Computer Graphics & Image Processing

Computer Laboratory

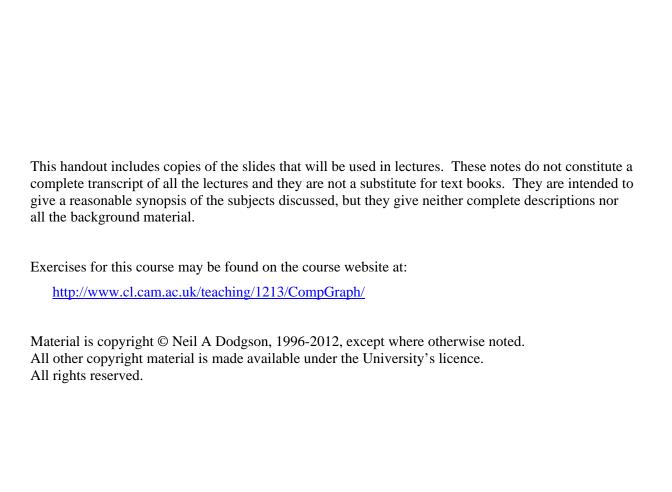
Computer Science Tripos Part IB

Neil Dodgson & Peter Robinson

Michaelmas 2012

William Gates Building 15 JJ Thomson Avenue Cambridge CB3 0FD

http://www.cl.cam.ac.uk/

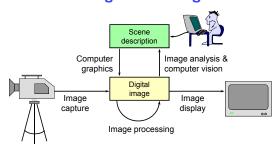


Computer Graphics & Image Processing

- → Sixteen lectures for Part IB CST
- → Neil Dodgson
 - Introduction
 - Colour and displays
 - Image processing
- → Peter Robinson
 - 2D computer graphics
- 3D computer graphics
- → Two exam questions on Paper 4

©1996–2012 Neil A. Dodgson http://www.cl.cam.ac.uk/~nad/

What are Computer Graphics & Image Processing?



Why bother with CG & IP?

- ★All visual computer output depends on CG
 - printed output (laser/ink jet/phototypesetter)
 - monitor (CRT/LCD/plasma/DMD)
 - all visual computer output consists of real images generated by the computer from some internal digital image
- → Much other visual imagery depends on CG & IP
 - TV & movie special effects & post-production
 - most books, magazines, catalogues flyers, brochures, junk mail, newspapers, packaging, posters

3

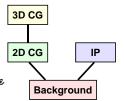
5

What are CG & IP used for?

- 2D computer graphics
 - graphical user interfaces: Mac, Windows, X,...
 - graphic design: posters, cereal packets,...
 - typesetting: book publishing, report writing,...
- Image processing
 - photograph retouching: publishing, posters,...
 - photocollaging: satellite imagery,...
 - art: new forms of artwork based on digitised images
- 3D computer graphics
 - visualisation: scientific, medical, architectural,...
 - Computer Aided Design (CAD)
 - entertainment: special effect, games, movies,...

Course Structure

- → Background [3L]
 - images, human vision, colour, displays
- →2D computer graphics [4L]
 - lines, curves, clipping, polygon filling, transformations
- →3D computer graphics [7L]
 - polygons, transformations, projection (3D→2D), surfaces, clipping, lighting, filling, texture mapping, OpenGL, graphics cards
- + Image processing [2L]
 - filtering, compositing, half-toning, dithering, encoding,



Course books

- Computer Graphics: Principles & Practice
 - Foley, van Dam, Feiner & Hughes, Addison-Wesley, 1990
 - Older version: Fundamentals of Interactive Computer Graphics
 - & Foley & van Dam, Addison-Wesley, 1982
- Computer Graphics & Virtual Environments
 - Slater, Steed, & Chrysanthou, Addison-Wesley, 2002
- Digital Image Processing
 - Gonzalez & Woods, Addison-Wesley , 2008 (5th ed.) , 2003 (4th ed.) or 1992 (3rd ed.)
 - Alternatives:
 - * Digital Image Processing, Gonzalez & Wintz
 - * Digital Picture Processing, Rosenfeld & Kak

10

Background

- + what is a digital image?
 - what are the constraints on digital images?
- how does human vision work?
 - what are the limits of human vision?
 - what can we get away with given these constraints & limits?
- what hardware do we use?

Later on in the course we will ask:

- → how do we represent colour?
- how do displays & printers work?
 - how do we fool the human eye into seeing what we want it to

What is an image?

- → two dimensional function
- +value at any point is an intensity or colour
- → not digital!

What is a digital image?

- →a contradiction in terms
 - if you can see it, it's not digital
 - if it's digital, it's just a collection of numbers
- ★a sampled and quantised version of a real image
- → a rectangular array of intensity or colour values

Image capture

- →a variety of devices can be used
 - scanners
 - Iine CCD (charge coupled device) in a flatbed scanner
 - spot detector in a drum scanner
 - cameras
 - area CCD
 - CMOS camera chips

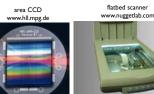


Image capture example

A digital image

A real image

Image display

П

- → a digital image is an array of integers, how do you display it?
- +reconstruct a real image on some sort of display device
 - LCD portable computer, video projector
 - DMD video projector
 - EPS electrophoretic display "e-paper"
 - printer ink jet, laser printer, dot matrix, dye sublimation, commercial typesetter

Image display example

The image data (Gaussian blur)

Different ways of displaying the same digital image

13

15

17

2×2

Gaussian e.g. cathode ray tube

Half-toning e.g. inkjet printer

the display device has a significant effect on the appearance of the displayed image

Sampling

- a digital image is a rectangular array of intensity values
- → each value is called a pixel
 - "picture element"
- *sampling resolution is normally measured in pixels per inch (ppi) or dots per inch (dpi)
 - computer monitors have a resolution around 100 ppi
 - laser and ink jet printers have resolutions between 300 and 1200
 - typesetters have resolutions between 1000 and 3000 ppi

Sampling resolution 256×256 | 128×128 | 64×64 | 32×32

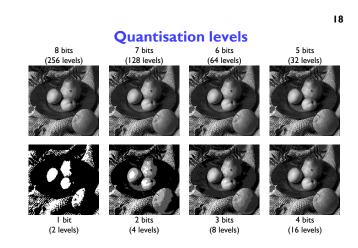
4×4

8×8

16×16

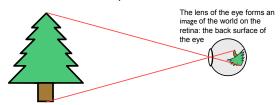
Quantisation

- each intensity value is a number
- for digital storage the intensity values must be quantised
 - \blacksquare limits the number of different intensities that can be stored
 - limits the brightest intensity that can be stored
- how many intensity levels are needed for human consumption
 - 8 bits often sufficient
 - some applications use 10 or 12 or 16 bits
 - more detail later in the course
- +colour is stored as a set of numbers
 - usually as 3 numbers of 5-16 bits each
 - more detail later in the course

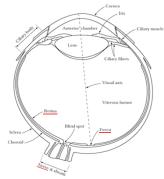


The workings of the human visual system

to understand the requirements of displays (resolution, quantisation and colour) we need to know how the human eye works...



Structure of the human eye



- the retina is an array of light detection cells
- the fovea is the high resolution area of the retina
- the optic nerve takes signals from the retina to the visual cortex in the brain

Fig. 2.1 from Gonzalez & Woods

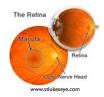
19

21

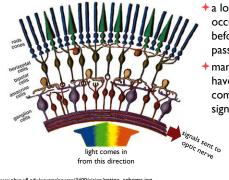
23

The retina

- +consists of about 150 million light receptors
- retina outputs information to the brain along the optic nerve
 - there are about one million nerve fibres in the optic nerve
 - the retina performs significant pre-processing to reduce the number of signals from 150M to 1M
 - pre-processing includes:
 - averaging multiple inputs together
 - colour signal processing
 - local edge detection



Detailed structure of retinal processing



- a lot of pre-processing occurs in the retina before signals are passed to the brain
- many light receptors have their signals combined into a single signal to the brain

www.phys.ufl.edu/~avery/course/3400/vision/retina_schema.jpg

Light detectors in the retina

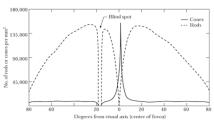
- +two classes
 - rods
 - cones
- +cones come in three types
 - sensitive to short, medium and long wavelengths
 - allow you to see in colour
- the cones are concentrated in the macula, at the centre of the retina
- the fovea is a densely packed region in the centre of the macula
 - contains the highest density of cones
 - provides the highest resolution vision

Foveal vision

- → I 50,000 cones per square millimetre in the fovea
 - high resolution
 - colour
- → outside fovea: mostly rods
 - lower resolution
 - many rods' inputs are combined to produce one signal to the visual cortex in the brain
 - principally monochromatic
 - there are very few cones, so little input available to provide colour information to the brain
 - provides peripheral vision
 - allows you to keep the high resolution region in context
 - without peripheral vision you would walk into things, be unable to find things easily, and generally find life much more difficult

22

Distribution of rods & cones



(1) cones in the fovea are squished together more tightly than outside the fovea: higher resolution vision; (2) as the density of cones drops the gaps between them are filled with rods $% \left(1\right) =\left(1\right) \left(1$

25

Some of the processing in the eye

- + discrimination
 - discriminates between different intensities and colours
- adaptation

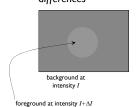
 - acan see about 1:100 contrast at any given time
- → persistence
 - integrates light over a period of about 1/30 second
- +edge detection and edge enhancement

Fig. 2.2 from Gonzalez & Woods www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html

27

Intensity differentiation

- the eye can obviously differentiate between different colours and different intensities
- Weber's Law tells us how good the eye is at distinguishing different intensities using just noticeable differences



for a range of values of I

- increase ΔI until human observer can just see a difference
- start with ΔI large decrease ΔI until human observer can just not see a difference

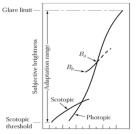
Intensity adaptation

over a range of ~100:1

 this is the curve B_bB_a anything darker is seen as black

 anything brighter causes pain and stimulates the eye to adjust up

this is the scotopic curve



 no colour, because the cones are not able to pick up any light

at any one time the eye can handle intensities

if everything is black, the eye adjusts down

the eye can adjust over a range of 107:1 in colour

the curve B_bB_a slides up or down the photopic

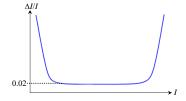
at very low light levels only rods are effective

Fig. 2.4 from Gonzalez & Wood

Intensity differentiation

+results for a "normal" viewer

- a human can distinguish about a 2% change in intensity for much of the range of intensities
- discrimination becomes rapidly worse as you get close to the darkest or brightest intensities that you can currently



29

Simultaneous contrast

- the eye performs a range of non-linear operations
- + for example, as well as responding to changes in overall light, the eye responds to local changes

30

The centre square is the same intensity in all four cases but does not appear to be because your visual system is taking the local contrast into account

26

adapts to changes in illumination level and colour

- but can adapt to see light over a range of 10¹⁰

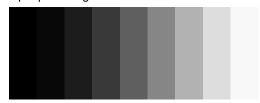
- - visible in e.g. Mach banding effects

34

36

Mach bands

 show the effect of edge enhancement in the retina's pre-processing



Each of the nine rectangles is a constant colour but you will see each rectangle being slightly brighter at the end which is near a darker rectangle and slightly darker at the end which is near a lighter rectangle

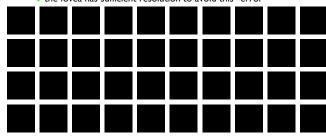
Ghost squares

31

33

35

- → another effect caused by retinal pre-processing
 - the edge detectors outside the fovea cause you to see grey squares at the corners where four black squares join
 - the fovea has sufficient resolution to avoid this "error"



Summary of what human eyes do...

- + sample the image that is projected onto the retina
- → adapt to changing conditions
- → perform non-linear pre-processing
 - makes it very hard to model and predict behaviour
- + combine a large number of basic inputs into a much smaller set of signals
 - which encode more complex data
 - e.g. presence of an edge at a particular location with a particular orientation rather than intensity at a set of locations
- → pass pre-processed information to the visual cortex
 - which performs extremely complex processing
 - discussed in the Computer Vision course

Implications of vision on resolution

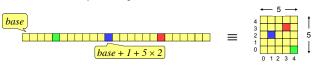
- the acuity of the eye is measured as the ability to see a white gap, I minute wide, between two black lines
 - about 300dpi at 30cm
 - the corresponds to about 2 cone widths on the fovea
- resolution decreases as contrast decreases
- colour resolution is much worse than intensity resolution
 - this is exploited in TV broadcast
 - analogue television broadcasts the colour signal at half the horizontal resolution of the intensity signal

Implications of vision on quantisation

- humans can distinguish, at best, about a 2% change in intensity
 - not so good at distinguishing colour differences
- we need to know what the brightest white and darkest black are
 - most modern display technologies (CRT, LCD, plasma) have contrast ratios in the hundreds
 - aranging from 100:1 to about 600:1
 - movie film has a contrast ratio of about 1000:1
- →⇒ 12–16 bits of intensity information
 - $\ \, \ \, \ \, \ \,$ assuming intensities are distributed linearly
 - this allows for easy computation
 - 8 bits are often acceptable, except in the dark regions

Storing images in memory

- → 8 bits became a de facto standard for greyscale images
 - 8 bits = I byte
 - 16 bits is now being used more widely, 16 bits = 2 bytes
 - \bullet an 8 bit image of size $W\times H$ can be stored in a block of $W\times H$ bytes
 - one way to do this is to store pixel [x] [y] at memory location base + x + W x y
 - memory is ID, images are 2D



40

42

Colour images

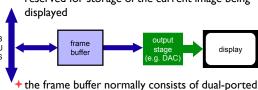
37

39

- tend to be 24 bits per pixel
 - 3 bytes: one red, one green, one blue
 - increasing use of 48 bits per pixel, 2 bytes per colour plane
- can be stored as a contiguous block of memory
 - of size $W \times H \times 3$
- more common to store each colour in a separate "plane"
 - \blacksquare each plane contains just $W \times H$ values
- the idea of planes can be extended to other attributes associated with each pixel
 - alpha plane (transparency), z-buffer (depth value), A-buffer (pointer to a data structure containing depth and coverage information), overlay planes (e.g. for displaying pop-up menus) — see later in the course for details

The frame buffer

 most computers have a special piece of memory reserved for storage of the current image being
 displayed

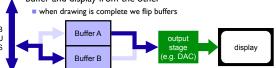


sometimes referred to as Video RAM (VRAM)

Dynamic RAM (DRAM)

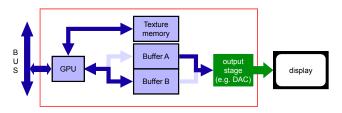
Double buffering

- if we allow the currently displayed image to be updated then we may see bits of the image being displayed halfway through the update
 - this can be visually disturbing, especially if we want the illusion of smooth animation
- double buffering solves this problem: we draw into one frame buffer and display from the other



Modern graphics cards

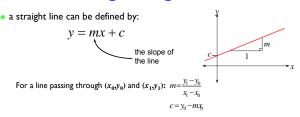
- most graphics processing is now done on a separate graphics card
- the CPU communicates primitive data over the bus to the special purpose Geometry Processing Unit (GPU)
- there is additional video memory on the graphics card, mostly used for storing textures, which are mostly used in 3D games



2D Computer Graphics

- **→** lines
 - how do I draw a straight line?
- + curves
 - how do I specify curved lines?
- clipping
 - what about lines that go off the edge of the screen?
- ★ filled areas
 - how do I draw and fill polygons?
- transformations
 - scaling, rotation, translation, shearing
- +applications

Drawing a straight line



- a mathematical line is "length without breadth"
- a computer graphics line is a set of pixels
- which pixels do we need to turn on to draw a given line?

