Our goals:

* understand principles
behind transport layer
services:

— multiplexing/
demultiplexing

— reliable data transfer

— flow control

— congestion control
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Transport

* learn about transport layer
protocols in the Internet:
— UDP: connectionless transport

— TCP: connection-oriented
transport

— TCP congestion control

Transport services and protocols

provide logical communication

between app processes running

on different hosts

transport protocols run in end

systems

— send side: breaks app

messages into segments,
passes to network layer

— rcv side: reassembles

transport

segments into messages, ® =

passes to app layer ® =
more than one transport protocol @@ o €D @ :'
available to apps pss;

— Internet: TCP and UDP

* network layer: logical
communication between
hosts

* transport layer: logical
communication between
processes

— relies on, enhances, network
layer services

Transport vs.

network layer

Household analogy:

12 kids sending letters to 12
kids

* processes = kids

* app messages = letters in
envelopes

* hosts = houses
* transport protocol = Ann
and Bill

* network-layer protocol =
postal service
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Internet transport-layer protocols

application

transport

[data i |
physical

reliable, in-order delivery
(TCP)

— congestion control

— flow control

— connection setup 43 2

unreliable, unordered ==

delivery: UDP

- no—fri[!s extension of “best-
effort” IP i)

services not available: B —

— delay guarantees BB P~ pe] @

— bandwidth guarantees




Demultiplexing at rcv host:

delivering received segments
to correct socket

Multiplexing/demultiplexing
(Transport-layer style)

Multiplexing at send host:

gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

[ =socket O = process
application @ @ application @ @ application
[ § [ 1
transport “Yransoort transport
network network network
link link link
physical physicat physical
host 1 host 2 host 3

How transport-layer demultiplexing works

* host receives IP datagrams

— each datagram has source IP .
address, destination IP address 32 bits

— each datagram carries 1

transport-layer segment source port # | dest port #

— each segment has source,
destination port number

* host uses IP addresses & port

numbers to direct segment to

other header fields

appropriate socket

application
data
(message)

TCP/UDP segment format

* Create sockets with port
numbers:

DatagramSocket mySocketl = new
DatagramSocket (12534) ;

DatagramSocket mySocket2 = new
DatagramSocket (12535) ;

* UDP socket identified by two-
tuple:

(dest IP address, dest port number)

Connectionless demultiplexing

When host receives UDP
segment:

— checks destination port
number in segment

— directs UDP segment to socket
with that port number
IP datagrams with different
source IP addresses and/or
source port numbers
directed to same socket
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Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket (6428);
= | 3

SP: 6428 SP: 6428
DP: 9157 DP: 5775

SP: 9157 SP: 5775
client DP: 6428 DP: 6428 Client

server
IP: A IP: C IP:B

SP provides “return address”




* TCP socket identified by 4-
tuple:
— source IP address
— source port number
— dest IP address
— dest port number
* recv host uses all four
values to direct segment to
appropriate socket

Connection-oriented demux

* Server host may support
many simultaneous TCP
sockets:

— each socket identified by its
own 4-tuple

* Web servers have different
sockets for each connecting
client

— non-persistent HTTP will have

different socket for each
request
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Connection-oriented demux (cont)

SP: 5775
DP: 80
S-IP: B
D-IP:C

SP: 9157 SP: 9157
client DP: 80 server DP: 80 Client
IP: A S-IP: A P:C S-IP:B IP:B
D-IP:C D-IP:C

1

Connection-oriented demux: Threaded
Web Server

=
SP: 5775
DP: 80
S-IP: B
D-IP:C
/
SP: 9157 SP: 9157
client DP: 80 server DP: 80 Client
IP: A S-IP: A P:C S-IP: B IP:B
D-IP:C D-IP:C

12
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UDP: User Datagram Protocol [RFC 768]

” o«

* “nofrills,” “bare bones”

Internet transport protocol Why is there a UDP?

*+ besteffort” service, UDP *  no connection establishment
segments may be: (which can add delay)
— lost * simple: no connection state at
— delivered out of order to sender, receiver
app * small segment header
e connectionless: .

no congestion control: UDP can

— no handshaking between blast away as fast as desired

UDP sender, receiver
— each UDP segment handled
independently of others

13
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UDP: more

* often used for streaming
multimedia apps

+———— 32 bits ———

— loss tolerant Length, in source port # dest port #
— rate sensitive bytes of UDP |~ length checksum
segment,
* other UDP uses including
— DNS header
— SNMP
« reliable transfer over UDP: add Application
reliability at application layer data

— application-specific error (message)

recovery!

UDP segment format

14

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Sender: Receiver:

¢ treat segment contents as * compute checksum of received
sequence of 16-bit integers segment

« checksum: addition (1" s ¢ check if computed checksum
complement sum) of segment equals checksum field value:

contents — NO - error detected
« sender puts checksum value
into UDP checksum field

— YES - no error detected. But
maybe errors nonetheless?
More later ....

15

; Internet Checksum

(time travel warning — we covered this earlier)
* Note
— When adding numbers, a carryout from the
most significant bit needs to be added to the
result

¢ Example: add two 16-bit integers

1110011001100110
1101010101010101

wraparound @1011101110111011

sum 1011101110111100
checksum 0100010001000011
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Principles of Reliable data transfer

important in app., transport, link layers
top-10 list of important networking topics!

receiver
process

application
layer

(Jreliable channel

transport
layer

(a) provided service

characteristics of unreliable channel will determine complexity of reliable data transfer protocol
(rdt)

17
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Principles of Reliable data transfer

* important in app., transport, link layers
¢ top-10 list of important networking topics!

[sending’ receiver
process process

application
layer

5 (Jreliable channel
22
c
5 o
=
Lb( iunre\iable channel’i
(a) provided service (b) service implementation

+  characteristics of unreliable channel will determine complexity of reliable data transfer protocol
(rdt)
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Principles of Reliable data transfer

* important in app., transport, link layers
¢ top-10 list of important networking topics!

