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What is Computer Science?

 Surprisingly hard to answer definitively
 Gets confused with IT, which is merely the use of 

present day technology

 We're trying to teach theory and practice that 
will defined future technology
 CS has strong theoretical underpinnings that 

stem from maths

 This short course is introductory material that 
touches on the absolute basics
 Examined indirectly – no specific exam question 

but the topics surface in later courses throughout 
the year



Topics

 Computer Components
 Brief history. Main components: CPU, memory, peripherals (displays, 

graphics cards, hard drives, flash drives, simple input devices), 
motherboard, buses.

 Data Representation and Operations
 Simple model of memory. Bits and bytes. Binary, hex, octal, decimal 

numbers. Character and numeric arrays. Data as instructions: von-
Neumann architecture, fetch-execute cycle, program counter (PC)

 Low- and High- level Computing
 Pointers. The stack and heap? Box and Pointer Diagrams. Levels of 

abstraction: machine code, assembly, high-level languages. Compilers 

and interpreters. Read-eval-print loop.
 Platforms and Multitasking

 The need for operating systems. Multicore systems, time-slicing. Virtual 
machines. The Java bytecode/VM approach to portability. ML as a high-
level language emphasing mathematical expressivity over input-output.



A Brief History of Computers



Analogue Computers
 You've probably been taught various electrical 

phenomena by analogy with mechanical systems
 Voltage ↔ water flow

 Electrical resistance ↔ mechanical resistance

 Capacitance ↔ compressed spring

 Works the other way: simulate mechanical systems 
using electrical components
 This is then an analogue computer

 Cheaper, easier to build and easier to measure than mechanical 
system

 Can be run faster than 'real time'

 BUT each computer has a specialised function

 Very good for solving differential equations. Used 
extensively for physics, esp. artillery calculations!



Input: Jacquard's Loom
 Not a computer per-se, but very important in the history 

of them. Jacquard wanted to create a textile loom that 
could remember how to create specific textiles

 Used many needles and realised he could create a 
series of template cards with holes to let through only 
some needles. Running a series of templates through in a 
specific order produced the garment.

 Basic idea for punch cards



Turing Machines

 Inspired by the typewriter (!), Alan Turing 
(King's) created a theoretical model of a 
computing machine in the 1930s. He broke the 
machine into:
 A tape – infinitely long, broken up into cells, 

each with a symbol on them
 A head – that could somehow read and 

write the current cell
 An action table – a table of actions to 

perform for each machine state and 
symbol. E.g. move tape left

 A state register – a piece of memory that 
stored the current state



Universal Turing Machines

 Alan argued that a Turing machine could be made 
for any computable task (e.g. sqrt etc)

 But he also realised that the action table for a given 
turing machine could be written out as a string, 
which could then be written to a tape.

 So he came up with a Universal Turing Machine. This 
is a special Turing Machine that reads in the action 
table from the tape
 A UTM can hence simulate any TM if the tape 

provides the same action table
 This was all theoretical – he used the models to 

prove various theories. But he had inadvertently set 
the scene for what we now think of as a computer!



Turing and the War



Note...

 ...A Turing machine made a shift from the analogue 
to the discrete domain (we are reading explicit 
symbols and not analogue voltages)
 In part this is because Turing needed it to be able to 

represent things exactly, even infinite numbers 
(hence the infinite tape)

 This is useful practically too. Analogue devices:
 have temperature-dependent behaviour
 produce inexact answers due to component 

tolerances
 are unreliable, big and power hungry



The Digital World

 When we have discrete states, the simplest 
hardware representation is a switch → digital 
world

 Going digital gives us:
 Higher precision (same answer if you repeat)
 Calculable accuracy (the answer is of known quality)
 The possibility of using cheaper, lower-quality components 

since we just need to distinguish between two states 
(on/off)

 One problem: no switches?