Which pixels do we use? there are two reasonably sensible alternatives:

unere are two reasonably s

every pixel through which the line passes

for lines of slope less than 45° we can have either one or two pixels in each column

×

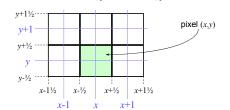
the "closest" pixel to the line

43

for lines of slope less than 45° we always have just one pixel in every column

• in general, use this

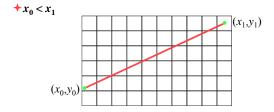
A line drawing algorithm — preparation I



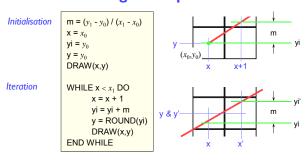
Beware: not every graphics system uses this convention. Some put real co-ordinate (x,y) at the bottom left hand corner of the pixel.

A line drawing algorithm — preparation 2

- + the line goes from (x_0,y_0) to (x_1,y_1)
- → the line lies in the first octant $(0 \le m \le 1)$



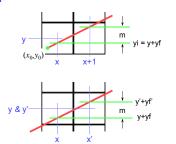
Bresenham's line drawing algorithm for integer end points



J. E. Bresenham, "Algorithm for Computer Control of a Digital Plotter", IBM Systems Journal, 4(1), 1965

Bresenham's algorithm for floating point end points

$$\begin{split} m &= (y_1 - y_0) / (x_1 - x_0) \\ x &= \mathsf{ROUND}(x_0) \\ yi &= y_0 + m^* (x \cdot x_0) \\ y &= \mathsf{ROUND}(yi) \\ yf &= yi - y \\ WHILE & x \leq \mathsf{ROUND}(x_1) \ \mathsf{DO} \\ \mathsf{DRAW}(x,y) \\ x &= x + 1 \\ yf &= yf + m \\ \mathsf{IF} \ (yf > \frac{y}{2}) \ \mathsf{THEN} \\ y &= y + 1 \\ yf &= \mathsf{yf} - 1 \\ \mathsf{END} \ \mathsf{IF} \\ \mathsf{END} \ \mathsf{WHILE} \end{split}$$

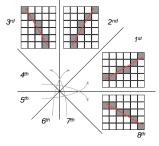


We need to calculate the initial y from the rounded off initial position of x_0 because we will not necessarily get the right answer by rounding x_0 and y_0 independently.

Splitting the y-coordinate into fractional (yf) and integer (y) parts avoids rounding on every cycle.

Bresenham's algorithm — more details

- → we assumed that the line is in the first octant
 - can do fifth octant by swapping end points
- → therefore need four versions of the algorithm



Exercise: work out what changes need to be made to the algorithm for it to work in each of the other three octants

Uses of the line drawing algorithm

- → as the basis for a curve-drawing algorithm
- + to draw curves as a sequence of lines
- * as the basis for iterating on the edges of polygons in the polygon filling algorithms

49

5 I

53

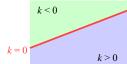
A second line drawing algorithm

→ a line can be specified using an equation of the form:

$$k(x, y) = ax + by + c$$

For a line segment from (x_0,y_0) to (x_1,y_1) , the line is defined by: $a=y_1-y_0$ $b=-(x_1-x_0)$ $c=x_0y_0-x_0y_1$

- → this divides the plane into three regions:
 - lacktriangle above the line k < 0
 - below the line k > 0
 - on the line k = 0



Midpoint line drawing algorithm I

- + first work out the iterative step
 - it is often easier to work out what should be done on each iteration and only later work out how to initialise and terminate the iteration
- given that a particular pixel is on the line,
 the next pixel must be either immediately to the right
 (E) or to the right and up one (NE)
- use a decision variable (based on k) to determine which way to go

to go

Evaluate the decision variable at this point if ≥ 0 then go NE if < 0 then go E

Midpoint line drawing algorithm 2

♦ decision variable needs to make a decision at point $(x+1, y+\frac{1}{2})$ $d = a(x+1) + b(y+\frac{1}{2}) + c$

+ if go E then the new decision variable is at (x+2, y+1/2)

$$d' = a(x+2) + b(y + \frac{1}{2}) + c$$

= d + a

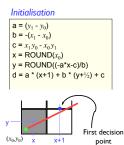
• if go NE then the new decision variable is at $(x+2, y+1\frac{1}{2})$

$$d' = a(x+2) + b(y+1\frac{1}{2}) + c$$

= d + a + b

54

Midpoint line drawing algorithm 3



Midpoint — comments

- +this version only works for lines in the first octant
 - extend to other octants as for Bresenham
- it is not immediately obvious that Bresenham and Midpoint give identical results, but it can be proven that they do
- Midpoint algorithm can be generalised to draw arbitrary circles & ellipses
 - Bresenham can only be generalised to draw circles with integer radii

58

60

Curves

- +circles & ellipses
- → Bézier cubics
 - Pierre Bézier, worked in CAD for Renault
 - de Casteljau invented them five years earlier at Citroën
 - but Citroën would not let him publish the results
 - widely used in graphic design & typography
- **+**NURBS
 - Non-Uniform Rational B-Splines
 - more powerful than Bezier & now more widely used
 - consider these in Part II

55

Midpoint circle algorithm I

- → equation of a circle is $x^2 + y^2 = r^2$ centred at the origin
- → decision variable can be $d = x^2 + y^2 r^2$
 - d = 0 on the circle, d > 0 outside, d < 0 inside
- +divide circle into eight octants
 - on the next slide we consider only the second octant, the others are similar

Midpoint circle algorithm 2

+ decision variable needed to make a decision at point (x+1, y-1/2)

$$d = (x+1)^2 + (y - \frac{1}{2})^2 - r^2$$

+ if go E then the new decision variable is at (x+2, y-1/2) $d! = (x+2)^2 + (y-1/2)^2 +$

$$d' = (x+2)^{2} + (y - \frac{1}{2})^{2} - r^{2}$$
$$= d + 2x + 3$$

57

59

• if go SE then the new decision variable is at $(x+2, y-1\frac{1}{2})$

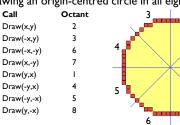
at
$$(x+2, y-1/2)$$

$$d' = (x+2)^2 + (y-1/2)^2 - r^2$$

$$= d+2x-2y+5$$

Midpoint circle algorithm 3

→ Drawing an origin-centred circle in all eight octants



The second-octant algorithm thus allows you to draw the whole circle.

Taking circles further

- the algorithm can be easily extended to circles not centred at the origin
- a similar method can be derived for ovals
 - but: cannot naively use octants
 - use points of 45° slope to divide oval into eight sections

- and: ovals must be axis-aligned
 - there is a more complex algorithm which can be used for non-axis aligned ovals

Are circles & ellipses enough?

+ simple drawing packages use ellipses & segments of ellipses

- for graphic design & CAD need something with more flexibility
 - use cubic polynomials
 - olower orders (linear, quadratic) cannot:
 - * have a point of inflection
 - * match both position and slope at both ends of a segment
 - higher orders (quartic, quintic,...):
 - can wiggle too much
 - * take longer to compute

64

66

Hermite cubic

 the Hermite form of the cubic is defined by its two end-points and by the tangent vectors at these end-points:

these end-points:
$$P(t) = (2t^3 - 3t^2 + 1)P_0 \\ + (-2t^3 + 3t^2)P_1 \\ + (t^3 - 2t^2 + t)T_0 \\ + (t^3 - t^2)T_1$$
• two Hermite cubics can be smoothly joined by matching both position and tangent at an end point of each cubic

61

63

Charles Hermite, mathematician, 1822-1901

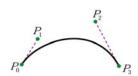
point of each cubic

Bézier cubic

- difficult to think in terms of tangent vectors
- + Bézier defined by two end points and two other control points

$$\begin{split} P(t) &= (1-t)^3 P_0 \\ &+ 3t (1-t)^2 P_1 \\ &+ 3t^2 (1-t) P_2 \\ &+ t^3 P_3 \\ \text{where:} \quad P_i \equiv (x_i, y_i) \\ &0 \leq t \leq 1 \end{split}$$

Pierre Bézier worked for Renault in the 1960s



Bezier properties

→ Bezier is equivalent to Hermite

$$T_0 = 3(P_1 - P_0)$$
 $T_1 = 3(P_3 - P_2)$

- → Weighting functions are Bernstein polynomials $b_0(t) = (1-t)^3$ $b_1(t) = 3t(1-t)^2$ $b_2(t) = 3t^2(1-t)$ $b_3(t) = t^3$
- → Weighting functions sum to one

$$\sum_{i=0}^{3} b_i(t) = 1$$

- → Bezier curve lies within convex hull of its control points
 - because weights sum to 1 and all weights are positive

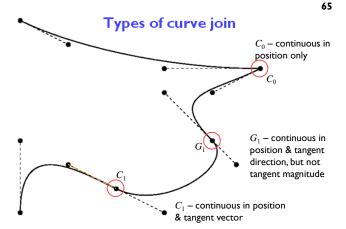
Types of curve join

- +each curve is smooth within itself
- → joins at endpoints can be:
 - ◆ C₁ continuous in both position and tangent vector
 - smooth join in a mathematical sense
 - G_1 continuous in position, tangent vector in same direction
 - smooth join in a geometric sense
 - C₀ continuous in position only
 - "corner"
 - discontinuous in position

 C_n (mathematical continuity): continuous in all derivatives up to the n^{th} derivative

 G_n (geometric continuity): each derivative up to the $n^{\rm th}$ has the same "direction" to its vector on either side of the join

 $C_n \Longrightarrow G_n$



Drawing a Bezier cubic - iterative method

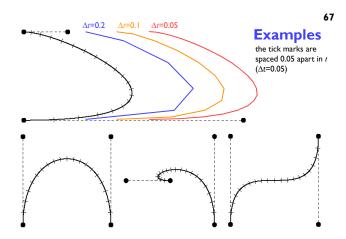
 draw as a set of short line segments equispaced in parameter space, t

(x0,y0) = Bezier(0) FOR t = 0.05 TO 1 STEP 0.05 DO (x1,y1) = Bezier(t) DrawLine((x0,y0), (x1,y1)) $(\mathsf{x}\mathsf{0},\mathsf{y}\mathsf{0})=(\mathsf{x}\mathsf{1},\mathsf{y}\mathsf{1})$

- problems:
 - cannot fix a number of segments that is appropriate for all possible Beziers: too many or too few segments
 - distance in real space, (x,y), is not linearly related to distance in parameter space, t

70

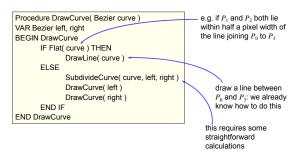
72



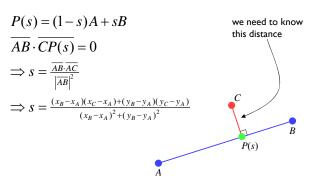
Drawing a Bezier cubic - adaptive method

- → adaptive subdivision
 - check if a straight line between P_0 and P_3 is an adequate approximation to the Bezier
 - if so: draw the straight line
 - if not: divide the Bezier into two halves, each a Bezier, and repeat for the two new Beziers
- → need to specify some tolerance for when a straight line is an adequate approximation
 - when the Bezier lies within half a pixel width of the straight line along its entire length

Drawing a Bezier cubic (continued)



Checking for flatness

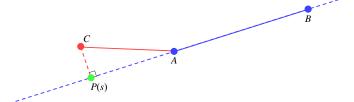


71

69

Special cases

- + if s<0 or s>1 then the distance from point C to the line segment \overline{AB} is not the same as the distance from point C to the infinite line \overrightarrow{AB}
- → in these cases the distance is |AC| or |BC| respectively



Subdividing a Bezier cubic into two halves

→ a Bezier cubic can be easily subdivided into two smaller Bezier cubics

 $Q_0 = P_0$ $R_0 = \frac{1}{8}P_0 + \frac{3}{8}P_1 + \frac{3}{8}P_2 + \frac{1}{8}P_3$ $R_1 = \frac{1}{4}P_1 + \frac{1}{2}P_2 + \frac{1}{4}P_3$ $Q_1 = \frac{1}{2}P_0 + \frac{1}{2}P_1$ $R_2 = \frac{1}{2} P_2 + \frac{1}{2} P_3$ $Q_2 = \frac{1}{4}P_0 + \frac{1}{2}P_1 + \frac{1}{4}P_2$ $Q_3 = \frac{1}{8}P_0 + \frac{3}{8}P_1 + \frac{3}{8}P_2 + \frac{1}{8}P_3$ $R_3 = P_3$

Exercise: prove that the Bezier cubic curves defined by Q_0,Q_1,Q_2,Q_3 and R_0,R_1,R_2,R_3 match the Bezier cubic curve defined by P_0,P_1,P_2,P_3 over the ranges $\iota\in[0,\!\!/z]$ and $t \in [\frac{1}{2}, 1]$ respectively

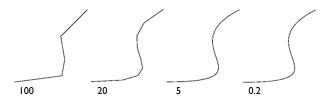
76

78

73

The effect of different tolerances

• this is the same Bezier curve drawn with four different tolerances



What if we have no tangent vectors?