[sending
process

receiver
process
(Jreliable channel

application
layer

rdt_send() rdt_rcv()

=

8_ ) relicble data reliable data

& > fransfer profocol transfer protocol
g O (sending side) (receiving side)
=

udt_send ()} 1 udt_rev)

Lb( iunre\iable channel’i

(a) provided service (b) service implementation

+  characteristics of unreliable channel will determine complexity of reliable data transfer protocol
(rdt)
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Reliable data transfer: getting started

rdt_send() : called from above, rdt _rcv() : called by rdt to
(e.g., by app.). Passed data to deliver data to upper

deliver to receiver upper layer

\

rdt_send () | [dofa] T rdt_rev()

send [reliable data reliable data receive
id fransfer protocol transfer protocol )
side  |sending side) (receiving side) side

udt_send()i Iudt_rcv()

/ L{ iunrelioble channel ’J

udt_send() : called by rdt, udt_rcv () : called when packet
to transfer packet over arrives on rcv-side of channel

unreliable channel to receiver

20

Reliable data transfer: getting started

we' Il

* incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

* consider only unidirectional data transfer
— but control info will flow on both directions!

 use finite state machines (FSM) to specify sender,

receiver
event causing state transition

actions taken on state transition

state: when in this “state”
next state uniquely
determined by next

event

event
actions )
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KR state machines — a note.

Beware

Kurose and Ross has a confusing/confused attitude to
state-machines.

I've attempted to normalise the representation.

UPSHOT: these slides have differing information to the
KR book (from which the RDT example is taken.)

in KR “actions taken” appear wide-ranging, my

interpretation is more specific/relevant.

w . Relevant event causing state transition
state: when in this “state

next state uniquely
determined by next
event

Relevant action taken on state transition

State
name

Rdt1.0: reliable transfer over a reliable channel

* underlying channel perfectly reliable
— no bit errors
— no loss of packets
* separate FSMs for sender, receiver:
— sender sends data into underlying channel
— receiver read data from underlying channel

Event
S . \
» rdt_send(data) udt_rcv(packet)
udt_send(packet) rdt_rcv(data)

\ Action /

sender receiver

23

Rdt2.0: channel with bit errors

* underlying channel may flip bits in packet
— checksum to detect bit errors

the question: how to recover from errors:

— acknowledgements (ACKs): receiver explicitly tells sender that
packet received is OK

— negative acknowledgements (NAKs): receiver explicitly tells sender
that packet had errors

— sender retransmits packet on receipt of NAK
* new mechanismsin rdt2.0 (beyond rdtl1.0):
— error detection

— receiver feedback: control msgs (ACK,NAK) receiver->sender

24

rdt2.0: FSM specification

rdt_send(data)
udt_send(packet)

receiver

udt_rcv(reply) &&

isNAK(reply)
Waiting — udt_rcv(packet) &&
for reply udt_send(packet) corrupt(packet)
udt_send(NAK)
~
udt_rcv(reply) && isACK(reply) Sa
A
sender
udt_rcv(packet) &&
Note: the sender holds a copy notcorrupt(packet)
of the packet being sent until rdt_rcv(data)
the delivery is acknowledged. udt_send(ACK)

25




Topic 5

rdt2.0: operation with no errors

rdt_send(data)
udt_send(packet)

udt_rcv(reply) &&
isNAK(reply)
udt_rcv(packet) &&

Waiting —_—
dt_send(packet) corrupt(packet)

for reply

udt_send(NAK)

udt_rcv(reply) && isACK(reply)
A

Ludt_rcv Eacke; &&

notcorrupt(packet)

rdt_rcv(data)
udt_send(ACK)

rdt2.0: error scenario

rdt_send(data)
udt_send(packet)

——

aiting — udt_rcv(packet) &&
for reply udt_send(packet) corrupt(packet)

udt_send(NAK)

~

udt_rcv(reply) && isACK(reply) Sa
A

udt_rcv(packet) &&
notcorrupt(packet)
rdt_rcv(data)
udt_send(ACK)

26
rdt2.0 has a fatal flaw!
What happens if ACK/NAK Handling duplicates:
corrupted? + sender retransmits current
+ sender doesn’ t know what packet if ACK/NAK garbled
happened at receiver! * sender adds sequence number
+ can’ tjust retransmit: possible to each packet
duplicate * receiver discards (doesn’t
deliver) duplicate packet
stop and wait
Sender sends one packet,
then waits for receiver
response
28
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rdt2.1: sender, handles garbled ACK/NAKs

rdt_send(data)

sequence=0

udt_send(packet) udt_rcv(reply) &8

S~ ( corrupt(reply) | |
Waiting isNAK(reply) )
For reply udt_send(packet)
udt_rcv(reply)
&& notcorrupt(reply) udt_rcv(reply)
&& isACK(reply) && notcorrupt(reply)
- &8 isACK(reply)
A A
Waiting
udt_rcv(reply) && Jor reply
( corrupt(reply) | |
isNAK(reply) ) [rdt_send(data)
udt_send(packet) sequence=1
udt_send(packet)
29
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rdt2.1: receiver, handles garbled ACK/NAKs

udt_rcv(packet) && not corrupt(packet)
&& has_seq0(packet)

udt_send(ACK)
rdt_rcv(data)

receive(packet) && corrupt(packet) udt_rcv(packet) && corrupt(packet)
udt_send(NAK) udt_send(NAK)

receive(packet) &&
not corrupt(packet) && < ,
has_seq1(packet)

udt_send(ACK)

receive(packet) &&
not corrupt(packet) &&
has_seqO(packet)

udt_send(ACK)

udt_rcv(packet) && not corrupt(packet)
&& has_seql(packet)

udt_send(ACK)
rdt_rcv(data)