1940-58 Vacuum Tubes
 Vacuum tubes are really just modified lightbulbs that can act 

as amplifiers or, crucially, switches.

 By the 1940s we had all we needed to develop a useful 
computer: vacuum tubes for switches; punch cards for input; 
theories of computation; and (sadly) war for innovation

e-



Colussus
 1944, Bletchley park

 Designed to break the 
German Lorenz SZ40/42 
encryption machine

 Fed in encrypted messages 
via paper tape. Colussus 
then simulated the positions 
of the Lorenz wheels until it 
found a match with a high 
probability

 No internal program – 
programmed by setting 
switches and patching leads

 Highly specific use, not a 
general purpose computer

 Turing machine, but not 
universal



ENIAC
 Electronic Numerical Integrator and Computer

 1946, “Giant brain” to compute artillery tables for US military
 First machine designed to be turing complete in the sense 

that it could be adapted to simulate other turing machines
 But still programmed by setting switches manually...

 Next step was to read in 
the “action table” (aka 
program) from tape as 
well as the data

 For this we needed more 
general purpose memory 
to store the program, 
input data and output



Manchester Baby
 1948 a.k.a. mark I computer
 Cunning memory based on cathode ray tube. 

Used the electron gun to charge the phosphor on 
a screen, writing dots and dashes to the tiny screen

 A light-sensitive collector plate read the screen
 But the charge would leak away within 1s so they 

had to develop a cycle of read-refresh
 Gave a huge 2048 bits of memory!

phosphor

collector

Electron
gun

First 
Stored-Program 

Computer?





EDSAC
 Electronic Delay Storage Automatic Calculator
 First practical stored-program computer,       

built here by Maurice Wilkes et al.

 Memory came in the form of a 
mercury delay line

 Used immediately for research 
here.

 Although they did have to invent 
programming....

First 
Stored-Program 

Computer?





Storage: Stored-Program Machines

 So where do you store your programs and data?

Von-Neumann Harvard
Same memory for programs 

and data
Separate memories for 

programs and data
+ Don't have to specify a 
partition so more efficient 
memory use

- Have to decide in advance how 
much to allocate to each

+ Programs can modify 
themselves, giving great 
flexibility

+ Instruction memory can be 
declared read only to prevent 
viruses etc writing new 
instructions

- Programs can modify 
themselves, leaving us open to 
malicious modification
- Can't get instructions and data 
simultaneously (therefore 
slower)

+ Can fetch instructions and data 
simultaneously



1959-64 Transistors

 Vacuum tubes bulky, hot and prone to failure
 Solution came from Bell labs (telecoms research)

C

E

B

N

N

P



1965-70 Integrated Circuits
 Semiconductors could replace 

traditional electronics components → 
use a slice of semiconductor and 'etch' 
on a circuit

 End up with an Integrated Circuit (IC) 
a.k.a a microchip

 Much easier to pack components on an 
IC, and didn't suffer from the reliability 
issues of the soldering iron

Moore's Law: the number of transistors 
on an IC will double every two years





The Rise of Intel

 Intel started in 1968 manufacturing ICs, producing ICs 
with a particular target of memory (RAM, see later)

 1969 – commissioned to make 12 custom chips for a 
calculator (one for keyboard scanning, one for display 
control, etc)

 Not enough resource so instead proposed a single 
general-purpose logic chip that could do all the tasks

 1971 - Managed to buy the rights and sold the chip 
commercially as the first microprocessor, the Intel 4004



1971- Microprocessor Age

 The 4004 kick-started an industry and lots of 
competitors emerged

 Intel very savvy and began an “intel inside” 
branding assault with products like the 386

 Marketing to consumers, not system builders 
any more



The Rise of ARM

 After the BBC micro, Acorn wanted a new processor and set 
about designing a cheap, simple-to-implement CPU (using a 
RISC approach – see later)

 Apple was interested and started to work with them. 
Eventually the project unit was spun out to form Advanced 
RISC Machines (ARM) Ltd.