• base each cubic piece on the four surrounding data points

- at each data point the curve must depend solely on the three surrounding data points
 Why?
 - define the tangent at each point as the direction from the preceding point to the succeeding point
 - $^{\rm o}$ tangent at P_1 is ${}^{1}\!\!/\!_2(P_2\mbox{-}P_0)$, at P_2 is ${}^{1}\!\!/\!_2(P_3\mbox{-}P_1)$
- this is the basis of Overhauser's cubic

75

Overhauser's cubic

- method for generating Bezier curves which match Overhauser's model
 - simply calculate the appropriate Bezier control point locations from the given points
 - e.g. given points A, B, C, D, the Bezier control points are: P_0 =B P_1 =B+(C-A)/6 P_3 =C P_2 =C-(D-B)/6
- Overhauser's cubic interpolates its controlling data points
 - good for control of movement in animation
 - not so good for industrial design because moving a single point modifies the surrounding four curve segments
 - compare with Bezier where moving a single point modifies just the two segments connected to that point

Overhauser worked for the Ford motor company in the 1960s

Simplifying line chains

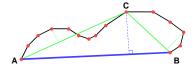
- this can be thought of as an inverse problem to the one of drawing Bezier curves
- problem specification: you are given a chain of line segments at a very high resolution, how can you reduce the number of line segments without compromising quality
 - e.g. given the coastline of Britain defined as a chain of line segments at one metre resolution, draw the entire outline on a 1280x1024 pixel screen
- the solution: Douglas & Peucker's line chain simplification algorithm

This can also be applied to chains of Bezier curves at high resolution: most of the curves will each be approximated (by the previous algorithm) as a single line segment, Douglas & Peucker's algorithm can then be used to further simplify the line chain

77

Douglas & Peucker's algorithm

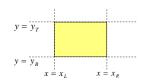
- find point, C, at greatest distance from line segment AB
- if distance from C to AB is more than some specified tolerance then subdivide into AC and CB, repeat for each of the two subdivisions
- otherwise approximate entire chain from A to B by the single line segment AB



Douglas & Peucker, Canadian Cartographer, 10(2), 1973

Clipping

- what about lines that go off the edge of the screen?
 - need to clip them so that we only draw the part of the line that is actually on the screen
- clipping points against a rectangle



need to check against four edges:

 $x = x_L$ $x = x_R$

 $y = y_B$

y = y

82

84

Clipping lines against a rectangle — naïvely

 $P_1 \text{ to } P_2 = (x_1, y_1) \text{ to } (x_2, y_2)$ $P(t) = (1-t)P_1 + tP_2$ $x(t) = (1-t)x_1 + tx_2$ $y(t) = (1-t)y_1 + ty_2$

■ do this operation for each of the four edges to intersect with $x = x_L$ if $(x_1 = x_2)$ then no intersection else $x_L = (1 - t_L)x_1 + t_Lx_2$ $\Rightarrow t_L = \frac{x_L - x_1}{x_2 - x_1}$ if $(0 \le t_L \le 1)$ then line segment intersects

else line segment does not intersect edge

 $x = x_L$ at $(x(t_L), y(t_L))$

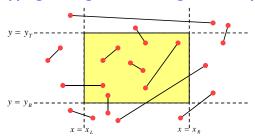
79

81

83

This is naïve because a lot of unnecessary operations will be done for most lines.

Clipping lines against a rectangle — examples



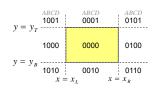
you can naïvely check every line against each of the four edges
 this works but is obviously inefficient

• adding a little cleverness improves efficiency enormously

Cohen-Sutherland clipping algorithm

Cohen-Sutherland clipper I

• make a four bit code, one bit for each inequality $A \equiv x < x_L \quad B \equiv x > x_R \quad C \equiv y < y_B \quad D \equiv y > y_T$



• evaluate this for both endpoints of the line

$$Q_1 = A_1 B_1 C_1 D_1$$
 $Q_2 = A_2 B_2 C_2 D_2$

Ivan Sutherland is one of the founders of Evans & Sutherland, manufacturers of flight simulator systems

Cohen-Sutherland clipper 2

• $Q_1 = Q_2 = 0$

both ends in rectangle ACCEPT

• $Q_1 \land Q_2 \neq 0$

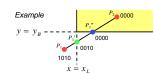
both ends outside and in same half-plane REJECT

otherwise

need to intersect line with one of the edges and start again

 you must always re-evaluate Q and recheck the above tests after doing a single clip

the I bits tell you which edge to clip against



 $x_1' = x_L$ $y_1' = y_1 + (y_2 - y_1) \frac{x_L - x_1}{x_2 - x_1}$ $y_1'' = y_B$ $x_1'' = x_1' + (x_2 - x_1') \frac{y_B - y_1'}{y_2 - y_1'}$

Cohen-Sutherland clipper 3

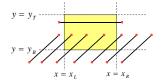
 if code has more than a single 1 then you cannot tell which is the best: simply select one and loop again

horizontal and vertical lines are not a problem

Why n

 need a line drawing algorithm that can cope with floating-point endpoint co-ordinates

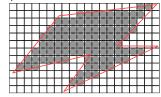
Why?



Exercise: what happens in each of the cases at left? [Assume that, where there is a choice, the algorithm always tries to intersect with x_L or x_R before y_B or y_T .] Try some other cases of your own

Polygon filling

+which pixels do we turn on?



those whose centres lie inside the polygon

this is a naïve assumption, but is sufficient for now

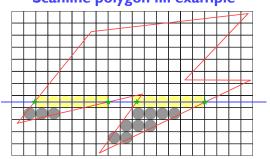
Scanline polygon fill algorithm

- take all polygon edges and place in an edge list (EL), sorted on lowest v value
- 2 start with the first scanline that intersects the polygon, get all edges which intersect that scan line and move them to an active edge list (AEL)
- For each edge in the AEL: find the intersection point with the current scanline; sort these into ascending order on the \boldsymbol{x} value
- 4 fill between pairs of intersection points
- 5 move to the next scanline (increment y); move new edges from EL to AEL if start point $\leq y$; remove edges from the AEL if endpoint $\langle y \rangle$; if any edges remain in the AEL go back to step \odot

Scanline polygon fill example

85

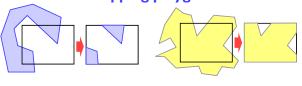
87

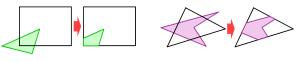


Scanline polygon fill details

- how do we efficiently calculate the intersection points?
 - use a line drawing algorithm to do incremental calculation
 - store current x value, increment value dx, starting and ending y values
 - on increment do a single addition x=x+dx
- · what if endpoints exactly intersect scanlines?
 - need to ensure that the algorithm handles this properly
- what about horizontal edges?
 - can throw them out of the edge list, they contribute nothing

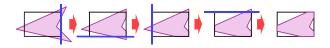
Clipping polygons





Sutherland-Hodgman polygon clipping I

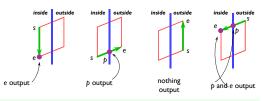
- clips an arbitrary polygon against an arbitrary convex polygon basic algorithm clips an arbitrary polygon against a single infinite clip
 - edge so we reduce a complex algorithm to a simpler one which we call
 - the polygon is clipped against one edge at a time, passing the result on



Sutherland & Hodgman, "Reentrant Polygon Clipping," Comm. ACM, 17(1), 1974

Sutherland-Hodgman polygon clipping 2

• the algorithm progresses around the polygon checking if each edge crosses the clipping line and outputting the appropriate points



Exercise: the Sutherland-Hodgman algorithm may introduce new edges along the edge of the clipping polygon — when does this happen and why?

89

86

90

94

96

Sutherland-Hodgman polygon clipping 3

- line segment defined by (x_s, y_s) and (x_e, y_e)
- line segment is: p(t) = (1-t)s+te
- clipping edge defined by ax+by+c=0

91

93

95

- test to see which side of edge s and e are on:
 - = k=ax+by+c
 - \blacksquare k negative: inside, k positive: outside, k=0: on edge
- ullet if k_s and k_e differ in sign then intersection point can be found by:

$$a((1-t)x_s + tx_e) + b((1-t)y_s + ty_e) + c = 0$$

$$\Rightarrow t = \frac{ax_s + by_s + c}{a(x_s - x_e) + b(y_s - y_e)}$$

2D transformations

- it is extremely useful to be able to transform predefined objects to an arbitrary location, orientation, and size
- any reasonable graphics package will include transforms
 - 2D → Postscript
 - 3D → OpenGL

Basic 2D transformations

x' = mx

y' = my

 $x' = x \cos \theta - y \sin \theta$

- scale
 - about origin by factor m
- rotate
- about origin
 - $y' = x \sin \theta + y \cos \theta$ by angle θ
- translate
 - along vector (x_o, y_o)
- $x' = x + x_o$ $y' = y + y_o$
- - parallel to x axis
 - by factor a
- x' = x + ayy' = y

Matrix representation of transformations

- + scale
 - about origin, factor m
 - $\begin{bmatrix} m & 0 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$
- + do nothing
- identity
 - $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$
- rotate
 - about origin, angle θ
 - $\lceil \cos \theta \sin \theta \rceil \lceil x \rceil$ $\sin\theta \cos\theta y$
- - parallel to x axis, factor a
 - $\begin{bmatrix} 1 & a \end{bmatrix} x$

Homogeneous 2D co-ordinates

• translations cannot be represented using simple 2D matrix multiplication on 2D vectors, so we switch to homogeneous co-ordinates

$$(x, y, w) \equiv \left(\frac{x}{w}, \frac{y}{w}\right)$$

- an infinite number of homogeneous co-ordinates map to every 2D point
- w=0 represents a point at infinity
- usually take the inverse transform to be: $(x, y) \equiv (x, y, 1)$

Matrices in homogeneous co-ordinates

- + scale
 - about origin, factor m
 - $\begin{bmatrix} x' \end{bmatrix} \begin{bmatrix} m & 0 & 0 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$ $y' = \begin{vmatrix} 0 & m & 0 \end{vmatrix} y$ $\begin{bmatrix} w' \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} w \end{bmatrix}$
- + do nothing
 - identity $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$ $|w'| |0 \ 0 \ 1 ||w|$
- + rotate
 - about origin, angle θ $\lceil \cos \theta - \sin \theta \ 0 \rceil \lceil x \rceil$ $= |\sin \theta \cos \theta \ 0| y$
- |w'| = 0+ shear
 - parallel to x axis, factor a $\begin{bmatrix} 1 & a & 0 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$
 - y' = 0 1 0 y $| 0 \ 0 \ 1 | w$

Translation by matrix algebra

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_o \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

In homogeneous coordinates

$$x' = x + wx_o$$

$$x' = x + wx_o \qquad y' = y + wy_o$$

97

99

101

In conventional coordinates

$$\frac{x'}{w'} = \frac{x}{w} + x_0$$

$$\frac{y'}{y'} = \frac{y}{y} + y$$

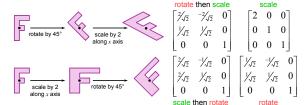
Concatenating transformations

- often necessary to perform more than one transformation on the
- can concatenate transformations by multiplying their matrices e.g. a shear followed by a scaling:

scale shear both
$$\begin{bmatrix} x'' \\ y'' \\ y'' \end{bmatrix} = \begin{bmatrix} m & 0 & 0 & 1 & a & 0 & 1 \\ 0 & m & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ y \end{bmatrix} = \begin{bmatrix} m & ma & 0 & 1 \\ 0 & m & 0 & 0 \\ 0 & m & 0 & y \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} m & ma & 0 & 1 \\ 0 & m & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} m & ma & 0 & 1 \\ 0 & m & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} m & ma & 0 & 1 \\ 0 & m & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} m & ma & 0 & 1 \\ 0 & m & 0 & 1 \\ 0 & 0 &$$

Concatenation is not commutative

+be careful of the order in which you concatenate transformations



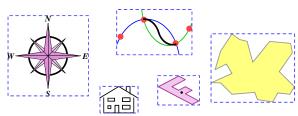
Scaling about an arbitrary point

• scale by a factor m about point (x_o, y_o) • translate point (x_o, y_o) to the origin 2 scale by a factor m about the origin \odot translate the origin to (x_o, y_o)

$$\begin{bmatrix} x^{111} \\ y^{111} \\ w^{111} \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_o \\ 0 & 1 & y_o \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_o \\ 0 & 1 & -y_o \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

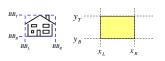
Bounding boxes

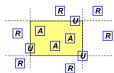
 when working with complex objects, bounding boxes can be used to speed up some operations



Clipping with bounding boxes

 do a quick accept/reject/unsure test to the bounding box then apply clipping to only the unsure objects





 $BB_{\scriptscriptstyle L} > x_{\scriptscriptstyle R} \vee BB_{\scriptscriptstyle R} < x_{\scriptscriptstyle L} \vee BB_{\scriptscriptstyle B} > x_{\scriptscriptstyle T} \vee BB_{\scriptscriptstyle T} < x_{\scriptscriptstyle B} \ \Rightarrow \textit{REJECT}$ $BB_L \ge x_L \wedge BB_R \le x_R \wedge BB_B \ge x_B \wedge BB_T \le x_T \implies ACCEPT$

 $otherwise \Rightarrow clip$ at next higher level of detail

98

100

106

103

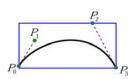
Clipping Bézier curves

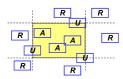
If flat \Rightarrow draw using clipped line drawing algorithm Else consider the Bézier's bounding box

accept ⇒ draw using normal (unclipped) Bézier algorithm

 $reject \Rightarrow do not draw at all$

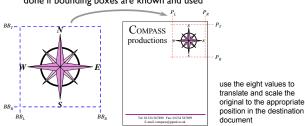
unsure ⇒ split into two Béziers, recurse





Object inclusion with bounding boxes

 including one object (e.g. a graphics) file inside another can be easily done if bounding boxes are known and used



105

Bit block transfer (BitBlT)

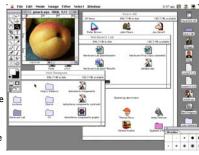
 it is sometimes preferable to predraw something and then copy the image to the correct position on the screen as and when required

- copying an image from place to place is essentially a memory operation
 - can be made very fast
 - e.g. 32x32 pixel icon can be copied, say, 8 adjacent pixels at a time, if there is an appropriate memory copy operation

05

Application I: user interface

- early graphical userinterfaces needed to use objects that were quick to draw
 - straight lines
 - filled rectangles
- complicated bits were done using predrawn icons
- typefaces also tended to be predrawn



107

Application 2: typography

- typeface: a family of letters designed to look good together
 usually has upright (roman/regular), italic (oblique), bold and bold-italic members
- abcd efgh **ijkl mnop** Gill Sans abcd efgh **ijkl mnop** – Arial

abcd *efgh* **ijkl** *mnop* – Times abcd *efgh* **ijkl** *mnop* – Garamond

- two forms of typeface used in computer graphics
 - pre-rendered bitmaps
 - single resolution (don't scale well)
 - use BitBIT to put into frame buffer
 - outline definitions
 multi-resolution (can scale)
 - need to render (fill) to put into frame buffer

These notes are mainly set in Gill Sans, a lineale (sans-serif) typeface designed by Eric Gill for Monotype, 1928–30. The lowercase italic p is particularly interesting. Mathematics is mainly set in Times New Roman, a roman typeface commissioned by *The Times* in 1931, the design supervised by Stanley Morison.

