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Sender: Receiver:

¢ treat segment contents as * compute checksum of received
sequence of 16-bit integers segment

« checksum: addition (1" s ¢ check if computed checksum
complement sum) of segment equals checksum field value:

contents — NO - error detected
« sender puts checksum value
into UDP checksum field

— YES - no error detected. But
maybe errors nonetheless?
More later ....

15

; Internet Checksum

(time travel warning — we covered this earlier)
* Note
— When adding numbers, a carryout from the
most significant bit needs to be added to the
result

¢ Example: add two 16-bit integers

1110011001100110
1101010101010101

wraparound @1011101110111011

sum 1011101110111100
checksum 0100010001000011

16

Principles of Reliable data transfer

important in app., transport, link layers
top-10 list of important networking topics!

receiver
process

application
layer

(Jreliable channel

transport
layer

(a) provided service

characteristics of unreliable channel will determine complexity of reliable data transfer protocol
(rdt)

17
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Principles of Reliable data transfer

* important in app., transport, link layers
¢ top-10 list of important networking topics!

[sending’ receiver
process process

application
layer

5 (Jreliable channel
22
c
5 o
=
Lb( iunre\iable channel’i
(a) provided service (b) service implementation

+  characteristics of unreliable channel will determine complexity of reliable data transfer protocol
(rdt)

18

Principles of Reliable data transfer

* important in app., transport, link layers
¢ top-10 list of important networking topics!

[sending
process

receiver
process
(Jreliable channel

application
layer

rdt_send() rdt_rcv()

=

8_ ) relicble data reliable data

& > fransfer profocol transfer protocol
g O (sending side) (receiving side)
=

udt_send ()} 1 udt_rev)

Lb( iunre\iable channel’i

(a) provided service (b) service implementation

+  characteristics of unreliable channel will determine complexity of reliable data transfer protocol
(rdt)

19

Reliable data transfer: getting started

rdt_send() : called from above, rdt _rcv() : called by rdt to
(e.g., by app.). Passed data to deliver data to upper

deliver to receiver upper layer

\

rdt_send () | [dofa] T rdt_rev()

send [reliable data reliable data receive
id fransfer protocol transfer protocol )
side  |sending side) (receiving side) side

udt_send()i Iudt_rcv()

/ L{ iunrelioble channel ’J

udt_send() : called by rdt, udt_rcv () : called when packet
to transfer packet over arrives on rcv-side of channel

unreliable channel to receiver

20

Reliable data transfer: getting started

we' Il

* incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

* consider only unidirectional data transfer
— but control info will flow on both directions!

 use finite state machines (FSM) to specify sender,

receiver
event causing state transition

actions taken on state transition

state: when in this “state”
next state uniquely
determined by next

event

event
actions )
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KR state machines — a note.

Beware

Kurose and Ross has a confusing/confused attitude to
state-machines.

I've attempted to normalise the representation.

UPSHOT: these slides have differing information to the
KR book (from which the RDT example is taken.)

in KR “actions taken” appear wide-ranging, my

interpretation is more specific/relevant.

w . Relevant event causing state transition
state: when in this “state

next state uniquely
determined by next
event

Relevant action taken on state transition

State
name

Rdt1.0: reliable transfer over a reliable channel

* underlying channel perfectly reliable
— no bit errors
— no loss of packets
* separate FSMs for sender, receiver:
— sender sends data into underlying channel
— receiver read data from underlying channel

Event
S . \
» rdt_send(data) udt_rcv(packet)
udt_send(packet) rdt_rcv(data)

\ Action /

sender receiver

23

Rdt2.0: channel with bit errors

* underlying channel may flip bits in packet
— checksum to detect bit errors

the question: how to recover from errors:

— acknowledgements (ACKs): receiver explicitly tells sender that
packet received is OK

— negative acknowledgements (NAKs): receiver explicitly tells sender
that packet had errors

— sender retransmits packet on receipt of NAK
* new mechanismsin rdt2.0 (beyond rdtl1.0):
— error detection

— receiver feedback: control msgs (ACK,NAK) receiver->sender

24

rdt2.0: FSM specification

rdt_send(data)
udt_send(packet)

receiver

udt_rcv(reply) &&

isNAK(reply)
Waiting — udt_rcv(packet) &&
for reply udt_send(packet) corrupt(packet)
udt_send(NAK)
~
udt_rcv(reply) && isACK(reply) Sa
A
sender
udt_rcv(packet) &&
Note: the sender holds a copy notcorrupt(packet)
of the packet being sent until rdt_rcv(data)
the delivery is acknowledged. udt_send(ACK)

25
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rdt2.0: operation with no errors

rdt_send(data)
udt_send(packet)

udt_rcv(reply) &&
isNAK(reply)
udt_rcv(packet) &&

Waiting —_—
dt_send(packet) corrupt(packet)

for reply

udt_send(NAK)

udt_rcv(reply) && isACK(reply)
A

Ludt_rcv Eacke; &&

notcorrupt(packet)

rdt_rcv(data)
udt_send(ACK)

rdt2.0: error scenario

rdt_send(data)
udt_send(packet)

——

aiting — udt_rcv(packet) &&
for reply udt_send(packet) corrupt(packet)

udt_send(NAK)

~

udt_rcv(reply) && isACK(reply) Sa
A

udt_rcv(packet) &&
notcorrupt(packet)
rdt_rcv(data)
udt_send(ACK)

26
rdt2.0 has a fatal flaw!
What happens if ACK/NAK Handling duplicates:
corrupted? + sender retransmits current
+ sender doesn’ t know what packet if ACK/NAK garbled
happened at receiver! * sender adds sequence number
+ can’ tjust retransmit: possible to each packet
duplicate * receiver discards (doesn’t
deliver) duplicate packet
stop and wait
Sender sends one packet,
then waits for receiver
response
28

27
rdt2.1: sender, handles garbled ACK/NAKs

rdt_send(data)

sequence=0

udt_send(packet) udt_rcv(reply) &8

S~ ( corrupt(reply) | |
Waiting isNAK(reply) )
For reply udt_send(packet)
udt_rcv(reply)
&& notcorrupt(reply) udt_rcv(reply)
&& isACK(reply) && notcorrupt(reply)
- &8 isACK(reply)
A A
Waiting
udt_rcv(reply) && Jor reply
( corrupt(reply) | |
isNAK(reply) ) [rdt_send(data)
udt_send(packet) sequence=1
udt_send(packet)
29
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rdt2.1: receiver, handles garbled ACK/NAKs

udt_rcv(packet) && not corrupt(packet)
&& has_seq0(packet)

udt_send(ACK)
rdt_rcv(data)

receive(packet) && corrupt(packet) udt_rcv(packet) && corrupt(packet)
udt_send(NAK) udt_send(NAK)

receive(packet) &&
not corrupt(packet) && < ,
has_seq1(packet)

udt_send(ACK)

receive(packet) &&
not corrupt(packet) &&
has_seqO(packet)

udt_send(ACK)

udt_rcv(packet) && not corrupt(packet)
&& has_seql(packet)

udt_send(ACK)
rdt_rcv(data)

30

rdt2.1: discussion

Sender: Receiver:
¢ seq # added to pkt * must check if received
+ twoseq. #' s (0,1) will packet is duplicate
suffice. Why? — state indicates whether O or 1
i ted pkt #
¢ must check if received ACK/ 15 expec .e pxtseq
NAK corrupted * note: receiver can not know

if its last ACK/NAK received

* twice as many states OK at sender

— state must “remember”
whether “current” pkt has a

0 or 1 sequence number

rdt2.2: a NAK-free protocol

* same functionality as rdt2.1, using ACKs only

* instead of NAK, receiver sends ACK for last pkt received OK
— receiver must explicitly include seq # of pkt being ACKed

* duplicate ACK at sender results in same action as NAK:
retransmit current pkt

32

31
rdt2.2: sender, receiver fragments

rdt_send(data)

sequence=0

udt_send(packet) rdt_rcv(reply) &&

. ( corrupt(reply) | |
Wat for iSACK1(reply) )
0 udt_send(packet)
sender FSM
fragment udt_rcv(reply)
&& not corrupt(reply)
udt_rcv(packet) && ’ &8& isACKO(reply)
(corrupt(packet) || : A
has_seq1(packet)) receiver FSM
udt_send(ACK1) fragment
receive(packet) && not corrupt(packet)
&& has_seql(packet)
send(ACK1)
rdt_rcv(data)
33
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rdt3.0: channels with errors and loss

New assumption: underlying

channel can also lose
packets (data or ACKs)
— checksum, seq. #, ACKs,
retransmissions will be of
help, but not enough

Approach: sender waits

“reasonable” amount of
time for ACK

retransmits if no ACK received in
this time

if pkt (or ACK) just delayed (not
lost):

— retransmission will be
duplicate, but use of seq. #' s
already handles this

— receiver must specify seq # of
pkt being ACKed

requires countdown timer

rdt3.0 sender

udt_rcv(reply)

A

udt_rcv(reply)
&& notcorrupt(reply)
&& isACK(reply,1)

A

timeout
udt_send(packet) C

rdt_send(data)

\  sequence=0
\ udt_send(packet)

v
. IDLE
state 0

@

udt_rev(reply) &&

( corrupt(reply) ||

iSACK(reply,1) )
A

timeout
udt_send(packet)

udt_rev(reply)

&& notcorrupt(reply)
&& isACK(reply,0)

A

udt_rcv(reply)

34
rdt3.0 in action
i sender receiver
sender receiver e
send pki0 %’ rcv pkio sendpKo rcv pkio
ACK send ACKO ACK send ACKO
/9/ 1oV ACKO
rcv ACKO send pktl \%
send pk! \@“\‘ (loss)
rcv pktl
ACK send ACK1
1CVACK1 oot
send pkt0 kt i uf
° ~C rev pkio resend pkt1 %
ACK s rcv pktl
send ACKO ACK e o
ICVACK1 o
send pkiO

(a) operation with no loss

rcv pki0
}G/ send ACKO

(b) lost packet

36

A
udt_rcv(packet) && rdt_send(data)
( corrupt(packet) | | sequence=1
isACK(reply,0) ) udt_send(packet)
A
35
rdt3.0 in action
sender receiver sender receiver
pkt kt
send pki0 Q v pkio send pki0 \Po\‘ oV pki0
ACK send ACKO ACK send ACKO
rcv ACKO rcv ACKO
send pkil Rkt send pktl
rcv pk11: rcv pktl
ACK send ACK1 send ACK1
(loss) x4
fimeout
fimeout pkt 1 resend pki1
resend pktl \rcv pkt1 ‘ rcv pktl X
ACK (defect duplicate) 1CVACK1 (detect duplicate)
send ACK1 send pkiO send ACK1
;Ceﬁicglgfo K rcv pkio
rev pkio send ACKO
ACK e
send ACKO
(c) lost ACK (d) premature timeout

37
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Performance of rdt3.0

* rdt3.0 works, but performance stinks
¢ ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

L 8000bits .
s = — = ————— = 8microseconds
R 10°bps
) U genger: Utilization — fraction of time sender busy sending
L/R = 008 = 0.00027

U -—L/R
sender  pTT+L/R 30008

) 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
) network protocol limits use of physical resources!