 Chips were very low power and cheap, but struggled against 
the might of intel's more complex chips

 BUT then the PDA/smartphone/mobile revolution came along 
and suddenly ARM had the perfect product – cheap, low 
power, simple and reasonable performance

 Now accounts for the majority of all 32-bit processor 
produced – and Cambridge-based too...



System-on-Chip (SoC)

 For smaller systems, often see hardware elements 
bundled together to form an SoC e.g. R-Pi

Memory
CPU+GPU

Ethernet+USB



The CPU in more Detail



Programs, Instructions and Data

 Recall: Turing's universal machine reads in an 
action table (=program) of instructions, which it 
then applies to a tape (=data)  We will assume 
a Von-Neumann architecture since this is most 
common in CPUs today.

Memory

Program Data

CPU



Simple Model of Memory

 We think of memory abstractly, as 
being split into discrete chunks, each 
given a unique address

 We can read or write in whole chunks
 Modern memory is big

Memory

0 1 2 3 4 5 6 7 8



Simple Model of a CPU
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Fetch-Execute Cycle I
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Fetch-Execute Cycle II

L6X L7Y AXYZ SZ8
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Fetch-Execute Cycle III

L6X L7Y AXYZ SZ8

Memory

63 12

0 1 2 3 4 5 6 7 8

Registers

12

63

PC

X

Y

Z

ALU

CPU

MAU

3

IB                 



Fetch-Execute Cycle IV

L6X L7Y AXYZ SZ8
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CPU Processing Units

 Other common units
 MAU – Memory Access Unit 
 ALU – Arithmetic Logic Unit
 FPU – Floating Point Unit
 BU – Branching Unit



Handling Numbers in the CPU



ALU Circuitry

 The ALU in the CPU is responsible for arithmetic 
operations. Exactly what is supported directly is CPU 
manufacturer-dependent

 Integer arithmetic is always supported, but there are 
issues:
 Overflow
 Representing fractional numbers
 Underflow (see floating point course)
 Negative numbers



Unsigned Integer Addition

 You should be happy that binary addition can use the 
same algorithm as decimal addition as taught in junior 
school.

 CPUs (or rather ALUs in them) implement this algorithm, 
but there is a practical issues: there is a set number of 
bits in the register that we can unintentionally exceed 
(overflow)

 The ALU has a carry flag (a single bit in a special register) 
that is switched on if the addition has a carry left after 
processing the most significant bit 

111
+ 001

001
+ 001

Carry flag: Carry flag:



Modulo Arithmetic

 Overflow takes us across the dotted 
boundary
 So 7+1=0 (overflow)
 We say this is (7+1) mod 8

0

6

7 1

2

34
5

... 2 3 4 5 6 7 8 9...

+

-



Unsigned Integer Subtraction

 Integer subtraction can proceed as decimal 
subtraction, 'borrowing' from the left if necessary

 If we still need to borrow after the left-most bit, this 
signifies an error and the carry flag is set.

011
- 001

001
- 010

Carry flag: Carry flag:



Negative Numbers

 All of this skipped over the need to represent 
negatives.

 The naïve choice is to use the MSB to indicate +/-
 1 in the MSB → negative
 0 in the MSB → positive

 This is the sign-magnitude technique

-7 = 1111

Negative
Normal positive 
representation of 7



Difficulties with Sign-Magnitude

 Has a representation of minus zero (1000
2
=-0) so 

wastes one of our 2n labels
 Addition/subtraction circuitry is not pretty

   1101
+ 0001
   1110

-5
+1
-6

+13
+1

+14

  1101
- 0001
  1100

-5
-1
-4

+13
-1

+12

Sign-mag
interpretation

Unsigned
interpretation

Our unsigned addition alg. Our unsigned subtraction alg.

Sign-mag
interpretation

Unsigned
interpretation



Alternatively...