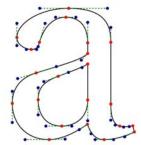
Application 3: Postscript

- industry standard rendering language for printers
- developed by Adobe Systems
- stack-based interpreted language
- basic features
 - object outlines made up of lines, arcs & Bezier curves
 - objects can be filled or stroked
 - whole range of 2D transformations can be applied to objects
 - typeface handling built in
 - typefaces are defined using Bezier curves
 - halftoning
 - acan define your own functions in the language

112

114

Examples which are Bezier-friendly

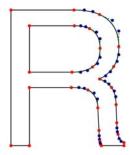


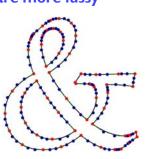
typeface: Utopia (1989) designed as a Postscript typeface by Robert Slimbach at Adobe

109

typeface: Hobo (1910) this typeface can be easily approximated by Beziers

Examples which are more fussy





typeface: Palatino (1950) abcdQRST2345&

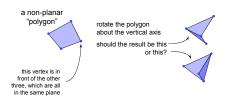
3D Computer Graphics

113

- +3D ⇒ 2D projection
- **→**3D versions of 2D operations
 - clipping, transforms, matrices, curves & surfaces
- +3D scan conversion
 - depth-sort, BSP tree, z-Buffer, A-buffer
- + lighting
- texture mapping

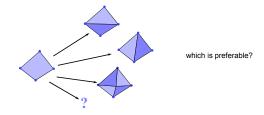
Surfaces in 3D: polygons

- → lines generalise to planar polygons
 - 3 vertices (triangle) must be planar
 - > 3 vertices, not necessarily planar



Splitting polygons into triangles

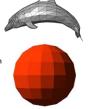
- $\ \ \, \ \ \, \ \ \, \ \ \,$ some graphics processors accept only triangles
- an arbitrary polygon with more than three vertices isn't guaranteed to be planar; a triangle is



Three-dimensional objects

 polyhedra comprise multiple connected polygons

- polygon meshes
 - open or closedmanifold or non-manifold
- curved surfaces
 - must be converted to polygons to be drawn



118

120

115

Curves in 3D

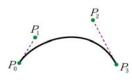
- + same as curves in 2D, with an extra co-ordinate for each point
- +e.g. Bezier cubic in 3D:

$$P(t) = (1-t)^{3} P_{0}$$

$$+3t(1-t)^{2} P_{1}$$

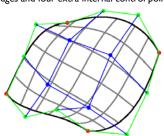
$$+3t^{2}(1-t)P_{2}$$

$$+t^{3} P_{3}$$



Surfaces in 3D: patches

- + curves generalise to patches
 - a Bezier patch has a Bezier curve running along each of its four edges and four extra internal control points



Bezier patch definition

the Bezier patch defined by the sixteen control points,
 P_{0.0},P_{0.1},...,P_{3.3}, is:

$$P(s,t) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(s)b_j(t)P_{i,j}$$

where: $b_0(t) = (1-t)^3$ $b_1(t) = 3t(1-t)^2$ $b_2(t) = 3t^2(1-t)$ $b_3(t) = t^3$

compare this with the 2D version:

$$P(t) = \sum_{i=0}^{3} b_i(t) P_i$$

Continuity between Bezier patches

- +each patch is smooth within itself
- ensuring continuity in 3D:
- C_0 continuous in position
 - the four edge control points must match
 - lacktriangledown C continuous in both position and tangent vector
 - the four edge control points must match
 - the two control points on either side of each of the four edge control points must be co-linear with both the edge point and each other and be equidistant from the edge point
 - G_1 continuous in position and tangent direction
 - the four edge control points must matchthe relevant control points must be co-linear
 - see picture

Pis

119

Drawing Bezier patches

- in a similar fashion to Bezier curves, Bezier patches can be drawn by approximating them with planar polygons
- simple method
 - select appropriate increments in s and t and render the resulting quadrilaterals
- tolerance-based adaptive method
 - check if the Bezier patch is sufficiently well approximated by a quadrilateral, if so use that quadrilateral
 - if not then subdivide it into two smaller Bezier patches and repeat on each
 - subdivide in different dimensions on alternate calls to the subdivision function
 - having approximated the whole Bezier patch as a set of (non-planar) quadrilaterals, further subdivide these into (planar) triangles
 - be careful to not leave any gaps in the resulting surface!

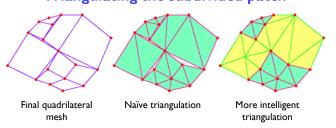
Subdividing a Bezier patch — example

Triangulating the subdivided patch

121

123

125



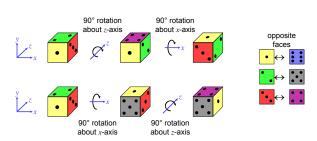
- need to be careful not to generate holes
- need to be equally careful when subdividing connected patches
- consider whether it is worth doing this adaptive method

3D transformations

- 3D homogeneous co-ordinates
 - $(x, y, z, w) \rightarrow (\frac{x}{w}, \frac{y}{w}, \frac{z}{w})$
- 3D transformation matrices

translation	identity	rotation about x-axis
$\begin{bmatrix} 1 & 0 & 0 & t_x \end{bmatrix}$	[1 0 0 0]	[1 0 0 0]
0 1 0 t _y	0 1 0 0	$0 \cos \theta - \sin \theta = 0$
0 0 1 tz	0 0 1 0	$0 \sin \theta \cos \theta = 0$
[0 0 0 1]	0 0 0 1	[0 0 0 1]
scale [m, 0 0 0]	rotation about z-axis [cos θ - sin θ 0 0]	rotation about y-axis [cos θ 0 sin θ 0]
0 m, 0 0	$\sin\theta \cos\theta 0 0$	0 1 0 0
0 0 m, 0	0 0 1 0	$-\sin\theta = 0 - \cos\theta = 0$
0 0 0 1	0 0 0 1	0 0 0 1

3D transformations are not commutative



A transformation example I

- the graphics package Open Inventor defines a cylinder to be:
 - centre at the origin, (0,0,0)
 - radius I unit
 - height 2 units, aligned along the y-axis
- this is the only cylinder that can be drawn, but the package has a complete set of 3D transformations
- we want to draw a cylinder of:
 - radius 2 units
 - the centres of its two ends located at (1,2,3) and (2,4,5)
- what transforms are required? and in what order should they be applied?

A transformation example 2 +order is important: • scale first rotate translate last + scaling and translation are straightforward $\begin{bmatrix} 2 & 0 & 0 & 0 \end{bmatrix}$ 0 1.5 0 0 1 0 3 0 0 2 0 0 0 1 4 0 0 0 1 0 0 0 scale from translate centre of cylinder from (0,0,0) to halfway between (1,2,3) and (2,4,5) size (2,2,2) to size (4,3,4)

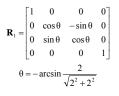
A transformation example 3

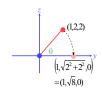
- → rotation is a multi-step process
 - break the rotation into steps, each of which is rotation about a principal axis
 - work these out by taking the desired orientation back to the original axis-aligned position
 - the centres of its two ends located at (1,2,3) and (2,4,5)
 - desired axis: (2,4,5)-(1,2,3) = (1,2,2)
 - original axis: y-axis = (0,1,0)

126

A transformation example 4

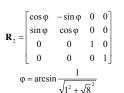
- desired axis: (2,4,5)-(1,2,3) = (1,2,2)
- original axis: y-axis = (0,1,0)
- zero the z-coordinate by rotating about the x-axis





A transformation example 5

- then zero the x-coordinate by rotating about the z-axis
 we now have the object's axis pointing along the y-axis



MichaelmasTerm 2012

128

129

A transformation example 6

- the overall transformation is:
 - first scale
 - then take the inverse of the rotation we just calculated
 - finally translate to the correct position

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \mathbf{T} \times \mathbf{R}_1^{-1} \times \mathbf{R}_2^{-1} \times \mathbf{S} \times \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

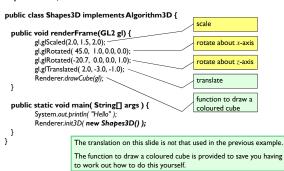
Application: display multiple instances

 transformations allow you to define an object at one location and then place multiple instances in your scene

131

Transformations in OpenGL

import javax.media.opengl.GL2; import easel.*;



Rotating cube in OpenGL

double theta = 0.0;

public void renderFrame(GL2 gl) {
 theta += 2.0;
 gl.glScaled(3.0,3.0,3.0);
 gl.glRotated(theta, 1.0,1.0,1.0);
 Renderer.drawCube(gl);
}

130

OpenGL's transformation mechanism

- there is a current transformation matrix that is applied to every vertex that is drawn
- the current transformation matrix is set to identity by the OpenGL system before entering the renderFrame function
- → glTranslate, glScale, glRotate, etc, create matrices that are multiplied by the current transformation matrix to make a new current transformation matrix

133 134

3D ⇒ 2D projection

- to make a picture
 - 3D world is projected to a 2D image
 - like a camera taking a photograph
 - the three dimensional world is projected onto a plane

The 3D world is described as a set of (mathematical) objects

e.g. sphere radius (3.4) centre (0,2,9)

size (2,4,3) centre (7, 2, 9) orientation (27°, 156°) e.g. box

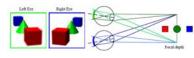
Types of projection

- + parallel
 - e.g. $(x, y, z) \rightarrow (x, y)$
 - useful in CAD, architecture, etc
 - looks unrealistic
- → perspective
 - e.g. $(x, y, z) \rightarrow (\frac{x}{z}, \frac{y}{z})$
 - things get smaller as they get farther away
 - looks realistic
 - this is how cameras work

137

135

Depth cues

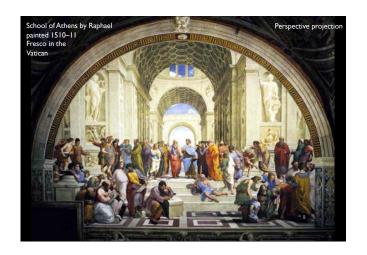


Rendering depth

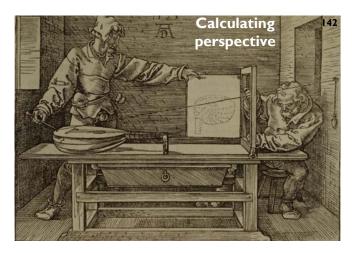
Perspective

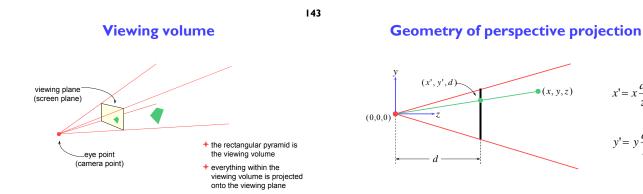
- → Holy Trinity fresco
- + Masaccio, I 425
- +Santa Maria Novella, Florence

138



Perspective projection examples Gates Building – the rounded version (Stanford) Gates Building – the rectilinear version (Cambridge)





145

Projection as a matrix operation

$$\begin{bmatrix} x \\ y \\ d \\ z/d \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & d \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

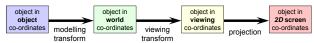
$$y' = y \frac{d}{z}$$
This is useful in the z-buffer algorithm where we need to interpolate 1/z values rather than z values.
$$z' = \frac{1}{z}$$

Perspective projection with an arbitrary camera

- we have assumed that:
 - screen centre at (0.0.d)
 - screen parallel to xy-plane
 - z-axis into screen
 - y-axis up and x-axis to the right
 - eye (camera) at origin (0,0,0)
- for an arbitrary camera we can either:
 - work out equations for projecting objects about an arbitrary point onto an arbitrary plane
 - transform all objects into our standard co-ordinate system (viewing co-ordinates) and use the above assumptions

147

A variety of transformations



- the modelling transform and viewing transform can be multiplied together to produce a single matrix taking an object directly from object co-ordinates into viewing co-ordinates
- either or both of the modelling transform and viewing transform matrices can be the identity matrix
 - e.g. objects can be specified directly in viewing co-ordinates, or directly in
- this is a useful set of transforms, not a hard and fast model of how things should be done

Viewing transform I

- the problem:
 - to transform an arbitrary co-ordinate system to the default viewing co-ordinate system
- → camera specification in world co-ordinates
 - eye (camera) at (e_x, e_y, e_z)
 - look point (centre of screen) at (l_x,l_y,l_z)
 - up along vector (u_x, u_y, u_z)
 - perpendicular to $\overline{\mathbf{el}}$

149

Viewing transform 2

• translate eye point, (e_x, e_y, e_z) , to origin, (0,0,0)

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & -e_x \\ 0 & 1 & 0 & -e_y \\ 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

ullet scale so that eye point to look point distance, $|\overline{\mathbf{el}}|$, is distance from origin to screen centre, d

$$\boxed{\mathbf{el}} = \sqrt{(l_x - e_x)^2 + (l_y - e_y)^2 + (l_z - e_z)^2} \qquad \qquad \mathbf{S} = \begin{bmatrix} \sqrt[4]{n} & 0 & 0 & 0 \\ 0 & \sqrt[4]{n} & 0 & 0 \\ 0 & 0 & \sqrt[4]{n} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

