
1

Compiler Construction

Lent Term 2013

Lecture 6 (of 16)

Timothy G. Griffin

tgg22@cam.ac.uk

Computer Laboratory

University of Cambridge

•  Functions as “first class” values
•  Heap allocated closures

•  A few simple optimizations:
–  Inline expansion

–  Constant folding

–  Eliminating tail recursion

2

Idea --- a functional value is a pointer to a �closure�

add21

a = 21

Where should these

closures be stored??

code

for

g

Code array

add17

a = 17

g address

g address

A closure is a record containing
the address of a function AND

the values of its free variables

Problem: in the simple call

stack the argument “a” (needed in

body of g) does not survive the

destruction of f’s activation record.

A “functional value”
is a pointers to a

closure.

David Wheeler: "All problems in computer science

can be solved by another level of indirection"

Return to example: How do functional

values find their free-var values?

c

a1 = v1

h address

a2 = v2

 ….

ak = vk

•  Push arguments ui on stack
•  Push c on stack

•  Call h:

–  Build activation record for h
–  Body of h must access non-local

vars using indirection through c.

6

Another example

7

Closure conversion (similar to �lambda lifting�)

12

The ultimate tail-recursive function

fun while c b r = !
 if c() !
 then r !
 else while c b (b ()) !
 !