 Gives us two discontinuities and a 
reversal of direction using normal 
addition circuitry!!

0

-2

-3 1

2

3-0
-1



Two's complement

0

-2

-1 1

2

3-4
-3

 How about this?
 One discontinuity again
 Efficient (no minus zero!)
 Crucially we can use normal 

addition/subtraction circuits!!
 “Two's complement”

 Positive to negative: Invert all the bits and add 1

 Negative to positive: Same procedure!!

1011 (-5) → 0100 → 0101 (+5)

0101 (+5) → 1010 → 1011 (-5)



Signed Addition

   1101
+0001
  1110

-3
+1
-2

+13
+1

+14

  1101
- 0001
  1100

-3
- +1

-4

+13
- +1
+12

2's-comp Unsigned

Our unsigned addition alg. Our unsigned subtraction alg.

2's-comp Unsigned



 So we can use the same circuitry for unsigned and 2s-
complement addition :-)

 Well, almost.

 The problem is our MSB is now signifying the sign and our carry 
should really be testing the bit to its right :-(

 So we introduce an overflow flag that indicates this problem

Signed Addition

   0100
+0100
   1000

+4
+4
-8

+4
+4
+8

2's-comp Unsigned

Carry flag: 0



Flags Summary

 When adding/subtracting
 The carry flag indicates an overflow for 

unsigned numbers
 The overflow flag indicates an overflow for 

signed integers



Fractional Numbers

 Scientific apps rarely survive on integers alone, but 
representing fractional parts efficiently is 
complicated.

 Option one: fixed point
 Set the point at a known location. Anything to 

the left represents the integer part; anything to 
the right the fractional part

 But where do we set it??
 Option two: floating point

 Let the point 'float' to give more capacity on its 
left or right as needed

 Much more efficient, but harder to work with
 Very important: dedicated course on it later this 

year.



Character Arrays

 To represent text, we simply have an encoding 
from an integer to a letter or character

 The classic choice is ASCII
 Takes one byte per character but actually only 

uses 7 bits of it so can represent 27=128 
characters



ASCII Codes



Other encodings

 128 letters is fine for English alphabet
 Turns out there are other alphabets (who 

knew?!)
 So we have unicode and other 

representations that typically take two bytes 
to represent each character

 Remember this when we come to look at 
Java next term, which uses 2-byte unicode as 
standard...



The Guts of Modern Systems



Desktop Systems Today

 Based on a core system plus peripherals:
 Input (mouse, keyboard, etc)
 Output (printer, display)
 Network adapter, etc

 Peripherals connect to buses in order to 
communicate with the core system 
 A bus is just a set of wires that can be used by 

multiple peripherals. Special control wires are 
used to ensure the data from two or more 
connected peripherals do not clash.

Mouse

Printer

Keyboard

Flash
drive



Typical Desktop Architecture

CPU

Northbridge

Southbridge

PCI Bus

Memory BusAGP BusGraphics
Card RAM

USB

Ethernet (LAN)

LPC Bus

Expansion 
cards

External
peripherals

Network

Serial I/O 
etc

Internal bus



The Motherboard

 An evolution of the circuitry between the CPU and 
memory to include general purpose buses (and later to 
integrate some peripherals directly!)

 Internal Buses
 ISA, PCI, PCIe, SATA, AGP

 External buses
 USB,Firewire, 

eSATA, PC card



  SRAM

  DRAM

  Flash

  Magnetic

Peripherals  

Motherboard  

CPU  

Memory Hierarchy (Typical)

Registers

CPU cache

Main memory

SD cards, SSDs...