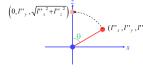
Viewing transform 3

• need to align line $\overline{\mathbf{el}}$ with z-axis

 $\label{eq:linear_system} \begin{array}{l} \blacksquare \text{ first transform } e \text{ and } l \text{ into new co-ordinate system} \\ e^{\prime\prime} = S \times T \times e = 0 \qquad l^{\prime\prime} = S \times T \times l \end{array}$

then rotate e''!'' into yz-plane, rotating about y-axis

 $\begin{bmatrix} \cos \theta & 0 & -\sin \theta & 0 \end{bmatrix}$



148

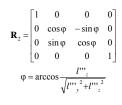
154

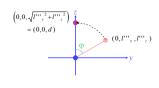
151

Viewing transform 4

• having rotated the viewing vector onto the yz plane, rotate it about the x-axis so that it aligns with the z-axis

$$\mathbf{l'''} = \mathbf{R}_1 \times \mathbf{l''}$$





Viewing transform 5

- the final step is to ensure that the up vector actually points up, i.e. along the positive y-axis
 - actually need to rotate the up vector about the z-axis so that it lies in the positive y half of the yz plane

$$\mathbf{u}^{\prime\prime\prime\prime} = \mathbf{R}_2 \times \mathbf{R}_1 \times \mathbf{u}$$

$$\mathbf{R}_3 = \begin{bmatrix} \cos \psi & -\sin \psi & 0 & 0\\ \sin \psi & \cos \psi & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{u}^{\prime\prime\prime\prime}_{\mathbf{v}}$$

why don't we need to multiply u by S or T? \mathbf{u} is a vector rather than a point, vectors do not get translated scaling \boldsymbol{u} by a uniform scaling matrix would make no difference to the

direction in which it

153

155

Viewing transform 6

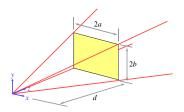
• we can now transform any point in world co-ordinates to the equivalent point in viewing co-ordinate

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \mathbf{R}_3 \times \mathbf{R}_2 \times \mathbf{R}_1 \times \mathbf{S} \times \mathbf{T} \times \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

- $\mathbf{e} \to (0,0,0) \quad \mathbf{l} \to (0,0,d)$ in particular:
- the matrices depend only on e, l, and u, so they can be premultiplied together $\mathbf{M} = \mathbf{R}_3 \times \mathbf{R}_2 \times \mathbf{R}_1 \times \mathbf{S} \times \mathbf{T}$

Clipping in 3D

clipping against a volume in viewing co-ordinates



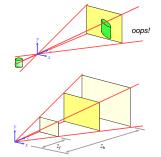
a point (x,y,z) can be clipped against the pyramid by checking it against four planes:

$$x > -z\frac{a}{d} \qquad x < z\frac{a}{d}$$

$$y > -z \frac{b}{d}$$
 $y < z \frac{b}{d}$

What about clipping in z?

- need to at least check for z < 0 to stop things behind the camera from projecting onto the screen
- can also have front and back clipping planes:
 - $z > z_f$ and $z < z_b$
 - resulting clipping volume is called the viewing frustum



Clipping in 3D — two methods

which is

- +clip against the viewing frustum
 - need to clip against six planes

$$x = -z\frac{a}{d}$$
 $x = z\frac{a}{d}$ $y = -z\frac{b}{d}$ $y = z\frac{b}{d}$ $z = z_f$ $z = z_b$

- + project to 2D (retaining z) and clip against the axisaligned cuboid
 - still need to clip against six planes

$$x = -a$$
 $x = a$ $y = -b$ $y = b$ $z = z_f$ $z = z_b$

- these are simpler planes against which to clip
- $lue{}$ this is equivalent to clipping in 2D with two extra clips for z

Bounding volumes & clipping

157

- +can be very useful for reducing the amount of work involved in clipping
- → what kind of bounding volume?
 - axis aligned box

sphere

→ can have multiple levels of bounding volume

3D scan conversion

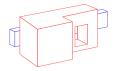
- **♦** lines
- → polygons

 - z-buffer
 - A-buffer

159 160

Hidden line removal

- by careful use of cunning algorithms, lines that are hidden by surfaces can be carefully removed from the projected version of the objects
 - still just a line drawing
 - will not be covered further in this course



3D line drawing

- given a list of 3D lines we draw them by:
 - projecting end points onto the 2D screen
 - using a line drawing algorithm on the resulting 2D lines
- this produces a wireframe version of whatever objects are represented by the lines

161

3D polygon drawing • given a list of 3D polygons we draw them by:

- projecting vertices onto the 2D screen
- but also keep the z information
- using a 2D polygon scan conversion algorithm on the resulting 2D polygons
- in what order do we draw the polygons?
 - some sort of order on z
 - depth sort
 - Binary Space-Partitioning tree
- is there a method in which order does not matter?
 - ∘ z-buffer

Depth sort algorithm

transform all polygon vertices into viewing co-ordinates and project these into 2D, keeping z information

2 calculate a depth ordering for polygons, based on the most distant z co-ordinate in each polygon

 $oldsymbol{s}$ resolve any ambiguities caused by polygons overlapping in z

draw the polygons in depth order from back to front

"painter's algorithm": later polygons draw on top of earlier polygons

 steps • and • are simple, step • is 2D polygon scan conversion, step 3requires more thought

162

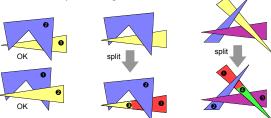
158

depth sort

Binary Space-Partitioning tree

Resolving ambiguities in depth sort

 may need to split polygons into smaller polygons to make a coherent depth ordering



163

Resolving ambiguities: algorithm

- + for the rearmost polygon, P, in the list, need to compare each polygon, Q, which overlaps P in z
 - the question is: can I draw P before Q?
 - od the polygons y extents not overlaps
 - 2 do the polygons x extents not overlap?
 - \odot is P entirely on the opposite side of Q's plane from the viewpoint? ${\color{red} \bullet}$ is ${\color{red} Q}$ entirely on the same side of ${\color{red} P}$'s plane as the viewpoint?
 - if all 4 tests fail, repeat Oand With P and Q swapped (i.e. can I draw Q before P?), if true swap P and Q
 - otherwise split either \emph{P} or \emph{Q} by the plane of the other, throw away the original polygon and insert the two pieces into the list
- draw rearmost polygon once it has been completely checked

165

Split a polygon by a plane

- remember the Sutherland-Hodgman algorithm splits a 2D polygon against a 2D line
- do the same in 3D: split a (planar) polygon by a plane
- line segment defined by (x_s,y_s,z_s) and (x_e,y_e,z_e)
- clipping plane defined by ax+by+cz+d=0
- test to see which side of plane a point is on:
 - = k=ax+by+cz+d
 - \blacksquare k negative: inside, k positive: outside, k=0: on edge
 - apply this test to all vertices of a polygon; if all have the same sign then the polygon is entirely on one side of the plane

Depth sort: comments

- the depth sort algorithm produces a list of polygons which can be scan-converted in 2D, backmost to frontmost, to produce the correct image
- it is reasonably cheap for small number of polygons, but becomes expensive for large numbers of polygons
- the ordering is only valid from one particular viewpoint

167

Back face culling: a time-saving trick

- if a polygon is a face of a closed polyhedron and faces backwards with respect to the viewpoint then it need not be drawn at all because front facing faces would later obscure it anyway
 - saves drawing time at the the cost of one extra test per polygon
 - assumes that we know which way a polygon is
- back face culling can be used in combination with any 3D scan-conversion algorithm

Binary Space-Partitioning trees

- BSP trees provide a way of quickly calculating the correct depth order:
 - for a collection of static polygons
 - from an arbitrary viewpoint
- the BSP tree trades off an initial time- and space-intensive preprocessing step against a linear display algorithm (O(N)) which is executed whenever a new viewpoint is specified
- the BSP tree allows you to easily determine the correct order in which to draw polygons by traversing the tree in a simple

168

BSP tree: basic idea

- a given polygon will be correctly scan-converted if:
 - all polygons on the far side of it from the viewer are scan-converted
 - then it is scan-converted
 - then all the polygons on the near side of it are scan-converted

7 L/X >

Making a BSP tree

- given a set of polygons
 - select an arbitrary polygon as the root of the tree
 - divide all remaining polygons into two subsets:
 - * those in front of the selected polygon's plane
 - * those behind the selected polygon's plane
 - any polygons through which the plane passes are split into two polygons and the two parts put into the appropriate subsets
 - make two BSP trees, one from each of the two subsets
 - these become the front and back subtrees of the root
- may be advisable to make, say, 20 trees with different random roots to be sure of getting a tree that is reasonably well balanced

You need to be able to tell which side of an arbitrary plane a vertex lies on and how to split a polygon by an arbitrary plane – both of which were discussed for the depth-sort algorithm.

171 Scan-line algorithms

- instead of drawing one polygon at a time: modify the 2D polygon scan-conversion algorithm to handle all of the polygons at once
- the algorithm keeps a list of the active edges in all polygons and proceeds one scan-line at a time
 - there is thus one large active edge list and one (even larger) edge list enormous memory requirements
- still fill in pixels between adjacent pairs of edges on the scan-line but:
 - need to be intelligent about which polygon is in front and therefore what colours to put in the pixels
 - every edge is used in two pairs: one to the left and one to the right of it

Drawing a BSP tree

- if the viewpoint is in front of the root's polygon's plane then:
 - draw the BSP tree for the back child of the root
 - draw the root's polygon
 - draw the BSP tree for the front child of the root
- otherwise:
 - draw the BSP tree for the front child of the root
 - draw the root's polygon
 - draw the BSP tree for the back child of the root

z-buffer polygon scan conversion

173

- → depth sort & BSP-tree methods involve clever sorting algorithms followed by the invocation of the standard 2D polygon scan conversion algorithm
- → by modifying the 2D scan conversion algorithm we can remove the need to sort the polygons
 - makes hardware implementation easier
 - this is the algorithm used on graphics cards

z-buffer basics

- +store both colour and depth at each pixel
- +scan convert one polygon at a time in any order
- ★when scan converting a polygon:
 - calculate the polygon's depth at each pixel
 - if the polygon is closer than the current depth stored at that pixel
 - then store both the polygon's colour and depth at that pixel
 - otherwise do nothing

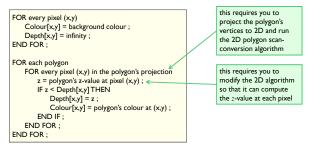
170

MichaelmasTerm 2012

172

175

z-buffer algorithm



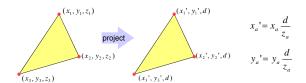
z-buffer example

6 6 6 6 6 8 6 6 6 6 6 6 6

177

Interpolating depth values I

- ullet just as we incrementally interpolate x as we move along each edge of the polygon, we can incrementally interpolate z:
 - as we move along the edge of the polygon
 - as we move across the polygon's projection



Interpolating depth values 2

• we thus have 2D vertices, with added depth information

$$[(x_a',y_a'),z_a]$$

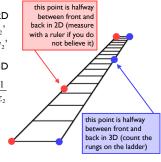
we can interpolate x and y in 2D

$$x' = (1-t)x_1' + (t)x_2'$$

$$y' = (1-t)y_1' + (t)y_2'$$

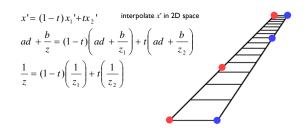
• but z must be interpolated in 3D

$$\frac{1}{z} = (1 - t)\frac{1}{z_1} + (t)\frac{1}{z_2}$$



Interpolating depth values 3

$$x = az + b$$
 consider the projection onto the plane $y=0$ $x' = x \frac{d}{z} = ad + \frac{b}{z}$ now project to $z=d$



179

Comparison of methods

Algorithm	Complexity	Notes
Depth sort	O(N log N)	Need to resolve ambiguities
Scan line	O(N log N)	Memory intensive
BSP tree	O(N)	O(N log N) pre-processing step
z-buffer	O(N)	Easy to implement in hardware

- BSP is only useful for scenes which do not change
- as number of polygons increases, average size of polygon decreases, so time to draw a single polygon decreases
- lacktriangle z-buffer easy to implement in hardware: simply give it polygons in any order you
- other algorithms need to know about all the polygons before drawing a single one, so that they can sort them into order

178

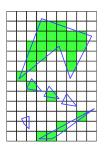
Putting it all together - a summary

- +a 3D polygon scan conversion algorithm needs to include:
 - a 2D polygon scan conversion algorithm
 - 2D or 3D polygon clipping
 - projection from 3D to 2D
 - either:
 - ordering the polygons so that they are drawn in the correct order or:
 - lacksquare calculating the z value at each pixel and using a depth-buffer

181

Sampling

- all of the methods so far take a single sample for each pixel at the precise centre of the pixel
 - i.e. the value for each pixel is the colour of the polygon which happens to lie exactly under the centre of the pixel
- this leads to:
 - stair step (jagged) edges to polygons
 - small polygons being missed completely
 - thin polygons being missed completely or split into small pieces



Anti-aliasing

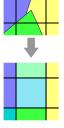
• these artefacts (and others) are jointly known as aliasing

 methods of ameliorating the effects of aliasing are known as anti-aliasing

- in signal processing aliasing is a precisely defined technical term for a particular kind of artefact
- in computer graphics its meaning has expanded to include most undesirable effects that can occur in the image
 - this is because the same anti-aliasing techniques which ameliorate true aliasing artefacts also ameliorate most of the other artefacts

Anti-aliasing method I: area averaging

- average the contributions of all polygons to each pixel
 - e.g. assume pixels are square and we just want the average colour in the square
 - Ed Catmull developed an algorithm which does this:
 - works a scan-line at a time
 - clips all polygons to the scan-line
 - determines the fragment of each polygon which projects to each pixel
 - determines the amount of the pixel covered by the visible part of each fragment
 - pixel's colour is a weighted sum of the visible parts
 - expensive algorithm!



186

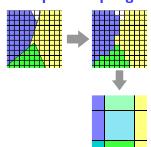
184

185

183

Anti-aliasing method 2: super-sampling

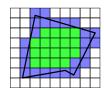
- sample on a finer grid, then average the samples in each pixel to produce the final colour
 - for an n×n sub-pixel grid, the algorithm would take roughly n² times as long as just taking one sample per pixel
- can simply average all of the sub-pixels in a pixel or can do some sort of weighted average



The A-buffer - efficient super-sampling

 a significant modification of the z-buffer, which allows for subpixel sampling without as high an overhead as straightforward super-sampling

- basic observation:
 - a given polygon will cover a pixel:
 - totallypartially
 - partially not at all
 - sub-pixel sampling is only required in the case of pixels which are partially covered by the polygon



L. Carpenter, "The A-buffer: an antialiased hidden surface method", SIGGRAPH 84, 103-8

190

final pixel

colour

A-buffer: details

- for each pixel, a list of masks is stored
- · each mask shows how much of a polygon covers the pixel
- the masks are sorted in depth order
- a mask is a 4×8 array of bits:

colour and depth in addition to the mask

1 = polygon covers this sub-pixel

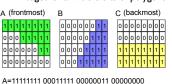
0 = polygon doesn't cover this sub-pixel sampling is done at the centre of each

of the sub-pixels

The use of 4×8 bits is because of the original architecture on which this was implemented. You could use any number of sub-pixels: a power of 2 is obviously sensible.