38

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t =0
last packet bit transmitted, t = L / R3]

— first packet bit arrives
RTT! I~ last packet bit arrives, send ACK

ACK arrives, send nex
packet, t=RTT+L/R

L/—R 008 = 0.00027

U = =
sender RTT+L/R 30008

39

Pipelined (Packet-Window) protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
— range of sequence numbers must be increased
— buffering at sender and/or receiver

<+— ACK packets

(b) a pipelined protocol in operation

(@) a stop-and-wait protocol in operation

* Two generic forms of pipelined protocols: go-Back-N, selective

repeat
40

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t=0
last bit transmitted, t =L/ R

— first packet bit arrives

RTT —last packet bit arrives, send ACK

r~last bit of 2" packet arrives, send ACK
—last bit of 3" packet arrives, send ACK

ACK arrives, send nex
packet, t=RTT+L/R

Increase utilization
/ by a factor of 3!

U = M = ﬂ = 0.0008
sender  pTT+L/R 30008

41
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Pipelining Protocols

Go-back-N: big picture: Selective Repeat: big pic

* Sender can have upto N * Sender can have upto N
unacked packets in pipeline unacked packets in pipeline
* Rcvr only sends cumulative  * Rcvr acks individual packets
acks * Sender maintains timer for
— Doesn’ t ack packet if there’ s each unacked packet
agap

— When timer expires,

* Sender has timer for oldest retransmit only unack packet
unacked packet
— If timer expires, retransmit all

unacked packets

42

Selective repeat: big picture

* Sender can have up to N unacked packets in
pipeline
* Rcvr acks individual packets

¢ Sender maintains timer for each unacked
packet

— When timer expires, retransmit only unack packet

43

Go-Back-N

Sender:
¢ k-bit seq # in pkt header
«  “window” of up to N, consecutive unack’ ed pkts allowed

send_base nextsegnum dlready I usable, not

ack’'ed yet sent

I g

window size
N
7 ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
> may receive duplicate ACKs (see receiver)
T timer for each in-flight pkt
7 timeout(n): retransmit pkt n and all higher seq # pkts in window

44

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
udt_send(packet[nextseqnum])
nextseqnumt++
}

else

refuse_data(data) Block?

‘ timeout
udt_send(packet[base])
C" udt_send(packet[base+1])

A
base=1
nextseqnum=1

udt_rcv(reply)
&& corrupt(reply)

A

udt_send(packet[nextseqnum-1])
udt_rcv(reply) &&

notcorrupt(reply)

base = getacknum(reply)+1

45

11
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expectedseqnum=1

GBN: receiver extended FSM

A
udt_sendireply) udt_rcv(packet)
S~ && notcurrupt(packet)
&& hassegnum(rcvpkt,expectedsegnum)

rdt_rcv(data)
udt_send(ACK)
expectedsegnum-++

ACK-only: always send an ACK for correctly-received packet with
the highest in-order seq #
— may generate duplicate ACKs
— need only remember expectedsegnum
* out-of-order packet:
— discard (don’t buffer) -> no receiver buffering!
— Re-ACK packet with highest in-order seq #
46

sender receiver

send pkiO \
send pkf1
~

P send pki2

send pkt3
(wait)

M’

rcv ACKO
send pkt4

rcv ACK1

send pktd \

—pkt2 timeout
send pki2

send pkt3 \
send pkt4 \
send pktb \

rcv pkio
send ACKO

rcv pkil
send ACK

rev pkt3, discard
send ACK1

rcev pki4, discard
send ACK1
rev pkth, discard
sond ACKI
rev pki2, deliver
send ACK2

rcv pkt3, deliver
send ACK3

47

Selective Repeat

receiver individually acknowledges all correctly received
pkts

— buffers pkts, as needed, for eventual in-order delivery to upper
layer

sender only resends pkts for which ACK not received
— sender timer for each unACKed pkt
sender window

— N consecutive seq # s

— again limits seq #s of sent, unACKed pkts

48

Selective repeat: sender, receiver windows

send_base nextsegnum dlready

v ack’ed

Jnennmm -

L wEndow sze —24
PN

sent, not

(a) sender view of sequence numbers

: out of order

yet ack’'ed

usable, not
yet sent

I] not usable

acceptable

(buffered) but frviv i
i diready dck'ed (within window)

DOO000NIRNETHRITRIRNNND  [osesieamer [ rerescer

;— window size —4
N

rev_base

(b) receiver view of sequence numbers

49
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— sender
data from above :

* if next available seq # in window,
send pkt

timeout(n):

* resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:
* mark pkt n as received

¢ if n smallest unACKed pkt,
advance window base to next
unACKed seq #

— receiver

pkt n in [revbase, revbase+N-1]

7 send ACK(n)

O out-of-order: buffer

7 in-order: deliver (also deliver
buffered, in-order pkts),
advance window to next not-
yet-received pkt

pkt n in [revbase-N,revbase-1]

7 ACK(n)

otherwise:

7 ignore

50

Selective repeat in action

pkt0 sent

B123J456789 T, 00 cvd, deliversd, ACKD sent

pktl sent
0123/4567839

pkt2 sent

r—lo123/4567893 X
(loss)
pkt3 sent. window full

[f123lass78s

ACKD rcvd, pktd sent
0[1 23 4/56 789

ACK1 rcvd, pktS sent

vilz3esler8

L—pkt2 TIMEOUT, pkt2 resent

vifzzasle 789

ACK3 rcvd, nothing sent

vi23asleres

0123 4|56 789
pktl rewe delivered, ACKL sent

o1f2345]6789

pkt3 rcvd, buffered, ACK3 sent

0123456789

pktd rcvd, buffered, ACK4 sent
01/2345[67839

pktS rcvd, buffered, ACKS sent

vifzzasle 789

pkt2 rcvd, pkt2 pkt3, pktd, pktS
delivered, ACK2 sent

012345 789]

51

Selective repeat:
dilemma

Example:
e seq#'s:0,1,2,3
¢ window size=3

* receiver sees no
difference in two
scenarios!

* incorrectly passes
duplicate data as new in

(a)

Q: what relationship between
seq # size and window
size?
window size < (% of seq # size)

receiver window

(after receipt)

sender window

after receipt )

. P
okt 1230912

pkt2

timeout
retransmit pk(OMo

Pidzon?d

~———pp receive packet
with seq number O

(@)

sender window

(after receipt )

receiver window

after receipt)

izfs o ofz3]o12
CKO
o1 O Ewah -
[o12]s01
L1z ACK20122

receive packet
with seq number O

(b)

52

Automatic Repeat Request (ARQ)

+ Self-clocking
(Automatic)

+ Adaptive

+ Flexible

- Slow to start / adapt
consider high Bandwidth/Delay product

Now lets move from
the generic to the
specific....

TCP arguably the most
successful protocol in the
Internet.....

its an ARQ protocol
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TCP: Overview «ecs: 793, 1122, 1323, 2018, 2581, ...

* point-to-point:

— one sender, one receiver

* reliable, in-order byte
stream:

* full duplex data:
— bi-directional data flow in
same connection
— MSS: maximum segment
size

« L o»
— no "message boundaries

e pipelined:
— TCP congestion and flow
control set window size

* send & receive buffers

socket
door

TCP
send buffer
@]

e connection-oriented:

— handshaking (exchange of
control msgs) init’ s sender,
receiver state before data
exchange

* flow controlled:

— sender will not overwhelm
receiver

54

TCP segment structure

32 bits
URG: urgent data * countin
g
(generally not used) source port # dsst port # by bytes
sequence number
ACK: ACK # i of data
valid | }ckqowledgement number (not segments!)
PSH: push data now Wﬁ’ R|S|F| Receive window
enerally not used)— | # bytes
(g Y ) /ch,edﬂn Urg data pnter revr willing
RST, SYN, FIN: = | . : to accept
, SYN, FIN: Options (variable length)
connection estab
(setup, teardown
commands) -
application
Internet data
checksum (variable length)
(asin UDP)

55

TCP seq.

Seq. #'s:

— byte stream
“number” of first byte
in segment’ s data

ACKs:

— seq # of next byte
expected from other
side

— cumulative ACK

Q: how receiver handles out-
of-o
A: TCP spec doesn’ t
say, - up to
implementor

This has led to a world of hurt....

#’ s and ACKs
@ Host A Host B @

User

Seq-=,
types 442 Ack=rg da
o tas o
host ACKs

receipt of
‘C’, echoes
back ‘C’

‘C

13,82

e
seQ‘79’

host ACKs
receipt

Se,

time
simple telnet scenario l

56

TCP out of order attack

* ARQ with SACK means
recipient needs copies of

all packets GET index.html

* Send a legitimate request

* Evil attack one:
send a long stream of TCP data
to a server but don’t send the
first byte
* Recipient keeps all the
subsequent data and
waits.....
— Filling buffers.
« Critical buffers...

this gets through an
intrusion-detection system

then send a new segment
replacing bytes 4-13 with

“password-file”

A dumb example.

Neither of these attacks would work on a modern system.

14
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TCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?

timeout value? * SampleRTT: measured time from
+ longer than RTT segment transmission until ACK
receipt

— but RTT varies
* too short: premature
timeout * SampleRTT will vary, want
estimated RTT “smoother”

— ignore retransmissions

— unnecessary
retransmissions — average several recent
measurements, not jUSt current

SampleRTT

* too long: slow reaction to
segment loss

58

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

7 Exponential weighted moving average
7 influence of past sample decreases exponentially fast
7 typical value: o =0.125

59

Some RTT estimates are never good

Sender Receiver Sender Receiver
Oriy; .
ing tra O”g’”a/ t,
MSmiss R
SIOr, sS/o,,

Re,
transmfssion

SampleRTT

SampleRTT
M

(a) (b)
Associating the ACK with (a) original transmission versus (b) retransmission
Karn/Partridge Algorithm — Ignore retransmission in measurements

(and increase timeout; this makes retransmissions decreasingly aggressive)

60

RTT (milliseconds)

350

250

150

100

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

1 I

time (seconnds)

[—+— SampleRTT —=— Estimated RTT

61
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TCP Round Trip Time and Timeout

Setting the timeout

e EstimtedRTT plus “safety margin”
— large variation in EstimatedRTT -> larger safety margin
« first estimate of how much SampleRTT deviates from EstimatedRTT:

DevRTT = (1-f)*DevRTT +
B*|SampleRTT-EstimatedRTT |

(typically, B = 0.25)
Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

62

TCP reliable data transfer

e TCP creates rdt service on * Retransmissions are
top of IP” s unreliable triggered by:
service — timeout events
* Pipelined segments — duplicate acks
« Cumulative acks * Initially consider simplified
TCP sender:

¢ TCP uses single

retransmission timer — ignore duplicate acks

— ignore flow control,
congestion control

63

TCP sender events:

data rcvd from app: timeout:

¢ Create segment withseq ¢ retransmit segment that
# caused timeout

e seq #is byte-stream ¢ restart timer
number of first data byte  Ack revd:
in segment * If acknowledges

* start timer if not already previously unacked
running (think of timer as segments
for oldest unacked — update what is known to be
segment) acked

* expiration interval: — start timer if there are
TimeOQutInterval outstanding segments

64

NextSeqNum = InitialSeqNum
SendBase = InitialSegNum

loop (forever) { TCP

switch(event)

event: data received from application above Se n d e r
create TCP segment with sequence number NextSeqNum (S|mp||f'|ed)
if (timer currently not running)

start timer
pass segment to IP Comment:

NextSeqgNum = NextSeqNum + length(data) o SendBase-1: last

event: timer timeout cumulatively

retransmit not-yet-acknowledged segment with ack’ ed byte
smallest sequence number Example:
start timer * SendBase-1 =71;
y= 73, so the rcvr

event: ACK received, with ACK field value of y

wants 73+ ;
if (y > SendBase) {

y > SendBase, so

SendBase =y that new data is
if (there are currently not-yet-acknowledged segments)
start timer acked

}

} /* end of loop forever */ 65

16
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TCP: retransmission scenarios
@ Host A Host B@ w Host A

Seq=g
2. 8bytes gy,
0.
RoSL
X

loss
Segs

W Sendbase

2 =100
SendBase

=120

%
SendBase

92 timeout —»

+— timeout ——

92 timeout —»r— Seq;

TCP retransmission scenarios (more)

g
=100 SendBase .L
=120 premature timeout
time
lost ACK scenario 66
TCP ACK generation [RFc 1122, RFC 2581]
Event at Receiver TCP Receiver action
Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK
Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending
Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected
Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap
68

@ Host A Host B @
Seg=g, 8,
<8 byt
] < daty Implicit ACK
- 400 -Back-
5 Sea=10 w0 MAO (e.g. not Go-Back-N)
Q d T,
£ X ota ACK=120 implicitly ACK’s 100 too
loss
SendBase ,L\CV\'/
=120
time
67
* Time-out period often * If sender receives 3
relatively long: duplicate ACKs, it supposes
— long delay before resending that segment after ACKed
lost packet data was lost:
* Detect lost segments via — fast retransmit: resend
duplicate ACKs. segment before timer
— Sender often sends many expires
segments back-to-back
— If segment is lost, there will
likely be many duplicate
ACKs.
69
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Host A Host B

timeout

Leseng yng
Segmen,
t

time

Figure 3.37 Resending a segment after triple duplicate ACK 70

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKs received fory
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

}

a duplicate ACK for

fast retransmit
already ACKed segment

71

Silly Window Syndrome

@ = = MSS advertises the amount a receiver can accept

Sender B} ks Receiver If a transmitter has something to send — it will.

This means small MSS values may persist
<i7ss WS - indefinitely.

Sonder $ | Solution

Wait to fill each segment, but don’t wait
indefinitely.

NAGLE's Algorithm
If we wait too long interactive traffic is difficult
If we don’t want we get silly window syndrome

Solution: Use a timer, when the timer expires — send the (unfilled) segment.

Flow Control # Congestion Control

* Flow control involves preventing senders from
overrunning the capacity of the receivers

» Congestion control involves preventing too
much data from being injected into the network,
thereby causing switches or links to become
overloaded

73
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Flow Control — (bad old days?)

In-Line flow control Dedicated wires

* XON/XOFF (*s/7q) * RTS/CTS handshaking

 data-link dedicated * Read (or Write) Ready
symbols aka Ethernet signals from memory
(more in the Advanced interface saying slow-

Topic on Datacenters) down/stop...

TCP Flow Control

flow control

. . sender won’ t overflow
* receive side of TCP receiver’ s buffer by

connection has a receive transmitting too much,
buffer: too fast

f— RevWindow —f

_* speed-matching service:
application k
process matching the send rate to
the receiving app’ s drain
f————— RevBuffer ———— rate

data from
i

7 app process may be slow
at reading from buffer

75

TCP Flow control: how it works
§— RevWindow —

* Rcvr advertises spare room
application DY including value of
P RevWindow in segments

* Sender limits unACKed

data to ReviWindow
(Suppose TCP receiver discards — guarantees receive buffer
out-of-order segments) doesn’ t overflow

data from
P

f——— RevBuffer ———f

* spare room in buffer
RcvWindow

RcvBuffer-[LastByteRcvd -
LastByteRead]

76

TCP Connection Management

Three way handshake:

Recall: TCP sender, receiver
establish “connection” before

exchanging data segments Step 1: client host sends TCP SYN
* initialize TCP variables: segment to server
— seq. #s — specifies initial seq #

— buffers, flow control info
(e.g. RevWindow)
* client: connection initiator

— nodata

Step 2: server host receives SYN,

Socket clientSocket = new replies with SYNACK segment
Socket ("hostname”, "port — server allocates buffers

number") ; - s
. — specifies server initial seq. #
* server: contacted by client . . .
Socket connectionSocket = Step 3: client receives SYNACK, replies

welcomeSocket.accept () ; with ACK segment, which may

contain data

77
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TCP Connection Management (cont.)

Closing a connection: @ client semer@

client closes socket: close .
clientSocket.close() ; i

Step 1: client end system sends ‘
TCP FIN control segment to S

server N

close

Step 2: server receives FIN, replies
with ACK. Closes connection,

Ack
sends FIN.

timed wait

closed

78

TCP Connection Management (cont.)

Step 3: client receives FIN, @ client sewer@
replies with ACK.

closing

— Enters “timed wait” - will Ein

respond with ACK to
received FINs

NS

Step 4: server, receives ACK. N

Connection closed.

closing

Note: with small modification,
can handle simultaneous FINs.

Ack

closed

timed wait

closed

79

TCP Connection Management (cont)
/\\.nn.,:::?;s:':?;::m.,n

\send sm

TIME_WAIT BLLEE

receie FIN receve SN &.ACK
o e K
FINWAIT 2 ESTABLISHED TCP server
j lifecycle
receive ACK ™ initiat

F
Cononos ] FNWATA ZendF I oresm P ——
S T_creates alisten socket
i dnothing B
TCP client s retien. \

lifecycle
LAST_ACK LISTEN

send FIN send SYN & ACK

CLOSE_WAIT SYN_RCVD
\ 7
A% receive ACK
send notring

. S
“——| ESTABLISHED |¢—

wait 30 seconds /

80

Principles of Congestion Control

Congestion:

« informally: “too many sources sending too much data too
fast for network to handle”

» different from flow control!
* manifestations:
— lost packets (buffer overflow at routers)
— long delays (queueing in router buffers)
* atop-10 problem!

81
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Causes/costs of congestion: scenario 1

Host A e

Causes/costs of congestion: scenario 2

* one router, finite buffers

¢ two senders, two
receivers

* one router, infinite

o= ., : original data

unlimited shared
output ligk buffers

* sender retransmission of lost packet

buffers
* no retransmission

* large delays when

Host A A, original data
_

A, original data, plus
retransmitted data

[ ¢

finite shared output
link buffers

Cl2+ —— - .
o] i
= S i congested
3 3 i &
< *  maximum
! achievable
12 cP throughput
}\‘in }"in !
82
Causes/costs of congestion: scenario 2
+ always: A = A (goodput)
in out ,
- “perfect” retransmission only when loss: A > A
in out
¢ retransmission of delayed (not lost) packet makes )\" larger (than perfect
case) for same in
out
Rf2 f-ommmemmm o, ) R/2 f--mmmommmmmmmmemee R/2
. . R/3 .
< P Y :
)"1 R/Z ;\’1 R/2 )“1 R/Z
a. b. c.
“costs” of congestion:
7 more work (retrans) for given “goodput”
7 unneeded retransmissions: link carries multiple copies of pkt
84

83
Causes/costs of congestion: scenario 3
* foursenders Q:what happensas A
* multihop paths and Adncrease?
* timeout/retransmit n
Host A . A,
_ ), : original data out
[ «r M, original data, plus , ¢ |
retransmitted data
1 finite shared output —
- link buffers
’7 - —
| = S =
i [
85
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Causes/costs of congestion: scenario 3

C/2

5
O
<

7\([
in
Another “cost” of congestion:

7 when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

Congestion Collapse example: Cocktail party effect
86

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion control:

* no explicit feedback from
network

* congestion inferred from end-
system observed loss, delay

* approach taken by TCP

Network-assisted congestion
control:
¢ routers provide feedback to
end systems
— single bit indicating
congestion (SNA, DECbit,
TCP/IP ECN, ATM)

— explicit rate sender should
send at

87

TCP congestion control: additive increase,
multiplicative decrease

7 Approach:_increase transmission rate (window size), probing for
usable bandwidth, until loss occurs

O additive increase: increase CongWin by 1 MSS every RTT for
each received ACK until loss detected (W <W + 1/W)

O multiplicative decrease: cut CongWin in half after loss

(W<W/2)

Saw tooth & 2o
behavior: probing E

for bandwidth § 16 Koytes
-
o
2

& 8Koyes
&L
]

time

88

Continuous ARQ (TCP) adapting to congestion

Rule for adjusting W

Only W packets
may be outstanding

— Ifan ACK is received: W & W+1/W

l — If a packet is lost: W & W/2

B ]

util = 0%

SLOW START IS NOT SHOWN!

time
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TCP Congestion Control: details

sender limits transmission: How does sender perceive

LastByteSent-LastByteAcked congest'ion?
< CongWin * loss event = timeout or 3
Roughly, duplicate acks
_CongWin * TCP sender reduces rate
rate = Bytes/sec .
RTT (CongWin) after loss
CongWin is dynamic, function of event
perceived network congestion three mechanisms:
— AIMD
— slow start

— conservative after timeout
events

90

AIMD Starts Too Slowly!

Need to start with a small CWND to avoid overloading the network.

TCP Slow Start

When connection begins, 7 When connection begins,
CongWin =1 MSS increase rate exponentially
— Example: MSS = 500 bytes & fast until first loss event

RTT = 200 msec
— initial rate = 20 kbps
available bandwidth may be
>> MSS/RTT

— desirable to quickly ramp up
to respectable rate

92

* Summary: initial rate is slow our segments

Window
It could take a long
time fo get started! t
TCP Slow Start (more)
+ When connection begins, 1B vostn Host 8 JlD

increase rate exponentially
until first loss event:
— double CongWin every RTT

«— RTT—

W
— done by incrementing

CongWin for every ACK
received /

but ramps up exponentially
fast

time

93
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Slow Start and the TCP Sawtooth

Window

94

Loss ‘

AN

Exponential t
“slow start”

Why is it called slow-start? Because TCP originally had
no congestion control mechanism. The source would just
start by sending a whole window's worth of data.