Hard discs, tapes

System cache

Speed Size



Typical Memory Capacities
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Random Access Memory (RAM)
 The alternative to mercury delay lines is essentially a capacitor. A 

charged capacitor is a “1” and a discharged capacitor is a ”0”

 If we stick a capacitor together with a transistor we create a 
memory cell. Put lots of cells in a matrix and we can use the 
transistor to 'activate' a specific cell and ignore all others. In doing 
so, we can randomly jump around in the data (random access)

 This is Dynamic RAM (DRAM) and it is cheap because each cell is 
simple

 BUT: capacitors leak charge over time, so a “1” becomes a “0”. 
Therefore we must refresh the capacitor regularly and this slows 
everything down plus it drains power... 

Memory cell
(transistor
+capacitor)



Static RAM (SRAM)
 We can avoid the need to refresh by using Static RAM 

(SRAM) cells. These use more electronics (typically 6 
transistors per cell) to effectively self-refresh.

 This is 8-16x faster than DRAM

 But each cell costs more and takes more space so it's also 
about 8-16x more costly!

 And both DRAM and SRAM are volatile (lose power = lose 
data)

SRAM Memory Cell



Register Sizes

 Registers are fixed size, super-fast on-chip memory 
usually made from SRAM.

 When we build the CPU we have to decide how big to 
make them
 Bigger registers

 Allow the CPU to do more per cycle
 Mean we can have more main RAM (longer 

addresses can be supported)
 Too big and we might never use the whole length 

(waste of electronics)
 Smaller registers

 Less electronics (smaller, cooler CPUs)
 Too small and it takes more cycles to complete 

simple operations



Flash and SSDs
 Toshiba came up with Flash memory in the 1980s as a 

non-volatile storage without moving parts
 Works essentially by trapping charge in a non-conducting layer 

between two transistors (much more complex than this, but out of 
scope here)

 Slower than RAM and a limited number of writes, but still 
extremely useful

 No moving parts, small
 Used in USB flash drives, camera memory and now Solid State 

Discs.



Magnetic Media (Hard Discs)

 Lots of tiny magnetic patches on a 
series of spinning discs

 Can easily magnetise or 
demagnetise a patch, allowing us 
to represent bits

 Similar to an old cassette tape only 
more advanced

 Read and write heads move 
above each disc, reading or 
writing data as it goes by

 Remarkable pieces of engineering that can store terabytes (TB, 
1,000,000MB) or more.

 Cheap mass storage

 Non-volatile (the data's still there when you next turn it on)

 But much slower than RAM (because it takes time to seek to 
the bit of the disc we want – sequential access, not random 
access)



Graphics Cards

 Started life as simple Digital to Analogue Convertors 
(DACs) that took in a digital signal and spat out a 
voltage that could be used for a cathode ray screen

 Have become powerful computing devices of their own, 
transforming the input signal to provide fast, rich 
graphics.

 Todays GCs are based around GPUs with lots of tiny 
processors (cores) sharing some memory. The notion is 
one of SIMD – Single Instruction Multiple Data
 Every instruction is copied to each core, which 

applies it to a different (set of) pixel(s)
 Thus we get parallel computation → fast
 Very useful for scientific computing
 CPUs better for serial tasks 



Memory Manipulation



Memory and Pointers

 In reality the compiler stores a mapping from 
variable name to a specific memory address, along 
with the type so it knows how to interpret the 
memory (e.g. “x is an int so it spans 4 bytes starting 
at memory address 43526”).

 Lower level languages often let us work with 
memory addresses directly. Variables that store 
memory addresses are called pointers or sometimes 
references

 Manipulating memory directly allows us to write fast, 
efficient code, but also exposes us to bigger risks
 Get it wrong and the program 'crashes' .



Pointers: Box and Arrow Model

 A pointer is just the memory address of the first 
memory slot used by the variable

 The pointer type tells the compiler how many 
slots the whole object uses

xptr2

xxptr1int x = 72;
int *xptr1 = &x;
int *xptr2 = xptr1;



Example: Representing Strings I

 A single character is fine, but a text string is of variable length – 
how can we cope with that? 