A-buffer: example

• to get the final colour of the pixel you need to average together all visible bits of polygons



B=00000011 00000111 00001111 00011111 C=00000000 00000000 11111111 11111111

sub-pixel

¬A^B =00000000 00000000 00001100 00011111 ¬A^¬B^C =00000000 00000000 11110000 11100000

189

187

Making the A-buffer more efficient

if a polygon totally covers a pixel then:

- do not need to calculate a mask, because the mask is all Is
- all masks currently in the list which are behind this polygon can be
- any subsequent polygons which are behind this polygon can be immediately discounted (without calculating a mask)
- in most scenes, therefore, the majority of pixels will have only a single entry in their list of masks
- the polygon scan-conversion algorithm can be structured so that it is immediately obvious whether a pixel is totally or partially within a polygon

A-buffer: calculating masks

- clip polygon to pixel
- calculate the mask for each edge bounded by the right hand side of the pixel
 - there are few enough of these that they can be stored in a look-up table
- XOR all masks together

191

A-buffer: comments

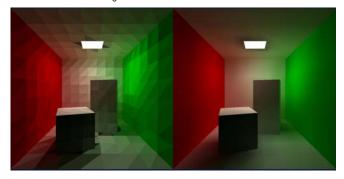
- the A-buffer algorithm essentially adds anti-aliasing to the zbuffer algorithm in an efficient way
- most operations on masks are AND, OR, NOT, XOR
 - very efficient boolean operations
- why 4×8?
 - algorithm originally implemented on a machine with 32-bit registers
 - on a 64-bit register machine, 8×8 is more sensible
- what does the A stand for in A-buffer?
 - anti-aliased, area averaged, accumulator

A-buffer: extensions

- as presented the algorithm assumes that a mask has a constant depth (z value)
 - can modify the algorithm and perform approximate intersection between polygons
- · can save memory by combining fragments which start life in the same primitive
 - e.g. two triangles that are part of the decomposition of a Bezier patch
- can extend to allow transparent objects

Illumination & shading

 until now we have assumed that each polygon is a uniform colour and have not thought about how that colour is determined



Background

3D CG IP
Background

196

+what is a digital image?

193

195

197

- what are the constraints on digital images?
- ♦ how does human vision work?
 - what are the limits of human vision?
 - ♦ what can we get away with given these constraints & limits?
- ★what hardware do we use?
- +how do we represent colour?
- ♦ how do displays & printers work?
 - how do we fool the human eye into seeing what we want it to see?

What is required for vision?

- + illumination
 - some source of light
- objects
 - which reflect (or transmit) the light
- + eyes
 - to capture the light as an image

The spectrum

blue green yellow

Light: wavelengths & spectra

- +light is electromagnetic radiation
 - visible light is a tiny part of the electromagnetic spectrum
 - visible light ranges in wavelength from 700nm (red end of spectrum) to 400nm (violet end)
- + every light has a spectrum of wavelengths that it emits
- every object has a spectrum of wavelengths that it reflects (or transmits)
- the combination of the two gives the spectrum of wavelengths that arrive at the eye

| Week | Washingth | Washingth

red

end of the spectrum

Tan 338M | Tan 338M |

Illuminants have different characteristics

 different lights emit different intensities of each wavelength

 sunlight is reasonably uniform

 incandescent light bulbs are very red

 sodium street lights emit almost pure yellow

198

300 300 400 400 500 600 600 600 700 750

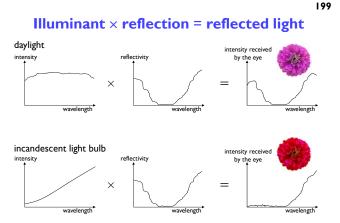
West ength into | www.gelighting.com/na/business_lighting/education_resources/learn_about_light/

2200K

the short wavelength

end of the spectrum is violet

violet



200 incandescent light bulb camera flash bulb Comparison illuminants compare these things: colour of the monkey's nose and paws: more red under certain lights oranges & yellows (similar in all) blues & violets (considerably different) winter sunlight halogen light bulbs (overhead)

Representing colour

- we need a mechanism which allows us to represent colour in the computer by some set of numbers
 - preferably a small set of numbers which can be quantised to a fairly small number of bits each
- → we will discuss:
 - Munsell's artists' scheme
 - which classifies colours on a perceptual basis
 - the mechanism of colour vision
 - how colour perception works
 - various colour spaces
 - which quantify colour based on either physical or perceptual models of colour

Munsell's colour classification system

+three axes

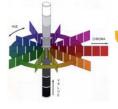
20 I

203

- hue ➤ the dominant colour
- value ➤ bright colours/dark colours
- chroma > vivid colours/dull colours
 can represent this as a 3D graph

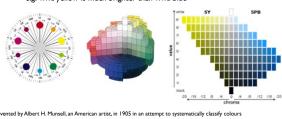
202

204



Munsell's colour classification system

- any two adjacent colours are a standard "perceptual" distance apart
 - worked out by testing it on people
 - a highly irregular space
 - e.g. vivid yellow is much brighter than vivid blue



Colour vision

- there are three types of cone
- each responds to a different spectrum
 - very roughly long, medium, and short wavelengths
 - each has a response function: $l(\lambda)$, $m(\lambda)$, $s(\lambda)$
- different numbers of the different types
 - far fewer of the short wavelength receptors
 - so cannot see fine detail in blue
- overall intensity response of the cones can be calculated
 - $y(\lambda) = \frac{1}{\lambda} + m(\lambda) + s(\lambda)$
 - $\blacksquare \ y = k \int P(\lambda) \ y(\lambda) \ d\lambda$ is the perceived <code>luminance</code> in the fovea
 - $\blacksquare \ y = k \int P(\lambda) \ r(\lambda) \ d\lambda$ is the perceived luminance outside the fovea

 $\begin{array}{c} r(\lambda) \text{ is the response} \\ \text{function of the rods} \end{array}$

208

210

Distribution of different cone types

simulated cone distribution at the centre of the fovea

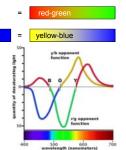
- → this is about 1° of visual angle
- distribution is:
 - 7% short, 37% medium, 56% long
- short wavelength receptors
 - regularly distributed
 - not in the central ¹/₃°
 - outside the fovea, only 1% of cones
- → long & medium
 - about 3:2 ratio long:medium

v.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p I.html

Colour signals sent to the brain

• the signal that is sent to the brain is pre-processed by the retina + medium + short = luminanc

- this theory explains:
 - colour-blindness effects why red, yellow, green and blue are perceptually important colours
 - why you can see e.g. a yellowish red but not a greenish red



207

209

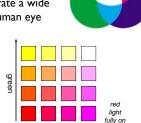
205

Chromatic metamerism

- many different spectra will induce the same response in our
 - the values of the three perceived values can be calculated as:
 - $1 = k \int P(\lambda) \frac{1}{\lambda} d\lambda$
 - $m = k \int P(\lambda) m(\lambda) d\lambda$
 - $s = k \int P(\lambda) s(\lambda) d\lambda$
 - \blacksquare k is some constant, $P(\lambda)$ is the spectrum of the light incident on the retina
 - two different spectra (e.g. $P_1(\lambda)$ and $P_2(\lambda)$) can give the same values
 - we can thus fool the eye into seeing (almost) any colour by mixing correct proportions of some small number of lights

Mixing coloured lights

→ by mixing different amounts of red, green, and blue lights we can generate a wide range of responses in the human eye

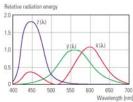


→ not all colours can be created in this way

FvDFH Sec 13.2.2

XYZ colour space

- +not every wavelength can be represented as a mix of red, green, and blue lights
- +but matching & defining coloured light with a mixture of three fixed primaries is desirable
- + CIE define three standard primaries: X, Y, Z



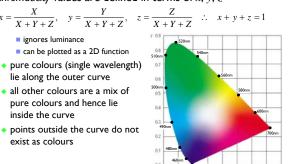
Y matches the human eye's response to light of a constant intensity at each wavelength (lumin efficiency function of the eye)

 $\it X, \it Y, \rm and \it Z \rm are not themselves colours, they are used for defining colours – you cannot make a light$ that emits one of these primaries

XYZ colour space was defined in 1931 by the Commission Internationale de l'Éclairage (CIE)

CIE chromaticity diagram

+ chromaticity values are defined in terms of x, y, z



Colour spaces

211

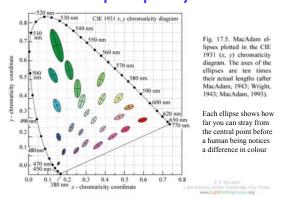
213

- ◆ CIE XYZ, Yxy
- Uniform
 - equal steps in any direction make equal perceptual differences
 - CIE L*u*v*, CIE L*a*b*

Pragmatic

- used because they relate directly to the way that the hardware works RGB, CMY, CMYK
- Munsell-like
 - used in user-interfaces
 - considered to be easier to use for specifying colour than are the pragmatic
 - map easily to the pragmatic colour spaces
 - HSV, HLS

XYZ is not perceptually uniform



Luv was designed to be more uniform

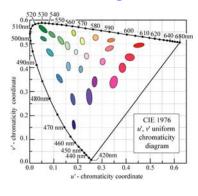
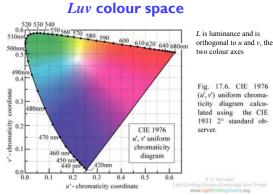


Fig. 17.7. MacAdam ellipses transformed to uniform CIE 1976 (u', v') chromaticity coordinates. For clarity, the axes of the transformed ellipses are ten times their actual lengths. Trans-formed ellipses are not ellipses in a strict mathematical sense, but their shapes closesly resem-ble those of ellipses. The areas of the transformed ellipses in the (u', v') diagram are much more similar than the MacAdam el-lipses in the (x, y) diagram.



 $L^*u^*v^*$ is an official CIE colour space. It is a straightforward distortion of XYZ space.

215 Lab space → another CIE colour space based on complementary colour theory • see slide 49 (Colour signals sent to the brain) +also aims to be perceptually uniform $L*=116(Y/Y_n)^{1/3}$ $a*=500[(X/X_n)^{1/3}-(Y/Y_n)^{1/3}]$ $b*=200[(Y/Y_n)^{1/3}-(Z/Z_n)^{1/3}]$

Lab space

- this visualization shows those colours in Lab space which a human can perceive
- → again we see that human perception of colour is not uniform
 - perception of colour diminishes at the white and black ends of the L axis
 - the maximum perceivable chroma differs for different hues

212

214

220

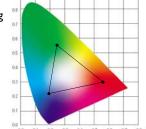
217

RGB space

- +all display devices which output light mix red, green and blue lights to make colour
 - televisions, CRT monitors, video projectors, LCD screens
- → nominally, RGB space is a cube
- the device puts physical limitations on:
 - the range of colours which can be displayed
 - the brightest colour which can be displayed
 - the darkest colour which can be displayed

RGB in XYZ space

- +CRTs and LCDs mix red, green, and blue to make all other colours
- the red, green, and blue primaries each map to a point in XYZ space
- any colour within the resulting triangle can be displayed
 - any colour outside the triangle cannot be displayed
 - for example: CRTs cannot display very saturated purple, turquoise, or yellow



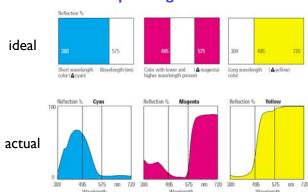
219

221

CMY space

- printers make colour by mixing coloured inks
- the important difference between inks (CMY) and lights (RGB) is that, while lights emit light, inks absorb
 - cyan absorbs red, reflects blue and green
 - magenta absorbs green, reflects red and blue
 - yellow absorbs blue, reflects green and red
- **→** CMY is, at its simplest, the inverse of RGB
- → CMY space is nominally a cube

Ideal and actual printing ink reflectivities



CMYK space

- 🛨 in real printing we use black (key) as well as CMY
- why use black?
 - inks are not perfect absorbers
 - mixing C + M + Y gives a muddy grey, not black
 - lots of text is printed in black: trying to align C, M and Y perfectly for black text would be a nightmare

Using K

- if we print using just CMY then we can get up to 300% ink at any point on the paper
- removing the achromatic portion of CMY and replacing with K reduces the maximum possible ink coverage to 200%

Colour spaces for user-interfaces

- → RGB and CMY are based on the physical devices which produce the coloured output
- +RGB and CMY are difficult for humans to use for selecting colours
- → Munsell's colour system is much more intuitive:
 - hue what is the principal colour?
 - value how light or dark is it?
 - chroma how vivid or dull is it?
- computer interface designers have developed basic transformations of RGB which resemble Munsell's human-friendly system

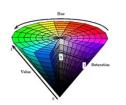
HSV: hue saturation value

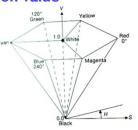
+three axes, as with Munsell

223

225

- hue and value have same meaning
- the term "saturation" replaces the term "chroma"

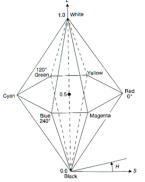




- designed by Alvy Ray Smith in 1978
- algorithm to convert HSV to RGB and back can be found in Foley et al., Figs 13.33 and 13.34

HLS: hue lightness saturation

- → a simple variation of HSV
 - hue and saturation have same meaning
 - the term "lightness" replaces the term "value"
- designed to address the complaint that HSV has all pure of colours having the same lightness/value as white
 - designed by Metrick in 1979
 - algorithm to convert HLS to RGB and back can be found in Foley et al., Figs 13.36 and 13.37



Summary of colour spaces

- the eye has three types of colour receptor
- therefore we can validly use a three-dimensional co-ordinate system to represent colour
- ◆ XYZ is one such co-ordinate system
 - Y is the eye's response to intensity (luminance)
 - X and Z are, therefore, the colour co-ordinates
 - same Y, change X or Z \Rightarrow same intensity, different colour same X and Z, change Y \Rightarrow same colour, different intensity
- there are other co-ordinate systems with a luminance axis
 - L*a*b*, L*u*v*, HSV, HLS
- some other systems use three colour co-ordinates
 - RGB, CMY
 - luminance can then be derived as some function of the three
 - e.g. in RGB: Y = 0.299 R + 0.587 G + 0.114 B