30

rdt2.1: discussion

Sender: Receiver:
¢ seq # added to pkt * must check if received
+ twoseq. #' s (0,1) will packet is duplicate
suffice. Why? — state indicates whether O or 1
i ted pkt #
¢ must check if received ACK/ 15 expec .e pxtseq
NAK corrupted * note: receiver can not know

if its last ACK/NAK received

* twice as many states OK at sender

— state must “remember”
whether “current” pkt has a

0 or 1 sequence number

rdt2.2: a NAK-free protocol

* same functionality as rdt2.1, using ACKs only

* instead of NAK, receiver sends ACK for last pkt received OK
— receiver must explicitly include seq # of pkt being ACKed

* duplicate ACK at sender results in same action as NAK:
retransmit current pkt

32
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rdt2.2: sender, receiver fragments

rdt_send(data)

sequence=0

udt_send(packet) rdt_rcv(reply) &&

. ( corrupt(reply) | |
Wat for iSACK1(reply) )
0 udt_send(packet)
sender FSM
fragment udt_rcv(reply)
&& not corrupt(reply)
udt_rcv(packet) && ’ &8& isACKO(reply)
(corrupt(packet) || : A
has_seq1(packet)) receiver FSM
udt_send(ACK1) fragment
receive(packet) && not corrupt(packet)
&& has_seql(packet)
send(ACK1)
rdt_rcv(data)
33
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rdt3.0: channels with errors and loss

New assumption: underlying

channel can also lose
packets (data or ACKs)
— checksum, seq. #, ACKs,
retransmissions will be of
help, but not enough

Approach: sender waits

“reasonable” amount of
time for ACK

retransmits if no ACK received in
this time

if pkt (or ACK) just delayed (not
lost):

— retransmission will be
duplicate, but use of seq. #' s
already handles this

— receiver must specify seq # of
pkt being ACKed

requires countdown timer

rdt3.0 sender

udt_rcv(reply)

A

udt_rcv(reply)
&& notcorrupt(reply)
&& isACK(reply,1)

A

timeout
udt_send(packet) C

rdt_send(data)

\  sequence=0
\ udt_send(packet)

v
. IDLE
state 0

@

udt_rev(reply) &&

( corrupt(reply) ||

iSACK(reply,1) )
A

timeout
udt_send(packet)

udt_rev(reply)

&& notcorrupt(reply)
&& isACK(reply,0)

A

udt_rcv(reply)
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rdt3.0 in action
i sender receiver
sender receiver e
send pki0 %’ rcv pkio sendpKo rcv pkio
ACK send ACKO ACK send ACKO
/9/ 1oV ACKO
rcv ACKO send pktl \%
send pk! \@“\‘ (loss)
rcv pktl
ACK send ACK1
1CVACK1 oot
send pkt0 kt i uf
° ~C rev pkio resend pkt1 %
ACK s rcv pktl
send ACKO ACK e o
ICVACK1 o
send pkiO

(a) operation with no loss

rcv pki0
}G/ send ACKO

(b) lost packet

36

A
udt_rcv(packet) && rdt_send(data)
( corrupt(packet) | | sequence=1
isACK(reply,0) ) udt_send(packet)
A
35
rdt3.0 in action
sender receiver sender receiver
pkt kt
send pki0 Q v pkio send pki0 \Po\‘ oV pki0
ACK send ACKO ACK send ACKO
rcv ACKO rcv ACKO
send pkil Rkt send pktl
rcv pk11: rcv pktl
ACK send ACK1 send ACK1
(loss) x4
fimeout
fimeout pkt 1 resend pki1
resend pktl \rcv pkt1 ‘ rcv pktl X
ACK (defect duplicate) 1CVACK1 (detect duplicate)
send ACK1 send pkiO send ACK1
;Ceﬁicglgfo K rcv pkio
rev pkio send ACKO
ACK e
send ACKO
(c) lost ACK (d) premature timeout

37
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Performance of rdt3.0

* rdt3.0 works, but performance stinks
¢ ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

L 8000bits .
s = — = ————— = 8microseconds
R 10°bps
) U genger: Utilization — fraction of time sender busy sending
L/R = 008 = 0.00027

U -—L/R
sender  pTT+L/R 30008

) 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
) network protocol limits use of physical resources!

38

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t =0
last packet bit transmitted, t = L / R3]

— first packet bit arrives
RTT! I~ last packet bit arrives, send ACK

ACK arrives, send nex
packet, t=RTT+L/R

L/—R 008 = 0.00027

U = =
sender RTT+L/R 30008

39

Pipelined (Packet-Window) protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
— range of sequence numbers must be increased
— buffering at sender and/or receiver

<+— ACK packets

(b) a pipelined protocol in operation

(@) a stop-and-wait protocol in operation

* Two generic forms of pipelined protocols: go-Back-N, selective

repeat
40

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t=0
last bit transmitted, t =L/ R

— first packet bit arrives

RTT —last packet bit arrives, send ACK

r~last bit of 2" packet arrives, send ACK
—last bit of 3" packet arrives, send ACK

ACK arrives, send nex
packet, t=RTT+L/R

Increase utilization
/ by a factor of 3!

U = M = ﬂ = 0.0008
sender  pTT+L/R 30008

41
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Pipelining Protocols

Go-back-N: big picture: Selective Repeat: big pic

* Sender can have upto N * Sender can have upto N
unacked packets in pipeline unacked packets in pipeline
* Rcvr only sends cumulative  * Rcvr acks individual packets
acks * Sender maintains timer for
— Doesn’ t ack packet if there’ s each unacked packet
agap

— When timer expires,

* Sender has timer for oldest retransmit only unack packet
unacked packet
— If timer expires, retransmit all

unacked packets

42

Selective repeat: big picture

* Sender can have up to N unacked packets in
pipeline
* Rcvr acks individual packets

¢ Sender maintains timer for each unacked
packet

— When timer expires, retransmit only unack packet

43

Go-Back-N

Sender:
¢ k-bit seq # in pkt header
«  “window” of up to N, consecutive unack’ ed pkts allowed

send_base nextsegnum dlready I usable, not

ack’'ed yet sent

I g

window size
N
7 ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
> may receive duplicate ACKs (see receiver)
T timer for each in-flight pkt
7 timeout(n): retransmit pkt n and all higher seq # pkts in window

44

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
udt_send(packet[nextseqnum])
nextseqnumt++
}

else

refuse_data(data) Block?