 We simply store the start of the string in memory and require it 
to finish with a special character (the NULL or terminating 
character, aka '\0')

 So now we need to be able to store memory addresses → use 
pointers

 We think of there being an array of characters (single letters) 
in memory, with the string pointer pointing to the first element 
of that array

C S R U L E S

11

\0

11 12 13 14 15 16 177 8 9 10 18



Example: Representing Strings II

stringPointer

h e l l o  char letterArray[] = {'h','e','l','l','o','\0'};
  
  char *stringPointer = &(letterArray[0]);

  printf(“%s\n”,stringPointer);

  letterArray[3]='\0';

  printf(“%s\n”,stringPointer);

  

\0



Platforms and Operating Systems
(Software to control your hardware)



The Origins of the OS

 A lot of the initial computer programs covered the same 
ground – they all needed routines to handle, say, 
floating point numbers, differential equations, etc.
 Therefore systems soon shipped with libraries: built-in 

chunks of programs that could be used by other 
programs rather than re-invented.

 Then we started to add new peripherals (screens, 
keyboards, etc).
 To avoid having to write the control code (“drivers”) 

for each peripheral in each program the libraries 
expanded to include this functionality

 Then we needed multiple simultaneous apps and users
 Need something to control access to resources...



Operating System

 Now sits between the application 
and the hardware

 Today's examples include MS 
Windows, GNU Linux, Apple OSX and 
iOS, Google Android, etc.

 Today's applications depend on 
huge pieces of code that are in the 
OS and not the actual program code

 The OS provides a common interface 
to applications
 Provides common things such as 

memory access, USB access, 
networking, etc, etc.Hardware

Operating System

Application

User



Timeslicing

 Modern OSes allow us to run many programs at 
once.  Or so it seems. In reality a CPU time-
slices:
 Each running program (or “process”) gets a 

certain slot of time on the CPU
 We rotate between the running processes with 

each timeslot
 This is all handled by the OS, which schedules the 

processes. It is invisible to the running program.

A B C

time

A B C A B CD D

Process D 
started

Processes 
A,B,C running 



Context Switching

 Every time the OS decides to switch the running 
task, it has to perform a context switch

 It saves all the program's context (the program 
counter, register values, etc) to main memory

 It loads in the context for the next program
 Obviously there is a time cost associated with 

doing this...



What Time Slice is Best?

 Longer 
 The computer is more efficient: it spends more 

time doing useful stuff and less time context 
switching

 The illusion of running multiple programs 
simultaneously is broken

 Shorter
 Appears more responsive
 More time context switching means the overall 

efficiency drops
 Sensible to adapt to the machine's intended usage. 

Desktops have shorter slices (responsiveness 
important); servers have longer slices (efficiency 
important)



The Kernel

 The kernel is the part of the OS that 
runs the system
 Just software
 Handles process scheduling (what gets 

what timeslice and when)
 Access to hardware
 Memory management

 Very complex software – when it 
breaks... game over.



The Importance of APIs

 API = Application Programming Interface

 Software vendors ship their libraries with APIs, which 
describes only what is need for a programmer to use the 
library in their own program.
 The library itself is a black box – shipped in binary 

form.
 Operating systems are packed with APIs for e.g. window 

drawing, memory access, USB, sound, video, etc.
 By ensuring new versions of the software support the 

same API (even if the result is different), legacy 
software can run on it.



Platforms

 A typical program today will be compiled for a 
specific architecture, a specific operating system 
and possibly some extra third party libraries.
 So PC software compiled for linux does not work 

under Windows for example.
 We call the {architecture, OS} combination a 

platform
 The platforms you are likely to encounter here:

 Intel/Linux
 Intel/Windows
 Intel/OSX
 Apple/iOS
 ARM/Android



Multicore Systems

 Ten years ago, each generation of CPUs packed 
more in and ran faster. But:
 The more you pack stuff in, the hotter it gets
 The faster you run it, the hotter it gets
 And we got down to physical limits anyway!!