Refinement: inferring loss

After 3 dup ACKs:

— CongWinis cut in half

— window then grows linearly
But after timeout event:

— CongWin instead set to 1 MSS; 0 3 dup ACKs indicates
— window then grows exponentially P

— toathreshold, then grows linearly network capable of
delivering some segments

O timeout indicates a “more
alarming” congestion
scenario

— Philosophy; ——

95

Refinement

Q: When should the

exponential increase

switch to linear? 14m
. TCP Series 2 Reno
A: When CongWin gets to 12+
1/2 of its value before £ 10 e
timeout. 2 gdmheshod \
5
2 / _ ol
£ & / T 7 Thvashoia
5 4 {
= /ZTCP Series 1 Tahoe ‘/'
= A -
-
o L S L S S PN A A P |
N 12345678 9101112131415
Implementation: Transtrisson ound

Variable Threshold

At loss event, Threshold is set
to 1/2 of CongWin just before
loss event

96

Summary: TCP Congestion Control
When CongWin is below Threshold, sender in slow-
start phase, window grows exponentially.

When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

When a triple duplicate ACK occurs, Threshold set to
CongWin/2 and CongWin set to Threshold.

When timeout occurs, Threshold set to CongWin/2
and CongWin is set to 1 MSS.

97
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TCP sender congestion control

State Event TCP Sender Action Commentary
Slow Start (SS) | ACK receipt | CongWin = CongWin + MSS, Resulting in a doubling of
for previously | If (CongWin > Threshold) CongWin every RTT
unacked data set state to “Congestion
Avoidance”
Congestion ACK receipt | CongWin = CongWin+MSS * (MSS/ | Additive increase, resulting in

Avoidance (CA)

for previously
unacked data

CongWin)

increase of CongWin by 1
MSS every RTT

SSor CA Loss event Threshold = CongWin/2, Fast recovery, implementing
detected by CongWin = Threshold, multiplicative decrease.
triple Set state to “Congestion CongWin will not drop below
duplicate ACK | Avoidance” 1 MSS.

SSorCA Timeout Threshold = CongWin/2, Enter slow start

CongWin =1 MSS,
Set state to “Slow Start”
SSorCA Duplicate ACK | Increment duplicate ACK count for | CongWin and Threshold not

segment being acked

changed

98

Repeating Slow Start After Timeout

Wi

99

ndow )
Fast Timeout  ggThresh
Retransmission Set to Here
|L——"] Slow start in operation until

CWND, Le., SSTHRESH

it reaches half of previous T

Slow-start restart: Go back to CWND of 1 MSS, but take
advantage of knowing the previous value of CWND.

TCP throughput

» What’ s the average throughout of TCP as a
function of window size and RTT?
—Ignore slow start

* Let W be the window size when loss occurs.

* When window is W, throughput is W/RTT

* Just after loss, window drops to W/2,
throughput to W/2RTT.

* Average throughout: .75 W/RTT

100

TCP Futures: TCP over “long, fat pipes”

Example: 1500 byte segments, 100ms RTT, want 10 Gbps
throughput

Requires window size W = 83,333 in-flight segments
Throughput in terms of loss rate p:
1.22-MSS

RTT/p

=» L=2-10" Quch!
New versions of TCP for high-speed

101
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Calculation on Simple Model
(cwnd in units of MSS)

* Assume loss occurs whenever cwnd reaches W
— Recovery by fast retransmit

e Window: W/2, W/2+1, W/2+2, ..W, W/2, ...
— W/2 RTTs, then drop, then repeat

* Average throughput: .75W(MSS/RTT)
— One packet dropped out of (W/2)*(3W/4)
— Packet drop rate p = (8/3) W

* Throughput = (MSS/RTT) sqrt(3/2p)
HINT: KNOW THIS SLIDE

Three Congestion Control
Challenges — or Why AIMD?

+ Single flow adjusting to bottleneck bandwidth
— Without any a priori knowledge
— Could be a Gbps link; could be a modem

+ Single flow adjusting to variations in bandwidth
— When bandwidth decreases, must lower sending rate

— When bandwidth increases, must increase sending
rate

+ Multiple flows sharing the bandwidth

— Must avoid overloading network
— And share bandwidth “fairly” among the flows

103

Problem #1: Single Flow, Fixed BW

» Want to get a first-order estimate of the
available bandwidth

— Assume bandwidth is fixed
— Ignore presence of other flows

» Want to start slow, but rapidly increase
rate until packet drop occurs (“slow-start™)

» Adjustment:
—cwnd initially set to 1 (MSS)
— cwnd++ upon receipt of ACK

104

Problems with Slow-Start

» Slow-start can result in many losses
— Roughly the size of cwnd ~ BW*RTT

+ Example:
— At some point, cwnd is enough to fill “pipe”
— After another RTT, cwnd is double its previous value
— All the excess packets are dropped!

* Need a more gentle adjustment algorithm once
have rough estimate of bandwidth

— Rest of design discussion focuses on this

105
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Problem #2: Single Flow, Varying BW

Want to track available bandwidth
+ Oscillate around its current value

* If you never send more than your current rate, you
won’t know if more bandwidth is available

Possible variations: (in terms of change per RTT)
» Multiplicative increase or decrease:

cwnd— cwnd */ a
+ Additive increase or decrease:

cwnd— cwnd +- b

106

Four alternatives

AIAD: gentle increase, gentle decrease

AIMD: gentle increase, drastic decrease

MIAD: drastic increase, gentle decrease
—too many losses: eliminate

MIMD: drastic increase and decrease

107

Problem #3: Multiple Flows

« Want steady state to be “fair”

* Many notions of fairness, but here just
require two identical flows to end up with the
same bandwidth

* This eliminates MIMD and AIAD
— As we shall see...

* AIMD is the only remaining solution!
— Not really, but close enough....

108

Recall Buffer and Window Dynamics

A——{
C = 50 pkts/RTT

No congestion = x increases by one packet/RTT every RTT
Congestion - decrease x by factor 2

60 - Rate (pkts/RTT) }

. y
RIVIVVVIVIVN;

AU

30
/ Backlog in router (pkts)
20 / 1 Congested if > 20 H
\
10

0

28

55

82
109
136
163
190
217
244
2711
298
325
352
379
406
433
460
487

109
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AIMD Sharing Dynamics AIAD Sharing Dynamics

X
AR B AL B]
o — o

e No congestion - rate increases by one packet/RTT every RTT e No congestion = x increases by one packet/RTT every RTT
e Congestion - decrease rate by factor 2 e Congestion - decrease x by 1

60 60

={{— Rates equalize > fair share — AR AAAAAAAAAR

40

30

30

o
1
28
55
82
109
136
163
190
217
244
271
298
325
352
379
406
433
460
487

109
136
163
190
217
244
271
298
325
352
379
406
433
460
487

Simple Model of Congestion Control Example

1 fairness
i ici : = line
» Two TCP connections 5 | . Total bandwidth 1 Efficient: x;+x,=1
— Rates x; and x, user example
<
Congestion when o
sum>1 35 overload e
s
. . = . =)
Efficiency: sum near 1 | underons Efficiency
= line Inefficient: x,+x,=0.7
Fairness: x's = /
. : . /
Bandwidth for User 1: x, 7| Efficient: x,+x,=1 efficiency
converge 7" | Not fair line
User 1: x, 1
112 113
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* Increase: x +a,

AIAD

(Xiy-aptay), 7 line
Xop-aptay))

MIMD

fairness

/ line
/

* Increase: x*b,

(XypXap)
» Decrease: x*b,

7/
o (bbpXip, 4

%'
* Does not o bIbDXZh)//
convergeto 3 7
. &
fairness =
=l
E
i
&

efficiency
line

Bandwidth for User 1: x,

115

7/
* Decrease: x - a, %' ° 7
P & * (X1h=X2h)//
* Does not g 4
convergeto s
fairness S
E
&
efficiency
line
Bandwidth for User 1: x,
114
fairness
. (XypXan) // e
* Increase: x+a, i A
o
« Decrease: x*by, < boatan) /
o} Ve
» Convergesto 5
fairness <
=1
S
E
&
efficiency
line

Bandwidth for User 1: x,
116

Why is AIMD fair?

(a pretty animation...)
Two competing sessions:
< Additive increase gives slope of 1, as throughout increases

* multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase
loss: decrease window by factor of 2
congestion avoidance: additive increase

Bandwidth for Connection 2 =

Bandwidth for Connection1 R

117
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Fairness (more)

Fairness and UDP
* Multimedia apps may not
use TCP

— do not want rate throttled
by congestion control

¢ Instead use UDP:

— pump audio/video at
constant rate, tolerate
packet loss

* (Ancient yet ongoing)
Research area: TCP
friendly

Fairness and parallel TCP

connections

nothing prevents app from
opening parallel connections
between 2 hosts.

Web browsers do this

Example: link of rate R
supporting 9 connections;
— new app asks for 1 TCP, gets rate
R/10
— new app asks for 11 TCPs, gets
R/2!

Recall Multiple browser
sessions (and the potential for
syncronized loss) 118

Some TCP issues outstanding...

Synchronized Flows

Aggregate window has same .
dynamics .
Therefore buffer occupancy has

same dynamics .

Rule-of-thumb still holds.

Many TCP Flows

Independent, desynchronized
Central limit theorem says the
aggregate becomes Gaussian
Variance (buffer size) decreases
as N increases

it
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Topic 6 — Applications

* Traditional Applications (web)
* Infrastructure Services (DNS)
* Multimedia Applications (SIP)

¢ P2P Networks

Client-server architecture

server:
— always-on host
— permanent IP address

— server farms for scaling
clients:

— communicate with server

— may be intermittently connected

— may have dynamic IP addresses

— do not communicate directly
with each other

Pure P2P architecture

&
* nho aIways—on server

e arbitrary end systems
directly communicate peer-peer =, -

* peers are intermittently
connected and change IP

addresses 99
=
Highly scalable but difficult to a0
manage D& s

Hybrid of client-server and P2P

Skype
— voice-over-IP P2P application
— centralized server: finding address of remote
party:
— client-client connection: direct (not through
server)
Instant messaging
— chatting between two users is P2P
— centralized service: client presence detection/
location

* user registers its IP address with central server
when it comes online

* user contacts central server to find IP addresses of
buddies

21/01/2013



Processes communicating

Process: program running
within a host.

within same host, two
processes communicate
using inter-process
communication (defined by
05).

processes in different hosts
communicate by
exchanging messages

Client process: process that
initiates communication

Server process: process that
waits to be contacted

T Note: applications with P2P

architectures have client processes &
server processes

Sockets — an abstraction hiding layers

. host or host or
® process sends/recelves server server

messages to/from its socket @ @
controlled b
* socket analogous to door @ 2pp davelopar @

— sending process shoves
message out door

TCP with TCP with
buffers, Internet buffers,
variables variables

— sending process relies on
transport infrastructure on
other side of door which brings
message to socket at receiving

process controlled
by OS

T Socket API: (1) choice of transport protocol; (2) ability to fix a few parameters

Addressing processes

* to receive messages,
process must have
identifier

* host device has unique 32-
bit IP address

* Q:does IP address of host
on which process runs
suffice for identifying the
process?