3D Computer Graphics

- +3D ⇒ 2D projection
- **♦**3D versions of 2D operations
 - ♦ clipping, transforms, matrices, curves & surfaces
- **♦**3D scan conversion
 - depth-sort, BSP tree, z-Buffer, A-buffer
- + lighting
- +texture mapping

Illumination & shading

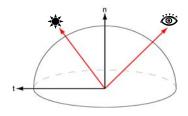
- until now we have assumed that each polygon is a uniform colour and have not thought about how that colour is determined
- things look more realistic if there is some sort of illumination in the scene
- we therefore need a mechanism of determining the colour of a polygon based on its surface properties and the positions of the lights
- we will, as a consequence, need to find ways to shade polygons which do not have a uniform colour

226

Different materials have different reflectances

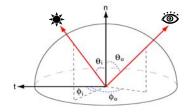
BRDF

Bidirectional Reflectance
 Distribution Function



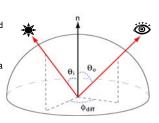
BRDF

- → Bidirectional Reflectance Distribution Function
 - $\bullet \ \rho(\theta_i \, , \! \phi_i \, ; \, \theta_o, \, \phi_o)$

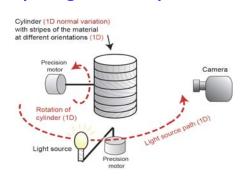


BRDF

- → Bidirectional Reflectance Distribution Function
 - $\rho(\theta_i, \phi_i; \theta_o, \phi_o)$
- ◆ Isotropic material
 - Invariant when material is rotated
 - BRDF is 3D
 - $\rho(\theta_i, \theta_o, \phi_{diff})$
- We can lookup the ρ value for a point (e.g., a vertex) if we know:
 - the light's position
 - the camera's position
 - position and normal at the point



Capturing an anisotropic BRDF

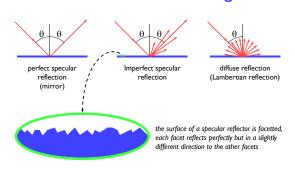


235

Equations for lighting

- → Rather than using a BRDF look-up table, we might prefer a simple equation
 - This is a trade-off that has occurred often in the history of computing
 - Early years: memory is expensive, so use a calculated approximation to the truth
 - More recently: memory is cheap, so use a large look-up table captured from the real world to give an accurate answer
 - Examples include: surface properties in graphics, sounds for electric pianos/organs, definitions of 3D shape

How do surfaces reflect light?



Johann Lambert, 18th century German mathematician

237

Comments on reflection

- the surface can absorb some wavelengths of light
 - e.g. shiny gold or shiny copper
- specular reflection has "interesting" properties at glancing angles owing to occlusion of micro-facets by one another

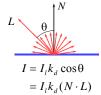
- plastics are good examples of surfaces with:
 - specular reflection in the light's colour
 - diffuse reflection in the plastic's colour

Calculating the shading of a polygon

- gross assumptions:
 - there is only diffuse (Lambertian) reflection
 - all light falling on a polygon comes directly from a light source
 - there is no interaction between polygons
 - no polygon casts shadows on any other
 - ${\color{red} \bullet}$ so can treat each polygon as if it were the only polygon in the scene
 - light sources are considered to be infinitely distant from the polygon
 the vector to the light is the same across the whole polygon
- observation:
 - the colour of a flat polygon will be uniform across its surface, dependent only on the colour & position of the polygon and the colour & position of the light sources

239

Diffuse shading calculation



- ${\it L}$ is a normalised vector pointing in the direction of the light source
- N is the normal to the polygon
- I_l is the intensity of the light source
- k_{d} is the proportion of light which is diffusely reflected by the surface
- *I* is the intensity of the light reflected by the surface

use this equation to set the colour of the whole polygon and draw the polygon using a standard polygon scan-conversion routine

Diffuse shading: comments

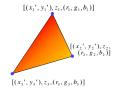
- ullet can have different I_l and different k_d for different wavelengths (colours)
- watch out for $\cos\theta < 0$
 - implies that the light is behind the polygon and so it cannot illuminate this side of the polygon
- do you use one-sided or two-sided polygons?
 - one sided: only the side in the direction of the normal vector can be illuminated
 - ${\color{red} \bullet}$ if $cos\theta \leq 0$ then both sides are black
 - \blacksquare two sided: the sign of $\cos\!\theta$ determines which side of the polygon is illuminated
- need to invert the sign of the intensity for the back side
- ${\color{black} \bullet}$ this is essentially a simple one-parameter (0) BRDF

240

244

Gouraud shading

- for a polygonal model, calculate the diffuse illumination at each vertex rather than for each polygon
 - calculate the normal at the vertex, and use this to calculate the diffuse illumination at that point
 - normal can be calculated directly if the polygonal model was derived from a curved surface
- interpolate the colour across the polygon, in a similar manner to that used to interpolate \boldsymbol{z}
- surface will look smoothly curved
 - rather than looking like a set of polygons
 - surface outline will still look polygonal

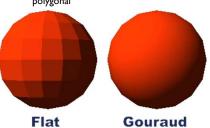


241

Henri Gouraud, "Continuous Shading of Curved Surfaces", IEEE Trans Computers, 20(6), 1971

Flat vs Gouraud shading

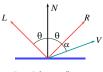
 note how the interior is smoothly shaded but the outline remains polygonal



http://computer.howstuffworks.com/question484.htm

Specular reflection

+ Phong developed an easy-tocalculate approximation to specular reflection



 $I = I_{l}k_{s}\cos^{n}\alpha$ $=I_lk_s(R\cdot V)^n$

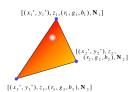
- L is a normalised vector pointing in the direction of the light source R is the vector of perfect reflection
- N is the normal to the polygon
- V is a normalised vector pointing at the viewer
- I_l is the intensity of the light source
- k_s is the proportion of light which is specularly reflected by the surface
- n is Phong's ad hoc "roughness" coefficient $\it I$ is the intensity of the specularly reflected light

specular

reflection

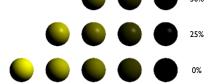
Phong shading

- similar to Gouraud shading, but calculate the specular component in addition to the diffuse component
- therefore need to interpolate the normal across the polygon in order to be able to calculate the reflection vector
- N.B. Phong's approximation to specular reflection ignores (amongst other things) the effects of glancing incidence



Phong Bui-Tuong, "Illumination for compute generated pictures", CACM, 18(6), 1975, 311-7

245 **Examples** 100%



25%

0%

50% diffuse reflection

75%

The gross assumptions revisited

- only diffuse reflection
 - now have a method of approximating specular reflection
- no shadows
 - need to do ray tracing or shadow mapping to get shadows
- lights at infinity
 - can add local lights at the expense of more calculation
 - need to interpolate the L vector
- no interaction between surfaces
 - assume that all light reflected off all other surfaces onto a given polygon can be amalgamated into a single constant term: "ambient illumination", add this onto the diffuse and specular illumination

246

100%

Shading: overall equation

 the overall shading equation can thus be considered to be the ambient illumination plus the diffuse and specular reflections from each light source

$$I = I_a k_a + \sum_i I_i k_d (L_i \cdot N) + \sum_i I_i k_s (R_i \cdot V)^n$$

the more lights there are in the scene, the longer this calculation will take

248

Illumination & shading: comments

- how good is this shading equation?
 - gives reasonable results but most objects tend to look as if they are made out of plastic
 - Cook & Torrance have developed a more realistic (and more expensive) shading model which takes into account:
 - micro-facet geometry (which models, amongst other things, the roughness of the surface)
 - Fresnel's formulas for reflectance off a surface
 - there are other, even more complex, models
- is there a better way to handle inter-object interaction?
 - "ambient illumination" is a gross approximation
 - distributed ray tracing can handle specular inter-reflection
 - radiosity can handle diffuse inter-reflection

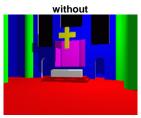
250

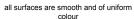
Surface detail

- so far we have assumed perfectly smooth, uniformly coloured surfaces
- +real life isn't like that:
 - multicoloured surfaces
 - e.g. a painting, a food can, a page in a book
 - bumpy surfaces
 - e.g. almost any surface! (very few things are perfectly smooth)
 - textured surfaces
 - e.g. wood, marble

249

Texture mapping





most surfaces are textured with 2D texture maps the pillars are textured with a solid texture

25 I

Basic texture mapping

→ a texture is simply an image, with a 2D coordinate system (u,v)

- → each 3D object is parameterised in (u,v) space
- each pixel maps to some part of the surface
- that part of the surface maps to part of the texture

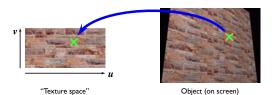
Paramaterising a primitive

 polygon: give (u,v) coordinates for three vertices, or treat as part of a plane

- plane: give u-axis and v-axis directions in the plane
- cylinder: one axis goes up the cylinder, the other around the cylinder

Sampling texture space

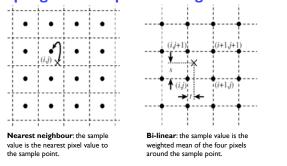
253



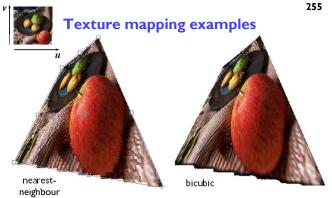
Find (u,v) coordinate of the sample point on the object and map this into texture space

Sample texture space to determine the pixel's colour

Sampling texture space: finding the value 254



Bi-cubic (not shown): the sample value is the weighted mean of the sixteen pixels around the sample point. Runs at a quarter the speed of bi-linear.



look at the bottom right hand corner of the distorted image to compare the two interpolation methods

Up-sampling

→ if one pixel in the texture map covers several pixels in the final image, you get visible artefacts

 only practical way to prevent this is to ensure that texture map is of sufficiently high resolution that it does not happen

257

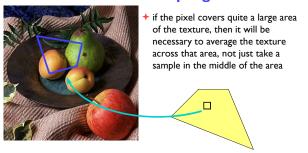
artefacts

nearestneighbour blocky

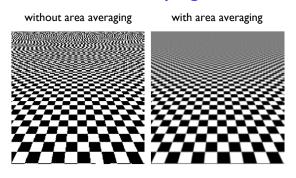
artefacts

bicubic blurry

Down-sampling



Down-sampling



262

264

0

Multi-resolution texture

259

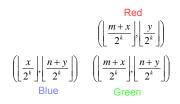
26 I

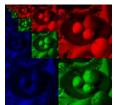
263

- + rather than down-sampling when necessary, pre-calculate multiple versions of the texture at different resolutions and pick the appropriate resolution to sample from...
- can use tri-linear interpolation to get an even better result: that is, use bi-linear interpolation in the two nearest levels and then linearly interpolate between the two interpolated values

The MIP map

- →an efficient memory arrangement for a multiresolution colour image
- + pixel (x,y) is a bottom level pixel location (level 0); for an image of size (m,n), it is stored at these locations in level k:





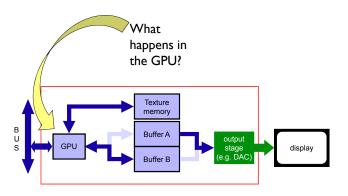
What can a texture map modify?

- → any (or all) of the colour components
- ambient, diffuse, specular
- + transparency
 - "transparency mapping"
- → reflectiveness
- ♦ but also the surface normal
 - "bump mapping"

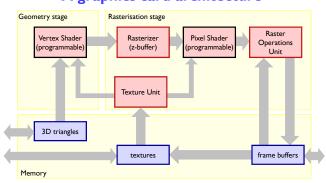
Bump mapping

- the surface normal is used in calculating both diffuse and specular reflection
- bump mapping modifies the direction of the surface normal so that the surface appears more or less bumpy
- rather than using a texture map, a 2D function can be used which varies the surface normal smoothly across the plane
- but bump mapping doesn't change the object's outline

Graphics card architecture

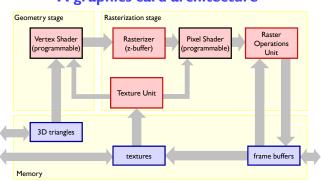


A graphics card architecture



based on nVIDIA's GeForce 6 architecture

A graphics card architecture



based on nVIDIA's GeForce 6 architecture

Background

266

- → what is a digital image?
 - what are the constraints on digital images?
- ♦ how does human vision work?
 - what are the limits of human vision?
 - what can we get away with given these constraints & limits?
- → what hardware do we use?
- ♦ how do we represent colour?
- how do displays & printers work?
 - . how do we fool the human eye into seeing what we want it to see?