‘ timeout
udt_send(packet[base])
C" udt_send(packet[base+1])

A
base=1
nextseqnum=1

udt_rcv(reply)
&& corrupt(reply)

A

udt_send(packet[nextseqnum-1])
udt_rcv(reply) &&

notcorrupt(reply)

base = getacknum(reply)+1

45
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expectedseqnum=1

GBN: receiver extended FSM

A
udt_sendireply) udt_rcv(packet)
S~ && notcurrupt(packet)
&& hassegnum(rcvpkt,expectedsegnum)

rdt_rcv(data)
udt_send(ACK)
expectedsegnum-++

ACK-only: always send an ACK for correctly-received packet with
the highest in-order seq #
— may generate duplicate ACKs
— need only remember expectedsegnum
* out-of-order packet:
— discard (don’t buffer) -> no receiver buffering!
— Re-ACK packet with highest in-order seq #
46

sender receiver

send pkiO \
send pkf1
~

P send pki2

send pkt3
(wait)

M’

rcv ACKO
send pkt4

rcv ACK1

send pktd \

—pkt2 timeout
send pki2

send pkt3 \
send pkt4 \
send pktb \

rcv pkio
send ACKO

rcv pkil
send ACK

rev pkt3, discard
send ACK1

rcev pki4, discard
send ACK1
rev pkth, discard
sond ACKI
rev pki2, deliver
send ACK2

rcv pkt3, deliver
send ACK3

47

Selective Repeat

receiver individually acknowledges all correctly received
pkts

— buffers pkts, as needed, for eventual in-order delivery to upper
layer

sender only resends pkts for which ACK not received
— sender timer for each unACKed pkt
sender window

— N consecutive seq # s

— again limits seq #s of sent, unACKed pkts

48

Selective repeat: sender, receiver windows

send_base nextsegnum dlready

v ack’ed

Jnennmm -

L wEndow sze —24
PN

sent, not

(a) sender view of sequence numbers

: out of order

yet ack’'ed

usable, not
yet sent

I] not usable

acceptable

(buffered) but frviv i
i diready dck'ed (within window)

DOO000NIRNETHRITRIRNNND  [osesieamer [ rerescer

;— window size —4
N

rev_base

(b) receiver view of sequence numbers

49

12



Selective repeat

— sender
data from above :

* if next available seq # in window,
send pkt

timeout(n):

* resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:
* mark pkt n as received

¢ if n smallest unACKed pkt,
advance window base to next
unACKed seq #

— receiver

pkt n in [revbase, revbase+N-1]

7 send ACK(n)

O out-of-order: buffer

7 in-order: deliver (also deliver
buffered, in-order pkts),
advance window to next not-
yet-received pkt

pkt n in [revbase-N,revbase-1]

7 ACK(n)

otherwise:

7 ignore

50

Selective repeat in action

pkt0 sent

B123J456789 T, 00 cvd, deliversd, ACKD sent

pktl sent
0123/4567839

pkt2 sent

r—lo123/4567893 X
(loss)
pkt3 sent. window full

[f123lass78s

ACKD rcvd, pktd sent
0[1 23 4/56 789

ACK1 rcvd, pktS sent

vilz3esler8

L—pkt2 TIMEOUT, pkt2 resent

vifzzasle 789

ACK3 rcvd, nothing sent

vi23asleres

0123 4|56 789
pktl rewe delivered, ACKL sent

o1f2345]6789

pkt3 rcvd, buffered, ACK3 sent

0123456789

pktd rcvd, buffered, ACK4 sent
01/2345[67839

pktS rcvd, buffered, ACKS sent

vifzzasle 789

pkt2 rcvd, pkt2 pkt3, pktd, pktS
delivered, ACK2 sent

012345 789]

51

Selective repeat:
dilemma

Example:
e seq#'s:0,1,2,3
¢ window size=3

* receiver sees no
difference in two
scenarios!

* incorrectly passes
duplicate data as new in

(a)

Q: what relationship between
seq # size and window
size?
window size < (% of seq # size)

receiver window

(after receipt)

sender window

after receipt )

. P
okt 1230912

pkt2

timeout
retransmit pk(OMo

Pidzon?d

~———pp receive packet
with seq number O

(@)

sender window

(after receipt )

receiver window

after receipt)

izfs o ofz3]o12
CKO
o1 O Ewah -
[o12]s01
L1z ACK20122

receive packet
with seq number O

(b)

52

Automatic Repeat Request (ARQ)

+ Self-clocking
(Automatic)

+ Adaptive

+ Flexible

- Slow to start / adapt
consider high Bandwidth/Delay product

Now lets move from
the generic to the
specific....

TCP arguably the most
successful protocol in the
Internet.....

its an ARQ protocol
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TCP: Overview «ecs: 793, 1122, 1323, 2018, 2581, ...

* point-to-point:

— one sender, one receiver

* reliable, in-order byte
stream:

* full duplex data:
— bi-directional data flow in
same connection
— MSS: maximum segment
size

« L o»
— no "message boundaries

e pipelined:
— TCP congestion and flow
control set window size

* send & receive buffers

socket
door

TCP
send buffer
@]

e connection-oriented:

— handshaking (exchange of
control msgs) init’ s sender,
receiver state before data
exchange

* flow controlled:

— sender will not overwhelm
receiver

54

TCP segment structure

32 bits
URG: urgent data * countin
g
(generally not used) source port # dsst port # by bytes
sequence number
ACK: ACK # i of data
valid | }ckqowledgement number (not segments!)
PSH: push data now Wﬁ’ R|S|F| Receive window
enerally not used)— | # bytes
(g Y ) /ch,edﬂn Urg data pnter revr willing
RST, SYN, FIN: = | . : to accept
, SYN, FIN: Options (variable length)
connection estab
(setup, teardown
commands) -
application
Internet data
checksum (variable length)
(asin UDP)

55

TCP seq.