— A: No, many processes
can be running on same
host

identifier includes both IP
address and port numbers
associated with process on
host.

Example port numbers:

— HTTP server: 80

— Mail server: 25
to send HTTP message to
gaia.cs.umass.edu web
server:

— IP address: 128.119.245.12
— Port number: 80

more shortly...

Recall: Multiplexing is a service
provided by (each) layer too!

Multiplexing l %% I Demultipexing

Lower channel
Application: one web-server multiple sets of content
Host: one machine multiple services
Network: one physical box multiple addresses (like vns.cl.cam.ac.uk)

UNIX: /etc/protocols = examples of different transport-protocols on top of IP
UNIX: /etc/services = examples of different (TCP/UDP) services — by port

(THESE FILES ARE EXAMPLES OF NAME SERVI@ES)
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App-layer protocol defines

Types of messages Public-domain protocols:

exchanged,  defined in RFCs

~ eg., request, response + allows for interoperability

Message syntax: « eg., HTTP, SMTP

— what fields in messages &
how fields are delineated

Message semantics

— meaning of information in
fields

Rules for when and how

processes send & respond

to messages

Proprietary protocols:
* e.g., Skype

What transport service does an app need?

Data loss Throughput
. O some apps (e.g., multimedia) require
* some apps (e.g., audio) can minimum amount of throughput to be

tolerate some loss “effective”

* other apps (.E.g., file trar,]Sfer’ whatever throughput they get
telnet) require 100% reliable Security
data transfer T Encryption, data integrity, ...

Timing Mysterious secret of Transport

* some apps (e.g., Internet
telephony, interactive Shocked?
games) require low delay I seriously doubt it...
to be “effective”

O other apps (“elastic apps”) make use of

* There is more than sort of transport layer

We call the two most common TCP and UDP

Naming

Internet has one global system of addressing: IP
— By explicit design

And one global system of naming: DNS
— Almost by accident

At the time, only items worth naming were hosts
— A mistake that causes many painful workarounds

Everything is now named relative to a host
— Content is most notable example (URL structure)

Logical Steps in Using Internet

* Human has name of entity she wants to access
— Content, host, etc.

* Invokes an application to perform relevant task
— Using that name

* App invokes DNS to translate name to address

* App invokes transport protocol to contact host
— Using address as destination
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Addresses vs Names

* Scope of relevance:
— App/user is primarily concerned with names
— Network is primarily concerned with addresses
* Timescales:
— Name lookup once (or get from cache)
— Address lookup on each packet
* When moving a host to a different subnet:
— The address changes
— The name does not change
* When moving content to a differently named host
— Name and address both change!

Relationship Betw’n Names/
Addresses

* Addresses can underneath
— Move www.cnn.com to 4.125.91.21
— Humans/Apps should be unaffected

* Name could map to IP addresses
— www.cnn.com to multiple replicas of the Web site
— Enables

¢ Load-balancing
* Reducing latency by picking nearby servers

. for the same address
— E.g., aliases like www.cnn.com and cnn.com

— Mnemonic stable name, and dynamic canonical name
* Canonical name = actual name of host

Mapping from Names to Addresses

* Originally: per-host file /etc/hosts
— SRI (Menlo Park) kept master copy
— Downloaded regularly
— Flat namespace

* Single server not resilient, doesn’t scale
— Adopted a distributed hierarchical system

* Two intertwined hierarchies:
— Infrastructure: hierarchy of DNS servers
— Naming structure: www.cnn.com

Domain Name System (DNS)

* Top of hierarchy: Root
— Location hardwired into other servers

* Next Level: Top-level domain (TLD) servers
— .com, .edu, etc.
— Managed professionally

* Bottom Level: Authoritative DNS servers
— Actually do the mapping
— Can be maintained locally or by a service provider
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Distributed Hierarchical Database

unnamed root

e W)

generic domains country domains
@ Top-Level Domains (TLDs) 0 @

my.east.bar.edu cl.cam.ac.uk

DNS Root

¢ Located in Virginia, USA
* How do we make the root scale?

Verisign, Dulles, VA

DNS Root Servers

¢ 13 root servers (see http://www.root-servers.org/)
— Labeled A through M
* Does this scale?

A Verisign, Dulles, VA

C Cogent, Herndon, VA

D U Maryland College Park, MD

G US DoD Vienna, VA KRIPE London

H ARL Aberdeen, MD

1 Verisign I Autonomica, Stockholm

v id

E NASA Mt View, CA
F Internet Software
Consortium
Palo Alto, CA

M WIDE Tokyo

B USC-ISI Marina del Rey, CA
LICANN Los Angeles, CA

20

DNS Root Servers

¢ 13 root servers (see http://www.root-servers.org/)

— Labeled A through M
* Replication via any-casting (localized routing for addresses)

A Verisign, Dulles, VA

C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)

D U Maryland College Park, MD

G US DoD Vienna, VA

H ARL Aberdeen, MD

1 Verisign (21 locations) | Autonomica, Stockholm (plus
Gther locations)

K RIPE London (plus 16 other locations)

E NASA Mt View, CA
F Internet Software
Consortium,

Palo Alto, CA \
(and 37 other locations)

v id

M WIDE Tokyo

}/ plus Seoul, Paris,
San Francisco

B USC-ISI Marina del Rey, CA e
LICANN Los Angeles, CA

21
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Using DNS

Two components
— Local DNS servers
— Resolver software on hosts

Local DNS server (“default name server”)
— Usually near the endhosts that use it

— Local hosts configured with local server (e.g., /etc/
resolv.conf) or learn server via DHCP

Client application
— Extract server name (e.g., from the URL)
— Do gethostbyname() to trigger resolver code

22

How Does Resolution Happen?
(terative example)

root DNS server
Hostat cis.poly.edu

wants IP address for
gaia.cs.umass.edu 2
TLD DNS server

local DNS server
dns.poly.edu

iterated query:
O Host enquiry is delegated
to local DNS server
O Consider
transactions 2 — 7 only 1
O contacted server replies
with name of next server
to contact S
T “Idon’ t know this name, requesting host
but ask this server” cis.poly.edu

23

authoritative DNS server
dns.cs.umass.edu

e ( gaia.cs.umass.edu

DNS name resolution recursive example

root DNS server

O puts burden of name

resolution on contacted
name server

Oh | ? t1
eavy load local DNS server

dns.poly.edu 54
T 8 LT
n

authoritative DNS server
dns.cs.umass.edu

requesting host
cis.poly.edu

gaia.cs.umass.edu

TLD DNS server

24

* Recursive query

Recursive and lterative Queries - Hybrid case
root DNS server
LT

— Ask server to get ﬂ’

answer for you 3
4
TLD DNS server

— E.g., requests 1,2
- T
g

and responses Site DNS server

9,10 dns.poly.edu
* |terative query o1
— Ask server who Site DNS server
to aSk next dns.eee.poly.edu
1 10
- Eg' all other authoritative DNS server
request- dns.cs.umass.edu

response pairs
requesting host
25 myhost.eee.poly.edu
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DNS Caching

Performing all these queries takes time

— And all this before actual communication takes place
— E.g., 1-second latency before starting Web download
Caching can greatly reduce overhead

— The top-level servers very rarely change

— Popular sites (e.g., www.cnn.com) visited often

— Local DNS server often has the information cached
How DNS caching works

— DNS servers cache responses to queries

— Responses include a “time to live” (TTL) field

— Server deletes cached entry after TTL expires

Negative Caching

« Remember things that don’ t work
— Misspellings like www.cnn.comm and www.cnnn.com
— These can take a long time to fail the first time
— Good to remember that they don’t work
— ... so the failure takes less time the next time around

* But: negative caching is optional
— And not widely implemented

27
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Reliability

DNS servers are replicated (primary/secondary)
— Name service available if at least one replica is up

— Queries can be load-balanced between replicas
Usually, UDP used for queries

— Need reliability: must implement this on top of UDP
— Spec supports TCP too, but not always implemented
Try alternate servers on timeout

— Exponential backoff when retrying same server
Same identifier for all queries

— Don't care which server responds

DNS Measurements (mIT data from 2000)

What is being looked up?
— ~60% requests for A records
— ~25% for PTR records
— ~5% for MX records
— ~6% for ANY records

How long does it take?
— Median ~100msec (but 90t percentile ~500msec)
— 80% have no referrals; 99.9% have fewer than four

Query packets per lookup: ~2.4
— But this is misleading....

29
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DNS Measurements (i data from 2000) DNS Measurements (i data from 2000)
* Does DNS give answers? * Top 10% of names accounted for ~70% of
— ~23% of lookups fail to elicit an answer! lookups
— ~13% of lookups result in NXDOMAIN (or similar) — Caching should really help!

* Mostly reverse lookups

— Only ~64% of queries are successful!
* How come the web seems to work so well?

9% of lookups are unique
— Cache hit rate can never exceed 91%
* ~ 63% of DNS packets in unanswered queries!
— Failing queries are frequently retransmitted
— 99.9% successful queries have <2 retransmissions

Cache hit rates ~ 75%

— But caching for more than 10 hosts doesn’t add much

30 31

A Common Pattern..... Moral of the Story
* Distributions of various metrics (file lengths, access N ; ; an
patterns, etc.) often have two properties: If You design a h!ghly reS|I|en.t system, many
— Large fraction of total metric in the top 10% things can be going wrong without you
— Sizable fraction (~10%) of total fraction in low values noticing it!

* Not an exponential distribution

— Large fraction is in top 10% and this is a good thing
— But low values have very little of overall total

* Lesson: have to pay attention to both ends of dist.
* Here: caching helps, but not a panacea

33
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DNS and Security

No way to verify answers
— Opens up DNS to many potential attacks
— DNSSEC fixes this

Most obvious vulnerability: recursive resolution

— Using recursive resolution, host must trust DNS server
— When at Starbucks, server is under their control

— And can return whatever values it wants

More subtle attack: Cache poisoning
— Those “additional” records can be anything!

Ted Nelson

The Web — Precursor

¢ 1967, Ted Nelson, Xanadu:

— A world-wide publishing network
that would allow information to
be stored not as separate files but
as connected literature

— Owners of documents would be
automatically paid via electronic
means for the virtual copying of
their documents

* Coined the term “Hypertext”

— Influenced research community
* Who then missed the web.....

Cache Poisoning

* Suppose you are a Bad Guy and you control
the name server for foobar.com. You receive a

PRy 1 £ | ol

;3 QUESTION SECTION:

pRbtoobarcomy A Evidence of the attack

;; ANSWER SECTION:
www.foobar.com. 300 IN A 212.44.9.144

disappears 5 seconds later]

;; AUTHORITY SECTION:

foobar.com. 600 IN NS dnsl.foobar.com.

foobar.com. 600 IN NS google.gom.