267

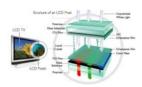
265

Image display

- → a handful of technologies cover over 99% of all display devices
 - active displays
 - cathode ray tube
- standard for late 20th century most common today
 - liquid crystal display plasma displays
- briefly popular but power-hungry
- digital mirror displays increasing use in video projectors
- printers (passive displays)
 - laser printers ink jet printers
- the traditional office printer the traditional home printer
- commercial printers
- for high volume

Liquid crystal displays I

- · liquid crystals can twist the polarisation of light
- basic control is by the voltage that is applied across the liquid crystal: either on or off, transparent or opaque
- greyscale can be achieved with some types of liquid crystal by varying the voltage
- colour is achieved with colour filters

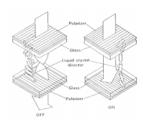


268

270

269

Liquid crystal displays II



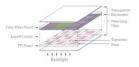
there are two polarizers at right angles to one another on either side of the liquid crystal: under normal circumstances these would block all light

there are liquid crystal directors: micro-grooves which align the liquid crystal molecules next to them

the liquid crystal molecules try to line up with one another; the micro-grooves on each side are at right angles to one another which forces the crystals' orientations to twist gently through 90° as you go from top to bottom, causing the polarization of the light to twist through 90°, making the pixel transparent

liquid crystal molecules are polar: they have a positive and a negative end

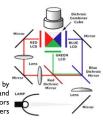
applying a voltage across the liquid crystal causes the molecules to stand on their ends, ruining the twisting phenomenon, so light cannot get through and the pixel is opaque



Liquid crystal displays III

- low power consumption compared to CRTs although the back light uses a lot of power
- image quality historically not as good as cathode ray tubes, but improved dramatically over the last ten years
- - laptops
 - video projectors
 - rapidly replacing CRTs as desk top displays
 - increasing use as televisions

a three LCD video projector, with colour made by devoting one LCD panel to each of red, green and blue, and by splitting the light using dichroic mirrors which pass some wavelengths and reflect others

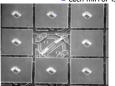


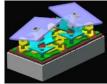
274

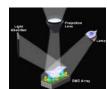
Digital micromirror devices I

- developed by Texas Instruments
 - often referred to as Digital Light Processing (DLP) technology
- invented in 1987, following ten year's work on deformable mirror devices
- manufactured like a silicon chip!
 - a standard 5 volt, 0.8 micron, CMOS process
 - micromirrors are coated with a highly reflected aluminium alloy

each mirror is 16×16µm²

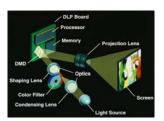


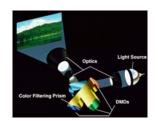




Digital micromirror devices II

- used increasingly in video projectors
- widely available from late 1990s
- colour is achieved using either three DMD chips or one chip and a rotating colour filter





273

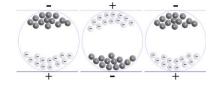
27 I

Electrophoretic displays I

- +electronic paper widely used in e-books
- → iRex iLiad, Sony Reader, Amazon Kindle
- → 200 dpi passive display

Electrophoretic displays II

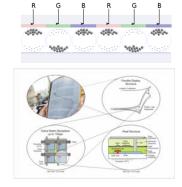
- † transparent capsules ~40µ diameter
 - filled with dark oil
 - negatively charged I µ titanium dioxide particles
- + electrodes in substrate attract or repel white particles
- +image persists with no power consumption



275

Electrophoretic displays III

- colour filters over individual pixels
- flexible substrate using plastic semiconductors (Plastic Logic)



Printers

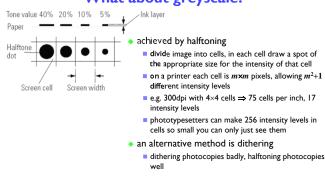
- +many types of printer
 - ink jet
 - sprays ink onto paper
 - laser printer
 - uses a laser to lay down a pattern of charge on a drum; this picks up charged toner which is then pressed onto the paper
 - commercial offset printer
 - an image of the whole page is put on a roller
 - this is repeatedly inked and pressed against the paper to print thousands of copies of the same thing
- →all make marks on paper
 - essentially binary devices: mark/no mark

280

Printer resolution

- +laser printer
 - 300-1200dpi
- → ink jet
 - used to be lower resolution & quality than laser printers but now have comparable resolution
- phototypesetter for commercial offset printing
 - 1200–2400 dpi
- → bi-level devices: each pixel is either on or off
 - black or white (for monochrome printers)
 - ink or no ink (in general)

What about greyscale?



will discuss halftoning and dithering in Image Processing section of course

Halftoning & dithering examples

Dithering

277

279

28 I

Halftoning

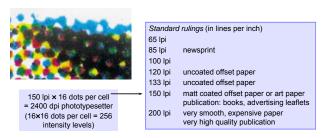
What about colour?

- + generally use cyan, magenta, yellow, and black inks (CMYK)
- +inks aborb colour
 - c.f. lights which emit colour
 - · CMY is the inverse of RGB
- → why is black (K) necessary?
 - inks are not perfect aborbers
 - mixing C + M + Y gives a muddy grey, not black
 - lots of text is printed in black: trying to align C, M and Y perfectly for black text would be a nightmare

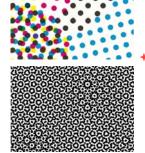
see slide 64 CMYK space

How do you produce halftoned colour?

- · print four halftone screens, one in each colour
- carefully angle the screens to prevent interference (moiré) patterns



Four colour halftone screens



- Standard angles Cyan Black 45° 75° Magenta
 - are at 30° relative to Yellow (least distinctive colour) is at 15° relative 90° Yellow

to Magenta and Cyan At bottom is the moiré pattern this is the best possible (minimal)

- moiré pattern produced by this optimal set of angles
- all four colours printed in black to highlight the effect

282

Magenta, Cyan & Black

286

Range of printable colours

- a: colour photography (diapositive)
- b: high-quality offset printing c: newspaper printing
- why the hexagonal shape? because we can print dots which only partially overlap making the situation more complex than for coloured lights

283

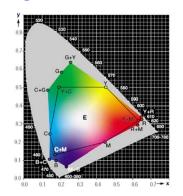
285

Beyond four colour printing

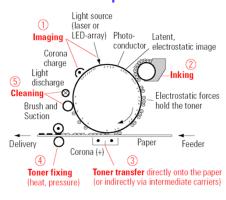
- printers can be built to do printing in more colours
 - gives a better range of printable colours
- six colour printing
 - for home photograph printing
 - dark & light cyan, dark & light magenta, yellow, black
- eight colour printing
 - 3× cyan, 3× magenta, yellow, black
 - 2× cyan, 2× magenta, yellow, 3× black
- twelve colour printing
 - 3× cyan, 3× magenta, yellow, black red, green, blue, orange

The extra range of colour

- +this gamut is for so-called HiFi colour printing
 - uses cyan, magenta, yellow, plus red, green and blue inks



Laser printer



287 Ink jet printers continuous ink jet (left) piezo ink jet (right) thermal ink jet or bubble jet (left) electrostatic ink jet (right)

Image Processing

- convolution
- nonlinear filtering
- point processing
- intensity/colour correction compositing
- halftoning & dithering
- compression
 - various coding schemes

289

29 I

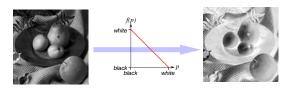
Point processing

- +each pixel's value is modified
- + the modification function only takes that pixel's value into account

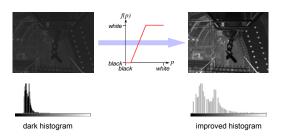
$$p'(i,j) = f\{p(i,j)\}$$

- ullet where p(i,j) is the value of the pixel and p'(i,j) is the modified value
- ullet the modification function, $f\left(p
 ight)$, can perform any operation that maps one intensity value to another

Point processing inverting an image



Point processing improving an image's contrast



Point processing modifying the output of a filter

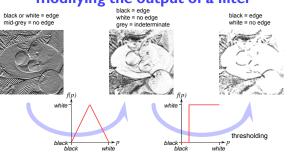
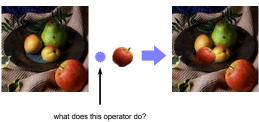


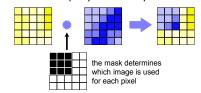
Image compositing

→ merging two or more images together



293 Simple compositing

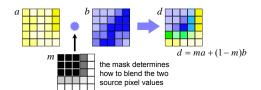
- +copy pixels from one image to another
 - only copying the pixels you want
 - use a mask to specify the desired pixels



292

Alpha blending for compositing

 instead of a simple boolean mask, use an alpha mask
 value of alpha mask determines how much of each image to blend together to produce final pixel



Differencing – an example

the two images are taken from slightly different viewpoints

take the difference between the two images $d=1 - \lvert a-b \rvert$

where 1 = white and 0 = black

black = large difference white = no difference

Differencing – an example

take the difference between the two images $d = \mid a - b \mid$ where 1 = white and 0 = black

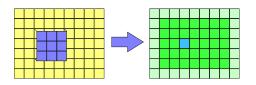
black = no difference white = large difference

295

297

+move a filter over the image, calculating a new value for every pixel

Filtering



30 I

Filters - discrete convolution

- + convolve a discrete filter with the image to produce a new image
 - in one dimension:

$$f'(x) = \sum_{i=-\infty}^{+\infty} h(i) \times f(x-i)$$
 where $h(i)$ is the filter

• in two dimensions:

$$f'(x,y) = \sum_{i=-\infty}^{+\infty} \sum_{j=-\infty}^{+\infty} h(i,j) \times f(x-i,y-j)$$

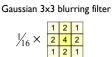
303

Example filters - averaging/blurring

Basic 3x3 blurring filter

$$\frac{\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}}{\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}} = \frac{1}{9} \times \frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}$$

Gaussian 5x5 blurring filter



Example filters - edge detection

Vertical Horizontal

Sobel filters

304

Diagonal

Roberts filters

306

Example filter - horizontal edge detection

305

Example filter - horizontal edge detection

after use of a 3×3 Prewitt horizontal edge detection filter mid-grey = no edge, black or white = strong edge

Median filtering

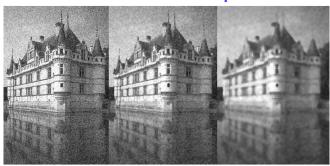
- → not a convolution method
- +the new value of a pixel is the median of the values of all the pixels in its neighbourhood

e.g. 3×3 median filter

10	15	17	21	24	27						
12	16	20	25	99	37	20,	16	21	24	27	
15	22	23	25	38	42		20	25	36	39	
18	37	36	39	40	44		23	36	39	41	
34	2	40	41	43	47						

sort into order and take median

Median filter - example



Original noisy image

307

309

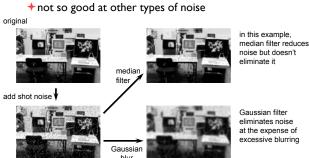
311

Small median filter

Large median filter

Median filter - limitations

- → copes well with shot (impulse) noise



Median filter - as an artistic effect

30×30 median filter

Filtering based on local image properties

Photoshop "Crystallize" filter with cell size 20

Filtering based on local image properties

Photoshop "Wind" filter

308

310

Filtering based on global image properties

313

315

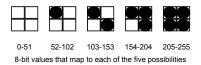
Photoshop "Auto Colour" adjustment

Halftoning & dithering

- mainly used to convert greyscale to binary
 - e.g. printing greyscale pictures on a laser printer
 - 8-bit to 1-bit
- → is also used in colour printing, normally with four colours:
 - cyan, magenta, yellow, black

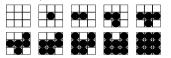
Halftoning

- +each greyscale pixel maps to a square of binary pixels
 - e.g. five intensity levels can be approximated by a 2x2 pixel sauare
 - I-to-4 pixel mapping



Halftoning dither matrix

→ one possible set of patterns for the 3×3 case is:



+these patterns can be represented by the dither matrix: 7 9 5

6 3 8

■ 1-to-9 pixel mapping

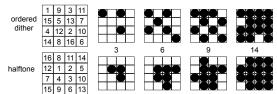
317

Rules for halftone pattern design

- mustn't introduce visual artefacts in areas of constant intensity e.g. this won't work very well:
- every on pixel in intensity level j must also be on in levels > j i.e. on pixels form a growth sequence
- pattern must grow outward from the centre
 - simulates a dot getting bigger
- all on pixels must be connected to one another
 - this is essential for printing, as isolated on pixels will not print very well

Ordered dither

- halftone prints and photocopies well, at the expense of large
- an ordered dither matrix produces a nicer visual result than a halftone dither matrix



Exercise: phototypesetters may use halftone cells up to size 16x16, with 256 entries; either construct a halftone dither matrix for a cell that large or, better, an algorithm to generate an appropriate halftone dither matrix

318

322

324

319

1-to-1 pixel mapping

- → a simple modification of the ordered dither method can be used
 - turn a pixel on if its intensity is greater than (or equal to) the value of the corresponding cell in the dither matrix

e.g.
$$\begin{aligned} \text{quantise 8 bit pixel value} \\ q_{i,j} &= p_{i,j} \text{ div } 15 \\ \text{find binary value} \\ b_{i,j} &= (q_{i,j} \geq d_{i \mod 4, j \mod 4}) \end{aligned}$$

		m			
d	m,n	0	1	2	3
	0	1	9	3	11
	1	15	5	13	7
n	2	4	12	2	10
	3	14	8	16	6

Error diffusion

- + error diffusion gives a more pleasing visual result than ordered dither
- +method:
 - work left to right, top to bottom
 - map each pixel to the closest quantised value
 - pass the quantisation error on to the pixels to the right and below, and add in the errors before quantising these

32 I

Error diffusion - example (I)

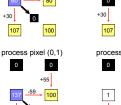
- → map 8-bit pixels to 1-bit pixels
 - quantise and calculate new error values

8-bit value	1-bit value	error		
$f_{i,j}$	$b_{i,j}$	$e_{i,j}$		
0-127	0	$f_{i,j}$		
128-255	1	$f_{i,j} - 255$		

• each 8-bit value is calculated from pixel and error values:

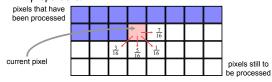
$$f_{i,j} = p_{i,j} + \frac{1}{2}e_{i-1,j} + \frac{1}{2}e_{i,j-1}$$

in this example the errors from the pixels to the left and above are taken into Error diffusion - example (2)

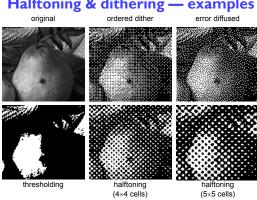


Error diffusion

- Floyd & Steinberg developed the error diffusion method in
- often called the "Floyd-Steinberg algorithm"
- their original method diffused the errors in the following proportions:



323 Halftoning & dithering — examples



Halftoning & dithering — examples

325

ordered dither halftoned with a very the regular dither more random than ordered dither and visible therefore looks more attractive to the human eye thresholding halftoning <128 ⇒ black the larger the cell size, the more intensity levels \geq 128 \Rightarrow white the smaller the cell, the less noticable the halftone dots

Course Structure — a review

+ Background [3L]

| images, human vision, displays

+ 2D computer graphics [4L]

| lines, curves, clipping, polygon filling, transformations

+ 3D computer graphics [6L]

| projection (3D \to 2D), surfaces, clipping, transformations, lighting, filling, ray tracing, texture mapping

| Background | Ba

327 328

filtering, compositing, half-toning, dithering,

What next?

- +Advanced graphics
 - Modelling, splines, subdivision surfaces, complex geometry, more ray tracing, radiosity, animation
- → Human-computer interaction
 - Interactive techniques, quantitative and qualitative evaluation, application design
- ◆Information theory and coding
 - Fundamental limits, transforms, coding
- → Computer vision
 - Inferring structure from images

And then?

→ Graphics

→ Image processing [3L]

encoding, compression

- multi-resolution modelling
- animation of human behaviour
- æsthetically-inspired image processing
- +HCI
 - large displays and new techniques for interaction
 - emotionally intelligent interfaces
 - applications in education and for special needs
 - design theory
- http://www.cl.cam.ac.uk/research/rainbow/