Seq. #'s:

— byte stream
“number” of first byte
in segment’ s data

ACKs:

— seq # of next byte
expected from other
side

— cumulative ACK

Q: how receiver handles out-
of-o
A: TCP spec doesn’ t
say, - up to
implementor

This has led to a world of hurt....

#’ s and ACKs
@ Host A Host B @

User

Seq-=,
types 442 Ack=rg da
o tas o
host ACKs

receipt of
‘C’, echoes
back ‘C’

‘C

13,82

e
seQ‘79’

host ACKs
receipt

Se,

time
simple telnet scenario l

56

TCP out of order attack

* ARQ with SACK means
recipient needs copies of

all packets GET index.html

* Send a legitimate request

* Evil attack one:
send a long stream of TCP data
to a server but don’t send the
first byte
* Recipient keeps all the
subsequent data and
waits.....
— Filling buffers.
« Critical buffers...

this gets through an
intrusion-detection system

then send a new segment
replacing bytes 4-13 with

“password-file”

A dumb example.

Neither of these attacks would work on a modern system.
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TCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?

timeout value? * SampleRTT: measured time from
+ longer than RTT segment transmission until ACK
receipt

— but RTT varies
* too short: premature
timeout * SampleRTT will vary, want
estimated RTT “smoother”

— ignore retransmissions

— unnecessary
retransmissions — average several recent
measurements, not jUSt current

SampleRTT

* too long: slow reaction to
segment loss

58

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

7 Exponential weighted moving average
7 influence of past sample decreases exponentially fast
7 typical value: o =0.125

59

Some RTT estimates are never good

Sender Receiver Sender Receiver
Oriy; .
ing tra O”g’”a/ t,
MSmiss R
SIOr, sS/o,,

Re,
transmfssion

SampleRTT

SampleRTT
M

(a) (b)
Associating the ACK with (a) original transmission versus (b) retransmission
Karn/Partridge Algorithm — Ignore retransmission in measurements

(and increase timeout; this makes retransmissions decreasingly aggressive)

60

RTT (milliseconds)

350

250

150

100

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

1 I

time (seconnds)

[—+— SampleRTT —=— Estimated RTT

61
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TCP Round Trip Time and Timeout

Setting the timeout

e EstimtedRTT plus “safety margin”
— large variation in EstimatedRTT -> larger safety margin
« first estimate of how much SampleRTT deviates from EstimatedRTT:

DevRTT = (1-f)*DevRTT +
B*|SampleRTT-EstimatedRTT |

(typically, B = 0.25)
Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

62

TCP reliable data transfer

e TCP creates rdt service on * Retransmissions are
top of IP” s unreliable triggered by:
service — timeout events
* Pipelined segments — duplicate acks
« Cumulative acks * Initially consider simplified
TCP sender:

¢ TCP uses single

retransmission timer — ignore duplicate acks

— ignore flow control,
congestion control

63

TCP sender events:

data rcvd from app: timeout:

¢ Create segment withseq ¢ retransmit segment that
# caused timeout

e seq #is byte-stream ¢ restart timer
number of first data byte  Ack revd:
in segment * If acknowledges

* start timer if not already previously unacked
running (think of timer as segments
for oldest unacked — update what is known to be
segment) acked

* expiration interval: — start timer if there are
TimeOQutInterval outstanding segments

64

NextSeqNum = InitialSeqNum
SendBase = InitialSegNum

loop (forever) { TCP

switch(event)

event: data received from application above Se n d e r
create TCP segment with sequence number NextSeqNum (S|mp||f'|ed)
if (timer currently not running)

start timer
pass segment to IP Comment:

NextSeqgNum = NextSeqNum + length(data) o SendBase-1: last

event: timer timeout cumulatively

retransmit not-yet-acknowledged segment with ack’ ed byte
smallest sequence number Example:
start timer * SendBase-1 =71;
y= 73, so the rcvr

event: ACK received, with ACK field value of y

wants 73+ ;
if (y > SendBase) {

y > SendBase, so

SendBase =y that new data is
if (there are currently not-yet-acknowledged segments)
start timer acked

}

} /* end of loop forever */ 65

16
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TCP: retransmission scenarios
@ Host A Host B@ w Host A

Seq=g
2. 8bytes gy,
0.
RoSL
X

loss
Segs

W Sendbase

2 =100
SendBase

=120

%
SendBase

92 timeout —»

+— timeout ——

92 timeout —»r— Seq;

TCP retransmission scenarios (more)

g
=100 SendBase .L
=120 premature timeout
time
lost ACK scenario 66
TCP ACK generation [RFc 1122, RFC 2581]
Event at Receiver TCP Receiver action
Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK
Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending
Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected
Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap
68

@ Host A Host B @
Seg=g, 8,
<8 byt
] < daty Implicit ACK
- 400 -Back-
5 Sea=10 w0 MAO (e.g. not Go-Back-N)
Q d T,
£ X ota ACK=120 implicitly ACK’s 100 too
loss
SendBase ,L\CV\'/
=120
time
67
* Time-out period often * If sender receives 3
relatively long: duplicate ACKs, it supposes
— long delay before resending that segment after ACKed
lost packet data was lost:
* Detect lost segments via — fast retransmit: resend
duplicate ACKs. segment before timer
— Sender often sends many expires
segments back-to-back
— If segment is lost, there will
likely be many duplicate
ACKs.
69
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Host A Host B

timeout

Leseng yng
Segmen,
t

time

Figure 3.37 Resending a segment after triple duplicate ACK 70

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKs received fory
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

}

a duplicate ACK for

fast retransmit
already ACKed segment

71

Silly Window Syndrome

@ = = MSS advertises the amount a receiver can accept

Sender B} ks Receiver If a transmitter has something to send — it will.