;; ADDITIONAL SECTION:

google.com. 5 IN A ©
35 A foobar.com machine, not google.com

The Web — History

* CS grad turned physicist trying to
solve real problem
— Distributed access to data
* World Wide Web (WWW): a
distributed database of “pages”
linked through Hypertext Transport
Protocol (HTTP)
— First HTTP implementation - 1990
* Tim Berners-Lee at CERN
— HTTP/0.9 - 1991
* Simple GET command for the Web
— HTTP/1.0 -1992
* Client/Server information, simple caching

— HTTP/1.1-1996

Tim Berners-Lee

37
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Why Didn’t CS Research Invent Web?

HTML is precisely what we were trying to PREVENT— ever-
breaking links, links going outward only, quotes you can't follow to
their origins, no version management, no rights management.

—Ted Nelson

Why So Successful?

What do the web, youtube, fb have in common?
— The ability to self-publish

Self-publishing that is easy, independent, free

No interest in collaborative and idealistic endeavor
— People aren’t looking for Nirvana (or even Xanadu)
— People also aren’t looking for technical perfection

Want to make their mark, and find something neat
— Two sides of the same coin, creates synergy
— “Performance” more important than dialogue....

39

40

Web Components

Infrastructure:
— Clients
— Servers
— Proxies

Content:
— Individual objects (files, etc.)
— Web sites (coherent collection of objects)

Implementation
— HTML: formatting content
— URL: naming content

— HTTP: protocol for exchanging content
Any content not just HTML!

HTML: HyperText Markup Language

* A Web page has:
— Base HTML file
— Referenced objects (e.g., images)

* HTML has several functions:
— Format text
— Reference images
— Embed hyperlinks (HREF)

41
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URL Syntax

protocol : //hostname| : port] /directorypath /resource

protocol http, ftp, https, smtp, rtsp, etc.
hostname DNS name, IP address
port Defaults to protocol’ s standard port

e.g. http: 80 https: 443

directory path Hierarchical, reflecting file system

resource Identifies the desired resource

Can also extend to program executions:
http://us.f413.mail.yahoo.com/ym/ShowLetter?box=
%40B
$40Bulk&MsgId=2604_1744106_29699 1123 1261 0_28917
_3552_1289957100&Search=&Nhead=f&YY=31454&order=do
42 wn&sort=date&pos=0&view=a&head=b

HyperText Transfer Protocol (HTTP)

Request-response protocol

Reliance on a global namespace
* Resource metadata

* Stateless

* ASCII format
% telnet www.icir.org 80
GET /jdoe/ HTTP/1.0
<blank line, i.e., CRLF>

43

Steps in HTTP Request

* HTTP Client initiates TCP connection to server
— SYN
— SYNACK
— ACK

* Client sends HTTP request to server
— Can be piggybacked on TCP’s ACK

* HTTP Server responds to request
* Client receives the request, terminates connection
* TCP connection termination exchange

How many RTTs for a single request?

44

Client-Server Communication

* two types of HTTP messages: request, response
* HTTP request message: (GET POST HEAD ....)

request line

(GET, POST, \

HEAD commands)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0

header | connection: close
lines status line

Accept-language: fr (rotoco!
status code \ HTTP/1.1 200 OK
(extra carriage return, line feed) status phrase) Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)

HTTP response message

Carriage return, _—~

line feed
indicates end

header Last-Modified: Mon, 22 Jun 1998 ...

of message lines | content-Length: 6821
Content-Type: text/html

- data data data data data ...
data, e.g.

equested
HTML file

45
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46

Different Forms of Server

 Response
Return a file

— URL matches a file (e.g., /www/index.html)
— Server returns file as the response
— Server generates appropriate response header

Generate response dynamically
— URL triggers a program on the server

— Server runs program and sends output to client

Return meta-data with no body

47

HTTP Resource Meta-Data

Meta-data
— Info about a resource, stored as a separate entity

Examples:

— Size of resource, last modification time, type of
content

Usage example: Conditional GET Request

— Client requests object “If-modified-since”

— If unchanged, “HTTP/1.1 304 Not Modified”
— No body in the server’s response, only a header

48

HTTP is Stateless

Each request-response treated independently
— Servers not required to retain state

Good: Improves scalability on the server-side
— Failure handling is easier

— Can handle higher rate of requests

— Order of requests doesn‘t matter

Bad: Some applications need persistent state
— Need to uniquely identify user or store temporary info
— e.g., Shopping cart, user profiles, usage tracking, ...

49

State in a Stateless Protocol:

Cookies

Client-side state maintenance
— Client stores small» state on behalf of server
— Client sends state in future requests to the server

Can provide authentication

Request

Response

gk\) \{ Set-Cookie: XYZ

\ \L

”‘Q\ Request '
Cookie: XY

21/01/2013
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HTTP Performance

* Most Web pages have multiple objects
—e.g., HTML file and a bunch of embedded images

* How do you retrieve those objects (naively)?
— One item at a time

50

Fetch HTTP Items: Stop & Wait

Client Server
Start fetching R

page T ettemy

Transfer item 1

/ﬁ\ief/“e//’“z/
Finish; display_.

page

awy

22 RTTs
per
object

51

Improving HTTP Performance:

Concurrent Requests & Responses

* Use multiple connections in =
parallel g—"&

* Does not necessarily maintain

order of responses N R2 R3

T2 73

e Client=© .y

e Server=©

e Network = ® Why?

52

Improving HTTP Performance:

Pipelined Requests & Responses

* Batch requests and responses
— Reduce connection overhead Client Server

[ pmests
batch \Requestz\‘
— Maintains order of responses NR&Uestg\‘

'W
’W
[ ransfer®——

— Multiple requests sent in a single

— Item 1 always arrives before item 2

* How is this different from
concurrent requests/responses?
— Single TCP connection

53
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Improving HTTP Performance:

Persistent Connections

Enables multiple transfers per connection

— Maintain TCP connection across multiple requests
— Including transfers subsequent to current page

— Client or server can tear down connection

Performance advantages:

— Avoid overhead of connection set-up and tear-down
— Allow TCP to learn more accurate RTT estimate

— Allow TCP congestion window to increase

— i.e., leverage previously discovered bandwidth

Default in HTTP/1.1

54

Scorecard: Getting n Small Objects

Time dominated by latency

* One-at-a-time: ~2n RTT

* Persistent: ~ (n+1)RTT

* M concurrent: ~2[n/m] RTT
* Pipelined: ~2 RTT

* Pipelined/Persistent: ~2 RTT first time, RTT
later

Scorecard: Getting n Large Objects

Time dominated by bandwidth

e One-at-a-time: ~ nF/B
* M concurrent: ~ [n/m] F/B

— assuming shared with large population of users
* Pipelined and/or persistent: ~ nF/B

— The only thing that helps is getting more
bandwidth..

Improving HTTP Performance:

Caching

* Many clients transfer same information

— Generates redundant server and network
load

— Clients experience unnecessary latency

21/01/2013
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Improving HTTP Performance:

Caching: How

* Modifier to GET requests:

— If-modified-since —returns “not modified” if
resource not modified since specified time

* Response header:
- Expires —how long it’s safe to cache the resource

— No-cache —ignore all caches; always get resource
directly from server

58

Improving HTTP Performance:

Caching: Why

* Motive for placing content closer to client:
— User gets better response time

— Content providers get happier users
* Time is money, really!
— Network gets reduced load

* Why does caching work?
— Exploits locality of reference

* How well does caching work?
— Very well, up to a limit
— Large overlap in content
— But many unique requests

59

Improving HTTP Performance:

Caching on the Client

Example: Conditional GET Request
* Return resource only if it has changed at the server

Reque WY SRRYBILRsurces!
GET /~eel22/fa07/ HTTP/1.1
Host: inst.eecs.berkeley.edu
User-Agent: Mozilla/4.03
If-Modified-Since: Sun, 27 Aug 2006 22:25:50 GMT

¢ HowY
— Client specifies “if-modified-since” time in request
— Server compares this against “last modified” time of desired resource
— Server returns “304 Not Modified” if resource has not changed
— ...0ora “200 OK” with the latest version otherwise

60

Improving HTTP Performance:

Caching with Reverse Proxies

Cache documents close to server

- decrease server load

* Typically done by content providers
* Only works for static content

Reverse proxies

21/01/2013
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Improving HTTP Performance:

Caching with Forward Proxies

Cache documents close to clients
- reduce network traffic and decrease latency

* Typically done by ISPs or corporate LANs

j Server

Reverse proxies

Forward proxies

62Clients —=h

63

Improving HTTP Performance:

Caching w/ Content Distribution Networks

Integrate forward and reverse caching functionality

— One overlay network (usually) administered by one entity
— e.g., Akamai

Provide document caching

— Pull: Direct result of clients’ requests

— Push: Expectation of high access rate

Also do some processing

— Handle dynamic web pages

— Transcoding

Improving HTTP Performance:

Caching with CDNs (cont.)

Server

Forward proxies

64

Improving HTTP Performance:

CDN Example — Akamai

Akamai creates new domain names for each client
content provider.

— €.8., a128.g.akamai.net

The CDN’s DNS servers are authoritative for the
new domains

The client content provider modifies its content so
that embedded URLs reference the new domains.
— “Akamaize” content

— €.8.: http://www.cnn.com/image-of-the-day.gif becomes http://
a128.g.akamai.net/image-of-the-day.gif

Requests now sent to CDN'’s infrastructure...

21/01/2013
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CDN examples

Hosting: Multiple Sites Per
Machine

Multiple Web sites on a single machine

— Hosting company runs the Web server on behalf of
multiple sites (e.g., www.foo.com and www.bar.com)

Problem: GET /index.html

— www.foo.com/index.html Of www.bar.com/index.html?

Solutions:
— Multiple server processes on the same machine
* Have a separate IP address (or port) for each server
— Include site name in HTTP request
* Single Web server process with a single IP address
¢ Clientincludes “Host” header (e.g., Host: www.£foo.com)
* Required header with HTTP/1.1

67

Hosting: Multiple Machines Per Site

* Replicate popular Web site across many
machines
— Helps to handle the load
— Places content closer to clients

* Helps when content isn’t cacheable

* Problem: Want to direct client to particular
replica
— Balance load across server replicas
— Pair clients with nearby servers

68

Multi-Hosting at Single Location

* Single IP address, multiple machines
— Run multiple machines behind a single IP address

I | Load Balancer |—
/" 64.236.16.20

— Ensure all packets from a single
TCP connection go to the same replica

69
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Multi-Hosting at Several Locations

* Multiple addresses, multiple machines
— Same name but different addresses for all of the replicas
— Configure DNS server to return closest address

7073.72.54.131

SIP - VolP

cisco.com princeton.edu

proxy proxy
bsd-pc.cisco.com llp-ph.cs.princeton.edu
bruce@cisco.com larry@princeton.edu

Establishing communication
through SIP proxies.

SIP?