 We have seen a shift to multi-core CPUs
 Multiple CPU cores on a single CPU package 

(each runs a separate fetch-execute cycle)
 All share the same memory and resources! 



The New Challenge

 Two cores run completely independently, so a 
single machine really can run two or more 
applications simultaneously

 BUT the real interest is how we write programs 
that use more than one core
 This is hard because they use the same 

resources, and they can then interfere with 
each other

 Those sticking around for IB CST will start to 
look at such 'concurrency' issues in far more 
detail



Virtual Machines

 Go back 20 years and emulators were all the rage: 
programs on architecture X that simulated architecture 
Y so that programs for Y could run on X

 Essentially interpreters, except they had to recreate the 
entire system. So, for example, they had to run the 
operating system on which to run the program.

PC operating system

Sega O/S

Game

 Now computers are so fast 
we can run multiple virtual 
machines on them

 Allows us to run multiple 
operating systems 
simultaneously!



Virtualisation

 Virtualisation is the new big thing in business. Essentially the 
same idea: emulate entire systems on some host server

 But because they are virtual, you can swap them between 
servers by copying state

 And can dynamically load your server room!

Windows 7

Windows 7

Windows xp

Windows 7

Ubuntu

Windows 7

Windows 7

Ubuntu

Android

Heavy load Light load



Levels of Abstraction
(How humans can program computers)



Levels of Abstraction for Programming

High Level Languages

Procedural Languages

Assembly

Machine Code

Human friendly

Geek friendly

Computer friendly

                    Compile



Machine Code

 What the CPU 'understands': a series of instructions that it 
processes using the the fetch-execute technique

 E.g. to add registers 1 and 2, putting the result in register 
3 using the MIPS architecture:

00000000001000100001100000100000

Register 1 Register 3 Addition

Register 2 Shift amount (N/A)OP type



RISC

 The simplest way to create a CPU is to have 
a small number of simple instructions that 
allow you to do very small unit tasks
 E.g. load a value to a register, add two 

registers
 If you want more complicated things to 

happen (e.g. multiplication) you use just use 
multiple instructions

 This is a RISC approach (Reduced Instruction 
Set arChitecture) and we see it in the ARM 
CPUs



CISC

 Actually, two problems emerged
 People were coding at a low level and got sick 

of having to repeatedly write multiple lines for 
common tasks

 Programs were large with all the tiny instructions. 
But memory was limited...

 Obvious soln: add “composite” instructions to 
the CPU that carry out multiple RISC instructions 
for us
 This is a CISC (Complex Instruction Set 

arChitecture) and we see it in the Intel chips
 Instructions can even be variable length



RISC vs CISC

 Every instruction 
takes one cycle

 Smaller, simpler 
CPUs

 Lower power 
consumption

 Fixed length 
instructions

 Multiple cycles 
per instruction

 Smaller 
programs

 Hotter, complex 
CPUs

 Variable length 
instructions

RISC CISC



RISC vs CISC

 CISC has traditionally dominated (for 
backwards compatibility and political 
reasons) e.g. Intel PCs

 RISC was the route taken by Acorn, 
and resulted in the ARM processors 
e.g. smartphones



Practicalities: Microcode

 An easy way to create a CISC processor is to use a 
RISC processor at the core, and then have an 
interface layer that converts each composite 
instruction to a set of RISC instructions

 It was quickly realised that this interface could be in 
software if the hardware could execute it very fast
 Very high speed ROM on the CPU to store this

 This has led to the notion of microcode, which 
specifies the translations.
 Microcode is set by the CPU manufacturer and 

not something the end-user or developer is 
expected to fiddle with!



Instruction Sets

 At first, every CPU that came out had its own, 
special instruction set. This meant that any program 
for machine X would be useless on machine Y

 We needed a standardised set of instructions
 Intel drew up the 8086 specification in 1978
 Manufacturers produced CPUs that understood 

8086 instructions and the so-called PC was born
 Modern PCs still support this instruction set, albeit 

manufacturers add their own special commands to 
take advantage of special features (MMX, etc).