This means small MSS values may persist
<i7ss WS - indefinitely.

Sonder $ | Solution

Wait to fill each segment, but don’t wait
indefinitely.

NAGLE's Algorithm
If we wait too long interactive traffic is difficult
If we don’t want we get silly window syndrome

Solution: Use a timer, when the timer expires — send the (unfilled) segment.

Flow Control # Congestion Control

* Flow control involves preventing senders from
overrunning the capacity of the receivers

» Congestion control involves preventing too
much data from being injected into the network,
thereby causing switches or links to become
overloaded

73

18



Topic 5

Flow Control — (bad old days?)

In-Line flow control Dedicated wires

* XON/XOFF (*s/7q) * RTS/CTS handshaking

 data-link dedicated * Read (or Write) Ready
symbols aka Ethernet signals from memory
(more in the Advanced interface saying slow-

Topic on Datacenters) down/stop...

TCP Flow Control

flow control

. . sender won’ t overflow
* receive side of TCP receiver’ s buffer by

connection has a receive transmitting too much,
buffer: too fast

f— RevWindow —f

_* speed-matching service:
application k
process matching the send rate to
the receiving app’ s drain
f————— RevBuffer ———— rate

data from
i

7 app process may be slow
at reading from buffer

75

TCP Flow control: how it works
§— RevWindow —

* Rcvr advertises spare room
application DY including value of
P RevWindow in segments

* Sender limits unACKed

data to ReviWindow
(Suppose TCP receiver discards — guarantees receive buffer
out-of-order segments) doesn’ t overflow

data from
P

f——— RevBuffer ———f

* spare room in buffer
RcvWindow

RcvBuffer-[LastByteRcvd -
LastByteRead]

76

TCP Connection Management

Three way handshake:

Recall: TCP sender, receiver
establish “connection” before

exchanging data segments Step 1: client host sends TCP SYN
* initialize TCP variables: segment to server
— seq. #s — specifies initial seq #

— buffers, flow control info
(e.g. RevWindow)
* client: connection initiator

— nodata

Step 2: server host receives SYN,

Socket clientSocket = new replies with SYNACK segment
Socket ("hostname”, "port — server allocates buffers

number") ; - s
. — specifies server initial seq. #
* server: contacted by client . . .
Socket connectionSocket = Step 3: client receives SYNACK, replies

welcomeSocket.accept () ; with ACK segment, which may

contain data

77
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TCP Connection Management (cont.)

Closing a connection: @ client semer@

client closes socket: close .
clientSocket.close() ; i

Step 1: client end system sends ‘
TCP FIN control segment to S

server N

close

Step 2: server receives FIN, replies
with ACK. Closes connection,

Ack
sends FIN.

timed wait

closed

78

TCP Connection Management (cont.)

Step 3: client receives FIN, @ client sewer@
replies with ACK.

closing

— Enters “timed wait” - will Ein

respond with ACK to
received FINs

NS

Step 4: server, receives ACK. N

Connection closed.

closing

Note: with small modification,
can handle simultaneous FINs.

Ack

closed

timed wait

closed

79

TCP Connection Management (cont)
/\\.nn.,:::?;s:':?;::m.,n

\send sm

TIME_WAIT BLLEE

receie FIN receve SN &.ACK
o e K
FINWAIT 2 ESTABLISHED TCP server
j lifecycle
receive ACK ™ initiat

F
Cononos ] FNWATA ZendF I oresm P ——
S T_creates alisten socket
i dnothing B
TCP client s retien. \

lifecycle
LAST_ACK LISTEN

send FIN send SYN & ACK

CLOSE_WAIT SYN_RCVD
\ 7
A% receive ACK
send notring

. S
“——| ESTABLISHED |¢—

wait 30 seconds /

80

Principles of Congestion Control

Congestion:

« informally: “too many sources sending too much data too
fast for network to handle”

» different from flow control!
* manifestations:
— lost packets (buffer overflow at routers)
— long delays (queueing in router buffers)
* atop-10 problem!

81
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Causes/costs of congestion: scenario 1

Host A e

Causes/costs of congestion: scenario 2

* one router, finite buffers

¢ two senders, two
receivers

* one router, infinite

o= ., : original data

unlimited shared
output ligk buffers

* sender retransmission of lost packet

buffers
* no retransmission

* large delays when

Host A A, original data
_

A, original data, plus
retransmitted data

[ ¢

finite shared output
link buffers

Cl2+ —— - .
o] i
= S i congested
3 3 i &
< *  maximum
! achievable
12 cP throughput
}\‘in }"in !
82
Causes/costs of congestion: scenario 2
+ always: A = A (goodput)
in out ,
- “perfect” retransmission only when loss: A > A
in out
¢ retransmission of delayed (not lost) packet makes )\" larger (than perfect
case) for same in
out
Rf2 f-ommmemmm o, ) R/2 f--mmmommmmmmmmemee R/2
. . R/3 .
< P Y :
)"1 R/Z ;\’1 R/2 )“1 R/Z
a. b. c.
“costs” of congestion:
7 more work (retrans) for given “goodput”
7 unneeded retransmissions: link carries multiple copies of pkt
84

83
Causes/costs of congestion: scenario 3
* foursenders Q:what happensas A
* multihop paths and Adncrease?
* timeout/retransmit n
Host A . A,
_ ), : original data out
[ «r M, original data, plus , ¢ |
retransmitted data
1 finite shared output —
- link buffers
’7 - —
| = S =
i [
85
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Causes/costs of congestion: scenario 3

C/2

5
O
<

7\([
in
Another “cost” of congestion:

7 when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

Congestion Collapse example: Cocktail party effect
86

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion control:

* no explicit feedback from
network

* congestion inferred from end-
system observed loss, delay

* approach taken by TCP

Network-assisted congestion
control:
¢ routers provide feedback to
end systems
— single bit indicating
congestion (SNA, DECbit,
TCP/IP ECN, ATM)