* SIP — bringing the fun/complexity of
telephony to the Internet
—User location
—User availability
—User capabilities
—Session setup

—Session management
* (e.g. “call forwarding”)

72

H.323 - ITU

* Why have one standard when there are at least two....

e The full H.323 is hundreds of pages

— The protocol is known for its complexity —an ITU hallmark

¢ SIPis not much better

73
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Multimedia Applications

cisco.com princeton.edu
bsd-pe.cisco.com proxy proxy llp-ph.cs princeton.edu
invite
100 «rymg/“i‘e‘
100 trying invite
k//////k/jﬂ%//
180 ringin
180 ringing —
| mex
ACK
< Media >

BYE
-~
200 OK

Message flow for a basic SIP session

The (still?) missing piece:
Resource Allocation for Multimedia Applications

ISP

router Public
Internet

Customer
IP phone router

| can ‘differentiate’ VolP from data but...
| can only control data going into the Internet

75

74
* Resource Allocation for Multime(Ea Applications
Proxy or gatekeeper
Wide area
link Head office
5
e eiics Q0
Admission control using session control protocol.
76

Resource Allocation for Multimedia Applications

Coming soon...

who are we kidding?? -

Co-ordination of SIP signaling and
resource reservation.

UPDATE SDP3
200 OK (UPDATE) SDPs |
— oORmging

T PRAck
200 OK (PRACK]——————

& = =@
So where does it happen?

Inside single institutions or domains of control.....
(Universities, Hospitals, big corp...)

What about my aDSL/CABLE/etc it combines voice and data?
Phone company controls the multiplexing on the line

and throughout their own network too......
77

21/01/2013
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Pure P2P architecture

* no always-on server

. a.rb|trary end sys'Fems ’# o
directly communicate peer-peer = o

* peers are intermittently L@
connected and change IP

= = D

addresses =

* Three topics: =
— File distribution @
— Searching for information E Q@

— Case Study: Skype

78

File Distribution: Server-Client vs P2P

Question : How much time to distribute file from
one server to N peers?

u,: server upload

bandwidth
Server @

u;: peer i upload

i u bandwidth
u; 1 2[ fa
Us 2 9 d;: peer i download
File, size F bandwidth
Network (with o

abundant bandwidth)
UN °

79

File distribution time: server-client

i L

* server sequentially
sends N copies:

. ) d Network (with
- NF/ustlme @4_"\1_ abundant bandwidth)
* client i takes F/d, ™ .
time to download ‘e, .

Time to distribute F

to N clients using = d., = max { NF/u, F/mln(d,) }
client/server approach

increases linearly in N
(for large N)

80

File distribution time: P2P

Server
* server must send one copy:
F/u time i

* clientitakes F/d,time to

) d Network (with
download B2 abundant bandwidth)
* NF bits must be R .
downloaded (aggregate) ., R

O fastest possible upload rate: u, + zui

dpop = max { F/u, F/min(d,) , NF/(u, + 2u) }
1

81
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Server-client vs. P2P: example

Client upload rate =u, F/u=1hour, u,=10u, d.;, 2 U,

min =

3.5

o [=PP o
-#- Client-Server /,/"'
25 /
2

Minimum Distribution Time
&

05 -/'(/ ki
T

0 T T T T T T
0 5 10 15 20 25 30 35

82

File distribution: BitTorrent

O P2P file distribution

torrent: group of
peers exchanging
chunks of a file

tracker: tracks peers
participating in torrent

trading
chunks

i w 83

obtain list
of peers

BitTorrent (1)

A
 file divided into 256KB chunks.

* peer joining torrent: @:ﬁ@\ 1
— has no chunks, but will accumulate them over time

— registers with tracker to get list of peers, connects to
subset of peers (“neighbors”)

* while downloading, peer uploads chunks to other peers.
* peers may come and go

* once peer has entire file, it may (selfishly) leave or
(altruistically) remain

84

BitTorrent (2)

PuIIing Chunks Sending Chunks: tit-for-tat
T Alice sends chunks to four neighbors

* atany given timer different currently sending her chunks at the
peers have different highest rate

. < re-evaluate top 4 every 10 secs
subsets of file chunks O every 30 secs: randomly select another

* periodically, a peer (Alice) peer, starts sending chunks
asks each neighbor for list * newly chosen peer may join top 4
+ "optimistically unchoke
of chunks that they have.

¢ Alice sends requests for her
missing chunks

— rarest first

85
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BitTorrent: Tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’ s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’ s top-four providers

B
\//@

v

With higher upload rate,
can find better trading
partners & get file faster!

86

Distributed Hash Table (DHT)

DHT = distributed P2P database
Database has (key, value) pairs;

— key: ss number; value: human name

— key: content type; value: IP address
Peers query DB with key

— DB returns values that match the key
Peers can also insert (key, value) peers

P2P Case study: Skype

Skype clients (SC)

inherently P2P: pairs of i) @ i)
users communicate. R ’ W@

proprietary application- Skype

layer protocol (inferred ~ login server
via reverse engineering)
hierarchical overlay with @w
SNs S0
Index maps usernames to

IP addresses; distributed @/ @ ')
S<YPCy =

over SNs

88

Peers as relays

Problem when both Alice
and Bob are behind
“NATs”.

— NAT prevents an outside peer
from initiating a call to
insider peer

Solution:

— Using Alice’ s and Bob’ s SNs,
Relay is chosen

— Each peer initiates session
with relay.

— Peers can now communicate
through NATs via relay

89

21/01/2013

22



Topic 7

Topic 7: The Datacenter

(DC/Data Center/Data Centre/....)

Our goals:

* Datacenters are the new Internet; regular Internet has
become mature (ossified); datacenter along with
wireless are a leading edge of new problems and new
solutions

* Architectures and thoughts

— Where do we start?
— old ideas are new again: VL2
— c-Through, Flyways, and all that jazz

* Transport layer obsessions:
— TCP for the Datacenter (DCTCP)
— recycling an idea (Multipath TCP)
— Stragglers and Incast

Google Oregon
Warehouse Scale Computer

Equipment Inside a WSC

Server (in rack
format):

1 % inches high “1U”,
x 19 inches x 16-20
inches: 8 cores, 16 GB
DRAM, 4x1 TB disk

Array (aka cluster):
16-32 server racks +

larger local area network
7 foot Rack: 40-80 servers + Ethernet switch (“array switch”)

local area network (1-10 Gbps) switch 10x faster => cost 100X:
in middle (“rack switch”) cost f(N2)

4

[RRERER Ry
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Data warehouse? Google Server Internals

If you have a Petabyte,
you might have a datacenter

If your paged at 3am because you only have a ///////F)-

few Petabyte left,
you might have a data warehouse

h ]
I

o™ mm S

Luiz Barroso (Google), 2009

The slide most likely to get out of date...
6

e

pss 200410 S sy s 1
i ®

Microsoft’ s Chicago
Modular Datacenter

261
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Some Differences Between Commodity
DC Networking and Internet/WAN

Latencies Milliseconds to Seconds Microseconds

Bandwidths Kilobits to Megabits/s Gigabits to 10’s of Gbits/s

Causes of loss Congestion, link errors, ... Congestion

Administration Distributed Central, single domain

Statistical Multiplexing Significant Minimal, 1-2 flows
dominate links

Incast Rare Frequent, due to

synchronized responses

Datacenter design 101

* Naive topologies are tree-based
same boxes, and same b/w links
— Poor performance
— Not fault tolerant

* An early solution; speed hierarchy

(fewer expensive boxes at the top)

— Boxes at the top run out of capacity
(bandwidth)

— but even the $ boxes needed
$SS abilities (forwarding table size)

Coping with Performance in Arra

Lower latency to DRAM in another server than local disk
Higher bandwidth to local disk than to DRAM in another server

Racks - 1 30

Servers 1 80 2400

Cores (Processors) 8 640 19,200
DRAM Capacity (GB) 16 1,280 38,400
Disk Capacity (GB) 4,000 320,000 9,600,000
DRAM Latency (microseconds) 0.1 100
Disk Latency (microseconds) I 10,000 11,000 12,000
DRAM Bandwidth (MB/sec) 20,000 100 10
Disk Bandwidth (MB/sec) I 200} 100 10

Data Center 102

* Tree leads to FatTree

¢ All bi-sections have same
bandwidth

This is not the
only solution...

13
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Latency-sensitive Apps

* Request for 4MB of data sharded across 16
servers (256KB each)

* How long does it take for all of the 4MB of
data to return?

Timeouts Increase Latency

(256KB from 16 servers)
4MB 2ok Trars'er Time Cistrbutice with No 270 bound

LN T

81 fideal

1& {Response

:Time

12F
s of ol Responses delayed
loccurrences ¢ by 200ms TICP

5| timeout(s)

o

2F

J

a S0 00 EC 200 250 Q0D IS0 400 430
Biccx Transler Time [inrs)

15

Incast

Warker 1 * Synchronized mice collide.

Worker 2 Aggregator

Worker 3

RTO,;,= 300 ms

Worker 4 === TCP timeout

» Caused by Partition/Aggregate.

Applications Sensitive to
200ms TCP Timeouts

» “Drive-bys” affecting single-flow request/
response

* Barrier-Sync workloads
— Parallel cluster filesystems (Incast workloads)

— Massive multi-server queries
* Latency-sensitive, customer-facing

The last result delivered is referred to as a straggler.

Stragglers can be caused by one off (drive-by) events but also by incast congestion
which may occur for every map-reduce or database record retrieve or distributed
filesystem read....

17
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Incast Really Happens

W 50th percentile W 90th percentile
B 95th percentile W 95th percentile
B 99.9th percentile

STRAGGLERS

MLA Query Completion Time (ms)
|
[

0
S00AM 8 30/3»\‘/
aturday, December 19, 2009

Jittering 99.9" percentile is being tracked. ntiles.

—————— g -
18

The Incast Workload

Data Block

Synchronized Read

R
R
R
Client Switch

Server

(SRU)

AN

Client now sends
next batch of requests

Storage Servers

Request Unit

Incast Workload Overfills Buffers

Synchronized Read

g
> — 08

RN

Client Switch
Server
- . . = Request Unit
(SRU)
Requests Responses 1-3
i completed
Recelved P Link Idle!
1 l |
| — 1
Requests Response 4 Response 4
Sent dropped 20 Resent 20

Queue Buildup

Sender 1

* Big flows buildup queues.

Receive
- ’
@ %
Sender 2 * Measurements in Bing cluster

» For 90% packets: RTT < 1ms

» Increased latency for short flows.

» For 10% packets: 1ms < RTT < 15ms

21
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Microsecond timeouts
are necessary

o0 Microsecond TCP
o L e et N N B + no RTO Bound
Thraughaut m

(Maps)

£ Highithroughput X No RTO Bound

sustained forupite

W7/ servers
i 7w =
|REFEA3IRG SiFIA8 WiER ——=%

Hem *%&' =
Microseca More servers &% -

v

Unmodified TCP

22

Improvement to Latency

4MB Blozk Trarster Time Cistrbution with No RT0 bound

18 dey - - - T - -~
1 i (256KB from 16 servers)
200ms RTO

1e | 4

12§ Microsecond p
# of : RTO

1F .
occurrences

8 -

6} -

4 ) 4

2t .

a | | " N M

] S0 W0 150 200 250 0D IS0 4CC 450
Biccx Transler Time {in ma)
23

Link-Layer Flow Control

Common between switches but this is flow-control to the end host too...