 Each set of instructions is referred to as an 
architecture



Assembly
 Essentially machine code, except we replace binary 

sequences with text that is easier for humans
 E.g. add registers 1 and 2, storing in 3:

 Produces small, efficient machine code when 
assembled

 Almost as tedious to write as machine code
 Becoming a specialised skill...
 Ends up being architecture-specific if you want the most 

efficient results :-(

add $s3, $s1, $s2



Instruction Set Architectures (ISAs)

 When you create a CPU, you decide the instructions it will 
work with. A given the set is an (instruction set) architecture 
(ISA)

 Initially all architectures different → no software 
compatibility

 A few have emerged as de-facto standards
 x86 – the intel line of CPUs right back to the 1980s (a.k.a PC arch)

 PowerPC – Apple/IBM/Motorola's RISC competitor to x86

 ARM – RISC-based ISA based on Acorn's processors

 MIPS – RISC-based ISA used in embedded designs



Compilers

 A compiler is just a software program that converts 
the high-level code to machine code for a 
particular ISA (or some intermediary)

 Writing one is tricky and we require strict rules on the 
input (i.e. on the programming language). Unlike 
English, ambiguities cannot be tolerated!

Write
(text)

Compile

Machine
code

(binary)
Errors to fix

Compile succeeds
(eventually!)



Handling Architectures 

Source Code (e.g. C++)

Binary executable
for PC (x86)

Binary executable
for ARM

C++ Compiler
for ARM

C++ Compiler
for x86



Interpreters

 The final binary is a compiled program that can 
be run on one CPU architecture.

 As computers got faster, it became apparent 
that we could potentially compile 'on-the-fly'. 
i.e. translate high-level code to machine code 
as we go

 Call programs that do this interpreters
Architecture agnostic – 
distribute the code and 
have a dedicated 
interpreter on each 
machine

Have to distribute the code

Easier development loop Errors only appear at 
runtime
Performance hit – always 
compiling



Types of Languages

 Declarative - specify what to do, not 
how to do it. i.e. 
 E.g. HTML describes what should appear on a web 

page, and not how it should be drawn to the screen
 E.g. SQL statements such as “select * from table” tell a 

program to get information from a database, but not 
how to do so

 Imperative – specify both what and how
 E.g. “double x“ might be a declarative instruction 

that you want the variable x doubled somehow. 
Imperatively we could have “x=x*2” or “x=x+x”



Functional vs Imperative

 Functional languages are a subset of 
declarative languages
 You will be learning a functional language 

this term: ML
 This may look like the imperative languages 

you have seen before, but it is a little different
 Specifically, functions can't have side-effects. 

i.e. the output can only depend on the inputs
 Example of side-effect:

t=3
f(y) = y*t
f(2)  ←6
t=1
f(2) ←3



Functional vs Imperative

 We'll look more closely at this when 
you do the Object-Oriented 
Programming (OOP) course next term

 For now, just appreciate that the new 
language you're about to meet has 
some advantages
 Fewer opportunities for error
 Closer to maths
 All of you start at the same level



Where Do You Go From Here?

 Paper 1
 FoCS: look at the fundamentals of CS whilst learning ML

 Discrete Maths: build up your knowledge of the maths needed for 
good CS

 OOP/Java: look at imperative programming as it is used in the 
'real world'

 Floating Point: learn how to use computers for floating point 
computations (and when not to trust them..!)

 Algorithms: The core of CS: learn how to do things 
efficiently/optimally

 Paper 2
 Digital Electronics: hardware in detail

 Operating Systems: an in-depth look at their workings

 Probability: learn how to model systems

 Software Design: good practice for large projects

 RLFA: an intro to describing computer systems mathematically