— explicit rate sender should
send at

87

TCP congestion control: additive increase,
multiplicative decrease

7 Approach:_increase transmission rate (window size), probing for
usable bandwidth, until loss occurs

O additive increase: increase CongWin by 1 MSS every RTT for
each received ACK until loss detected (W <W + 1/W)

O multiplicative decrease: cut CongWin in half after loss

(W<W/2)

Saw tooth & 2o
behavior: probing E

for bandwidth § 16 Koytes
-
o
2

& 8Koyes
&L
]

time

88

Continuous ARQ (TCP) adapting to congestion

Rule for adjusting W

Only W packets
may be outstanding

— Ifan ACK is received: W & W+1/W

l — If a packet is lost: W & W/2

B ]

util = 0%

SLOW START IS NOT SHOWN!

time

22
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TCP Congestion Control: details

sender limits transmission: How does sender perceive

LastByteSent-LastByteAcked congest'ion?
< CongWin * loss event = timeout or 3
Roughly, duplicate acks
_CongWin * TCP sender reduces rate
rate = Bytes/sec .
RTT (CongWin) after loss
CongWin is dynamic, function of event
perceived network congestion three mechanisms:
— AIMD
— slow start

— conservative after timeout
events

90

AIMD Starts Too Slowly!

Need to start with a small CWND to avoid overloading the network.

TCP Slow Start

When connection begins, 7 When connection begins,
CongWin =1 MSS increase rate exponentially
— Example: MSS = 500 bytes & fast until first loss event

RTT = 200 msec
— initial rate = 20 kbps
available bandwidth may be
>> MSS/RTT

— desirable to quickly ramp up
to respectable rate

92

* Summary: initial rate is slow our segments

Window
It could take a long
time fo get started! t
TCP Slow Start (more)
+ When connection begins, 1B vostn Host 8 JlD

increase rate exponentially
until first loss event:
— double CongWin every RTT

«— RTT—

W
— done by incrementing

CongWin for every ACK
received /

but ramps up exponentially
fast

time

93
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Slow Start and the TCP Sawtooth

Window

94

Loss ‘

AN

Exponential t
“slow start”

Why is it called slow-start? Because TCP originally had
no congestion control mechanism. The source would just
start by sending a whole window's worth of data.

Refinement: inferring loss

After 3 dup ACKs:

— CongWinis cut in half

— window then grows linearly
But after timeout event:

— CongWin instead set to 1 MSS; 0 3 dup ACKs indicates
— window then grows exponentially P

— toathreshold, then grows linearly network capable of
delivering some segments

O timeout indicates a “more
alarming” congestion
scenario

— Philosophy; ——

95

Refinement

Q: When should the

exponential increase

switch to linear? 14m
. TCP Series 2 Reno
A: When CongWin gets to 12+
1/2 of its value before £ 10 e
timeout. 2 gdmheshod \
5
2 / _ ol
£ & / T 7 Thvashoia
5 4 {
= /ZTCP Series 1 Tahoe ‘/'
= A -
-
o L S L S S PN A A P |
N 12345678 9101112131415
Implementation: Transtrisson ound

Variable Threshold

At loss event, Threshold is set
to 1/2 of CongWin just before
loss event

96

Summary: TCP Congestion Control
When CongWin is below Threshold, sender in slow-
start phase, window grows exponentially.

When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

When a triple duplicate ACK occurs, Threshold set to
CongWin/2 and CongWin set to Threshold.

When timeout occurs, Threshold set to CongWin/2
and CongWin is set to 1 MSS.

97
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TCP sender congestion control

State Event TCP Sender Action Commentary
Slow Start (SS) | ACK receipt | CongWin = CongWin + MSS, Resulting in a doubling of
for previously | If (CongWin > Threshold) CongWin every RTT
unacked data set state to “Congestion
Avoidance”
Congestion ACK receipt | CongWin = CongWin+MSS * (MSS/ | Additive increase, resulting in

Avoidance (CA)

for previously
unacked data

CongWin)

increase of CongWin by 1
MSS every RTT

SSor CA Loss event Threshold = CongWin/2, Fast recovery, implementing
detected by CongWin = Threshold, multiplicative decrease.
triple Set state to “Congestion CongWin will not drop below
duplicate ACK | Avoidance” 1 MSS.

SSorCA Timeout Threshold = CongWin/2, Enter slow start

CongWin =1 MSS,
Set state to “Slow Start”
SSorCA Duplicate ACK | Increment duplicate ACK count for | CongWin and Threshold not

segment being acked

changed

98

Repeating Slow Start After Timeout

Wi

99

ndow )
Fast Timeout  ggThresh
Retransmission Set to Here
|L——"] Slow start in operation until

CWND, Le., SSTHRESH

it reaches half of previous T

Slow-start restart: Go back to CWND of 1 MSS, but take
advantage of knowing the previous value of CWND.

TCP throughput

» What’ s the average throughout of TCP as a
function of window size and RTT?
—Ignore slow start

* Let W be the window size when loss occurs.

* When window is W, throughput is W/RTT

* Just after loss, window drops to W/2,
throughput to W/2RTT.

* Average throughout: .75 W/RTT

100

TCP Futures: TCP over “long, fat pipes”

Example: 1500 byte segments, 100ms RTT, want 10 Gbps
throughput

Requires window size W = 83,333 in-flight segments
Throughput in terms of loss rate p:
1.22-MSS

RTT/p

=» L=2-10" Quch!
New versions of TCP for high-speed

101
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Calculation on Simple Model
(cwnd in units of MSS)

* Assume loss occurs whenever cwnd reaches W
— Recovery by fast retransmit

e Window: W/2, W/2+1, W/2+2, ..W, W/2, ...
— W/2 RTTs, then drop, then repeat

* Average throughput: .75W(MSS/RTT)
— One packet dropped out of (W/2)*(3W/4)
— Packet drop rate p = (8/3) W

* Throughput = (MSS/RTT) sqrt(3/2p)
HINT: KNOW THIS SLIDE

Three Congestion Control
Challenges — or Why AIMD?