* Another idea to reduce incast is to employ
Link-Layer Flow Control.....

e

Recall: the Data-Link can use specially coded
symbols in the coding to say “Stop” and “Start”

Link Layer Flow Control — The Dark side
Head of Line Blocking....

Such HOL blocking does not even
differentiate processes so this can occur
between competing processes on a pair of
machines — no datacenter required.

Waiting for no good
reason....

21/01/2013
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Link Layer Flow Control
But its worse that you imagine....

Did | mention this is Li
Layer!

traffic, no routing
messages....

one machine

Double down on trouble....

nk-

That means no (IP) control

a whole system waiting for

NG| Incast is very unpleasant.

Reducing the impact of HOL in Link Layer Flow Control can be done through priority
queues and overtaking....

26

Fat Tree Topology

(Fares et al., 2008; Clos, 1953)

Aggregation

Switches

each

Racks of
servers

27

State of the Art

(as discussed in Hedera)

Statically stripe flows across available paths
using ECMP

Collision

ECMP: Equal Cost Multi-Path Routing is common in Data Centers but
network ninjas may be required to configure it correctly...

How about mapping each
flow to a different path?
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How about mapping each
flow to a different path?

How about mapping each
flow to a different path?

Not fair

How about mapping each
flow to a different path?

Not fair

Mapping each flow to a path
is the wrong approach!

32

Instead, pool capacity from links

21/01/2013
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Multipath TCP Primer
(IETF MPTCP WG)

* Adrop in replacement for TCP

* Spreads application data over multiple sub
flows

a )
|
.

< Y

- For each ACK on sub-flow r, increase the window w, by min(at/w,s,
1/w,)

- For each loss on sub-flow r, decrease the window w, by w,/2 w

Performance improvements
depend on traffic matrix

1.8
1.7 - MPTCP s — 1
16
15
14
13 1 .
12 “_.o"f '»
11+ d,..,:" Sweet Spot :
11

09 it it it
0.001 0.01 0.1 1 10

Connectionw
Increase Load

Underloaded
Overloaded

'.".'

Relative MPTCP Throughput

L

DC: lets add some of redundancy
The 3-layer Data Center
Internet W W

,,,,,,,,,,,,,,,,,,,,,,, e Y .
DC-Layer 2

* CR = Core Router (L3)
* AR = Access Router (L3)

d ' 4 /... | * S=Ethernet Switch (L2)
m m A =Rack of app. servers

~ 1,000 servers/pod == IP subnet

Reference — “Data Center: Load balancing Data Center Services”, Cisco
2004

Understanding Datacenter Traffic

“Most flows in the data centers are small in size (<10KB)...”. In
other words, elephants are a very small fraction.

08

06

CDF

04

02

Flow Sizes (in Bytes)
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Understanding Datacenter Traffic

Majority of the traffic in cloud datacenters stay within the rack.

o
o
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Data Centers
Intra-Rack ==z Extra-Rack mzzm 38

Todav. Computation Constrained bv Network*

ST M e S R A = )

, Server From
Figure: In(Bytes/10sec) between servers in operational cluster

*  Great efforts required to place communicating servers under the same ToR =» Most
traffic lies on the diagonal (w/o log scale all you see is the diagonal)

* Stripes show there is need for inter-ToR communication
*Kandula, Sengupta, Greenberg,Patel 39

Network has Limited Server-to-Server Capacity,
and Requires Traffic Ensi ins to Use What It Has

10:1 over-subscription or worse (80:1, 240:1)

Data centers run two kinds of applications:
— Outward facing (serving web pages to users)
— Internal computation (computing search index — think HPC)

Congestion: Hits Hard When it Hits*
q -

® 140 RN
8 wof &5 7® }5. ;4
g 100 3 -.* . N "o .o.' !
2 efh e 4 . L
€ &0 e 4 . }
Sooldn T S e ke
g IS £ i Tl
N R L PR A S I
3
0 Llaces e . .. % R
0 15000 30000 45000 6©0000 75000 90000
Time (s)
Bir Congeston Duration
< i
i
& B ]
D.a .
10 100 1000
*Kandula, Sengupta, Greenberg, Patel 41

Duration of Congestion Epochs (s)
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No Performance Isolation

* VLANSs typically provide reachability isolation only

* One service sending/receiving too much traffic
hurts all services sharing its subtree

Flow Characteristics
DC traffic = Internet traffic

045
0.4 Flow Size PDF —+ ]
0% Total Bytes PDF Most of the flows:
% 035 1 various mice
o 0.2 4 ]
0.15 i
0.1 A 4§ &a
0.03 POP .Y VRPR. NPT PR Most of the bytes:
1 100 10000 1e+06 1e<08 1e+10 1e+12 \yithin 100MB flows
Flow Size (Bytes)
04 - 1
2 0.0 ™ BDF .
£ 003 f CDF 08 @ Median of 10
S oo\ / A\ 06 B concurrent flows
s | VL \ 04 E
S 001 \ 0, QJ Perserver
w 0 N\
1 10 100 1000

Number of Concurrent flows in/out of each Machine

Network Needs Greater Bisection BW,

and Requires T@@%se What It Has
Internet
CR)

Dynamic reassignment of servers and Map/
Reduce-style computations mean traffic
matrix is constantly changing

Explicit trafﬁc engineering is a nvightmare V
B (AN HEEE B

« Data centers run two kinds of applications:
— Outward facing (serving web pages to users)
— Internal computation (computing search index — think HPC)

What Do Data Center Faults Look Like?
*Need very high reliability

near top of the tree

—Very hard to achieve

* Example: failure of a
temporarily unpaired core
switch affected ten million
users for four hours

— 0.3% of failure events
knocked out all members of
a network redundancy

group

Ref: Data Center: Load Balancing Data Center Services,
Cisco 2004

21/01/2013
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Data Center: Challenges

* From a large cluster used for data mining and
identified distinctive traffic patterns

* Traffic patterns are highly volatile
— Alarge number of distinctive patterns even in a day

* Traffic patterns are unpredictable

— Correlation between patterns very weak

Data Center: Opportunities

* DC controller knows everything about hosts
* Host OS’s are easily customizable

* Probabilistic flow distribution would work well
enough, because ...
— Flows are numerous and not huge — no elephants!

— Commodity switch-to-switch links are substantially
thicker (~ 10x) than the maximum thickness of a flow

21/01/2013

Sometimes we just wish we had a huge
L2 switch (L2: data-link)

y

The Illusion of a Huge L2 Switch

S

48

Fat Tree Topology

(Fares et al., 2008; Clos, 1953)

K Pods with
K Switches
each

4
-
TR
servers

49
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B-Tree Topology

(Guo et al., 2009)

An alternative: hybrid packet/circuit
switched data center network

Feasibility: software design that enables efficient use of optical circuit|
Applicability: application performance over a hybrid network

Optical Circuit Switch

Output
Output
Input

Glass Fiber
Bundle

Does not decode packets
Needs take time to
reconfigure _ﬁ_—_—_

Mirrors on Motors

52°

Optical circuit switching v.s.
Electrical packet switching

Electrical packet Optical circuit
switching switching

Switching Store and forward Circuit switching
technology
Switching 16x40Gbps at high end  320x100Gbps on market, e.g.
capacity e.g. Cisco CRS-1 Calient FiberConnect
Switching Packet granularity Less than 10ms
time
Switching For bursty, uniform traffic  For stable, pair-wise traffic
traffic

53
53

21/01/2013
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Hybrid packet/circuit switched
network architecture

Electrical packet-switched network for
low latency delivery

Optical circuit-switched network
for high capacity transfer

Aggregate traffic on per-rack basis to better utilize optical circuits

Design requirements

Traffic
demands

a emand e atio
Optical circuit configuration Optlmlzmg cnrcunt uhllzatlon

(optional)

An alternative to Optical links:

Link Racks by radio
(60GHz gives about 2Gbps at 5m)

56

Two Downsides (there are others):

CamCube

* Nodes are commodity x86 servers with local storage
— Container-based model 1,500-2,500 servers

* Direct-connect 3D torus topology
— Six Ethernet ports / server
— Servers have (x,y,z) coordinates
* Defines coordinate space
— Simple 1-hop API
+ Send/receive packets to/from 1-hop neighbours
* Not using TCP/IP

* Everything s a service
— Runonall servers

¢ Multi-hop routing is a service
— Simple link state protocol
— Route packets along shortest paths from source to destination

complex to use (programming models...)
messy to wire...

21/01/2013
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MRC?: A new data center approach

R T
H H

| Border router

| Border router

Core switch g Core switch
| switch switch switch switch I

T T T T
Rack switch Rack switch Rack switch Rack switch
conpue | | | Eonpuetete] | | [Conpueroce] | | [Congueyoce)
ESE [Computenode ] | | [Computenode] | | [Compute node |
T11 TI 1T T11
[ Compute node | [ Compute node | [ Compute node |
T1 TT1 T1
[ Compute node | [ Compute node | [ Compute node |
T T T
[ Compute node | [ Compute node | [Compute node |

New resource-
aWare programming
framework

Distributed switch:
fabric: nolbuiier and
smaller per-switchi

ruclic Smarter Transport
protocols for
minimized

/ B
[ ClEL node b disruption

, .
[oirms e
"'

Be
2/

MAC
roMbps =Z
Waits

Other problems

Special class problems/Solutions?

Datacenters are computers too...

What do datacenters to anyway?

* Special class problems

* Special class data-structures

* Special class languages

* Special class hardware

* Special class operating systems

* Special class networks v/

* Special class day-to-day operations "

21/01/2013
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Rack
Switch

Thermal Image of Typical Data Centre Rack

M. K. Patterson, A. Pratt, P. Kumar,

“From UPS to Silicon: an end. d ion of 62

efficiency”, Intel Cq

DC futures

Warehouse-Scale Computing: Entering the Teenage Decade
Luiz Barroso (Google)
ISCA Keynote 2011

http://dl.acm.org/citation.cfm?id=2019527

It’s a video. Watch it.

Sample

How to waste a high performance fabric

e 1-byte message, round-trip time

Are the systems we used for the WAN
appropriate for the datacenter?

8

Software stacks for milliseconds are not
good enough for microseconds
- Just ask the High Frequency Traders...

&

20 Probably not.

Latency (microseconds)

. Google

L. Barroso’s excellent ISCA2011 keynote — go watch it! http://dl.acm.org/citation.cfm?id=2019527,,

Fancy doing somet exciting computer science? at 10Gbps? 40Gbps? 240Gbps?
Talk to me.

&NetFPGA

21/01/2013
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