+ Single flow adjusting to bottleneck bandwidth
— Without any a priori knowledge
— Could be a Gbps link; could be a modem

+ Single flow adjusting to variations in bandwidth
— When bandwidth decreases, must lower sending rate

— When bandwidth increases, must increase sending
rate

+ Multiple flows sharing the bandwidth

— Must avoid overloading network
— And share bandwidth “fairly” among the flows

103

Problem #1: Single Flow, Fixed BW

» Want to get a first-order estimate of the
available bandwidth

— Assume bandwidth is fixed
— Ignore presence of other flows

» Want to start slow, but rapidly increase
rate until packet drop occurs (“slow-start™)

» Adjustment:
—cwnd initially set to 1 (MSS)
— cwnd++ upon receipt of ACK

104

Problems with Slow-Start

» Slow-start can result in many losses
— Roughly the size of cwnd ~ BW*RTT

+ Example:
— At some point, cwnd is enough to fill “pipe”
— After another RTT, cwnd is double its previous value
— All the excess packets are dropped!

* Need a more gentle adjustment algorithm once
have rough estimate of bandwidth

— Rest of design discussion focuses on this

105
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Problem #2: Single Flow, Varying BW

Want to track available bandwidth
+ Oscillate around its current value

* If you never send more than your current rate, you
won’t know if more bandwidth is available

Possible variations: (in terms of change per RTT)
» Multiplicative increase or decrease:

cwnd— cwnd */ a
+ Additive increase or decrease:

cwnd— cwnd +- b

106

Four alternatives

AIAD: gentle increase, gentle decrease

AIMD: gentle increase, drastic decrease

MIAD: drastic increase, gentle decrease
—too many losses: eliminate

MIMD: drastic increase and decrease

107

Problem #3: Multiple Flows

« Want steady state to be “fair”

* Many notions of fairness, but here just
require two identical flows to end up with the
same bandwidth

* This eliminates MIMD and AIAD
— As we shall see...

* AIMD is the only remaining solution!
— Not really, but close enough....

108

Recall Buffer and Window Dynamics

A——{
C = 50 pkts/RTT

No congestion = x increases by one packet/RTT every RTT
Congestion - decrease x by factor 2

60 - Rate (pkts/RTT) }

. y
RIVIVVVIVIVN;

AU

30
/ Backlog in router (pkts)
20 / 1 Congested if > 20 H
\
10

0

28

55

82
109
136
163
190
217
244
2711
298
325
352
379
406
433
460
487
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AIMD Sharing Dynamics AIAD Sharing Dynamics

X
AR B AL B]
o — o

e No congestion - rate increases by one packet/RTT every RTT e No congestion = x increases by one packet/RTT every RTT
e Congestion - decrease rate by factor 2 e Congestion - decrease x by 1

60 60

={{— Rates equalize > fair share — AR AAAAAAAAAR

40

30

30

o
1
28
55
82
109
136
163
190
217
244
271
298
325
352
379
406
433
460
487

109
136
163
190
217
244
271
298
325
352
379
406
433
460
487

Simple Model of Congestion Control Example

1 fairness
i ici : = line
» Two TCP connections 5 | . Total bandwidth 1 Efficient: x;+x,=1
— Rates x; and x, user example
<
Congestion when o
sum>1 35 overload e
s
. . = . =)
Efficiency: sum near 1 | underons Efficiency
= line Inefficient: x,+x,=0.7
Fairness: x's = /
. : . /
Bandwidth for User 1: x, 7| Efficient: x,+x,=1 efficiency
converge 7" | Not fair line
User 1: x, 1
112 113
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* Increase: x +a,

AIAD

(Xiy-aptay), 7 line
Xop-aptay))

MIMD

fairness

/ line
/

* Increase: x*b,

(XypXap)
» Decrease: x*b,

7/
o (bbpXip, 4

%'
* Does not o bIbDXZh)//
convergeto 3 7
. &
fairness =
=l
E
i
&

efficiency
line

Bandwidth for User 1: x,

115

7/
* Decrease: x - a, %' ° 7
P & * (X1h=X2h)//
* Does not g 4
convergeto s
fairness S
E
&
efficiency
line
Bandwidth for User 1: x,
114
fairness
. (XypXan) // e
* Increase: x+a, i A
o
« Decrease: x*by, < boatan) /
o} Ve
» Convergesto 5
fairness <
=1
S
E
&
efficiency
line

Bandwidth for User 1: x,
116

Why is AIMD fair?

(a pretty animation...)
Two competing sessions:
< Additive increase gives slope of 1, as throughout increases

* multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase
loss: decrease window by factor of 2
congestion avoidance: additive increase

Bandwidth for Connection 2 =

Bandwidth for Connection1 R

117
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Fairness (more)

Fairness and UDP
* Multimedia apps may not
use TCP

— do not want rate throttled
by congestion control

¢ Instead use UDP:

— pump audio/video at
constant rate, tolerate
packet loss

* (Ancient yet ongoing)
Research area: TCP
friendly

Fairness and parallel TCP

connections

nothing prevents app from
opening parallel connections
between 2 hosts.

Web browsers do this

Example: link of rate R
supporting 9 connections;
— new app asks for 1 TCP, gets rate
R/10
— new app asks for 11 TCPs, gets
R/2!

Recall Multiple browser
sessions (and the potential for
syncronized loss) 118

Some TCP issues outstanding...

Synchronized Flows

Aggregate window has same .
dynamics .
Therefore buffer occupancy has

same dynamics .

Rule-of-thumb still holds.

Many TCP Flows

Independent, desynchronized
Central limit theorem says the
aggregate becomes Gaussian
Variance (buffer size) decreases
as N increases

it
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