
1 

Compiler Construction 
Lent Term 2013 

 
Lecture 5  (of 16) 

 
Timothy G. Griffin 
tgg22@cam.ac.uk 

 
 

Computer Laboratory 
University of Cambridge   



2 

 LECTURES 5 
First-order functions/procedures    

 
•  Block structure  
•  Very simple functions 
•  The call stack, stack frames 
•  Caller and Callee 
•  Need for calling conventions  
•  A simple stack-oriented VM model 
•  Nested functions and possible 

modifications needed 



3 

(Nested) Block Structure  

{ x : int; !
  y : bool; !
  …. !
  If (e1) { !
     z :int  = x + y; !
     w :string = “hello”; !
     if (e2) { !
        u : int = size (w); !
        v : int = u + z + x; !
!
        … visible : x y z w u v !
     } !
!
   … visible: x y z w !
  } !
!
   … visible: x y !
} !
visible: !

We need to implement  
this in a world with one  
large “flat” scope.  
 
How do we allocate  
space for the values  
associated with the  
variables, and how do  
we find these  
values at run-time?  



4 

(Nested) Block Structure (2)  

{ x : int; !
  y : bool; !
  …. !
  If (e1) { !
     z :int  = x + y; !
     y :string = “hello”; !
     if (e2) { !
        u : int = size (y); !
        v : int = u + z + x; !
!
        … visible : x z y u v !
     } !
!
   … visible: x z y !
  } !
!
 … visible: x y !
} !
visible: !

And we must  
Correctly implement  
Name binding rules. 



5 

Smells like LIFO, so use a stack  

B4 

B3 

B2 

B1 

…. 

…. 

…. 

…. 

…. 

Execution  

B1 

Possible run-time “activations”  
of these blocks 

B1 
B2 

B3 

B1 
B2 

B1 
B4 
B1 

B1 B1 
B4 



6 

The same is seen function calls   

!
let fun f (x) = x + 1 !
    fun g(y) = f(y+2)+2 !
    fun h(w) = g(w+1)+3 !
in !
   h(h(17)) !
end  !

h ! h !
g !

h !
g !

f !

h !

g !

h ! h ! h !
g !

h !
g !

f !

h !

g !

h !

Execution  

The run-time data structure is  
the call stack containing an  
activation record for each function  
invocation.   



Caller and Callee 

!
fun f (x, y) = e1 !
!
… !
!
fun g(w, v) = !
    … f(e2, e3) … !
!

With respect to f, we say  
that g is the caller  
while f is the callee 

Recursive functions can play  
both roles at the same time! 



Caller and Callee need a contract 

code for f’s body 
f: 

code generated 
for caller 
        … 
 
 
 
       …  

Caller prolog  
Jump to f  
Caller epilog   

Callee prolog  

Callee epilog  

code generated 
for callee 
 

 
•  Where are argument values 

placed?  
•  How does the body of callee find 

them? 
•  How does code for callee jump 

back to m+1 to resume execution 
of caller code? 

•  Does the caller or callee build an 
activation record?  

•  Does the caller or callee restore 
the stack or any other temporary 
locations used?  

  

m: 
m+1: 

Sample Questions  

Who, What, Where?  



9 

“Calling conventions” answer those questions   

 
•  Platform (OS+ISA) specific  
•  ISA specific  
•  Language specific  
•  Compiler specific 
•  …  

Calling conventions can come in many flavors and  
in many levels of abstraction  



10 

A language-level calling convention, rather 
informal 

http://cm.bell-labs.com/cm/cs/who/dmr/clcs.html The C Language Calling Sequence 
S. C. Johnson and D. M. Ritchie 
Bell Laboratories, September, 1981 

The Basic Call/Return Process 
 
The following things happen during a C call and return: 
 
1. The arguments to the call are evaluated and put in an agreed place. 
2. The return address is saved on the stack. 
3. Control passes to the called procedure. 
4. The bookkeeping registers and register variables of the calling procedure are saved so 
that their values can be restored on return. 
5. The called procedure obtains stack space for its local variables, and temporaries. 
6. The bookkeeping registers for the called procedure are appropriately initialized. By now, 
the called procedure must be able to find the argument values. 
7. The body of the called procedure is executed. 
8. The returned value, if any, is put in a safe place while the stack space is freed, the calling 
procedure's register variables and bookkeeping registers are restored, and the return 
address is obtained and transferred to. 
Some machine architectures will make certain of these jobs trivial, and make others 
difficult. These tradeoffs will be the subject of the next several sections. 



A simple scenario  

On our first pass we will assume that  
  (1) functions cannot return functions  
       as results or take functions as arguments and  
  (2) functions are not nested. 

On our first pass we will use a simple stack-oriented 
machine abstraction. 
  
Note that both stack-oriented and register-oriented 
machines use a call stack with activation records 
(aka “stack frames”).  
 
Call stack vs. operand stack.  Conceptually distinct but 
in a stack-oriented machine may want to use same stack  
for both roles… 



12 

Simple Call Stack 
(we will implement this in the VSM) 

stack             sp 
pointer  
 Current “working stack” 

Stack[fp] contains  
the fp of the  
calling procedure 

     FP 
     RA 

Stack[fp + 1] contains  
return address 

Stack[fp + 2]  to Stack[fp + k]  
 values of local variables 

Stack[sp] = next available slot at  
                   top of stack 

Current stack frame 
  (activation record) 

Previous stack frame 
         (of caller) 

Stack[fp - 1]  to Stack[fp - n]  
are arguments passed by caller 

 
            
fp    frame pointer  
 
 
 
 



13 

Our “call” operation 

call f  

cp 

Code 

FREE sp 

fp 

j : call f 

f : …….. cp 

Code 

sp 

fp 

j : call f 

f : …….. 

FREE 
j+1 

caller’s 
 frame 

Note that  
this is a VM  
abstraction.  
At the level of  
a hardware ISA 
(MIPS, x86, …) 
call will be 
implemented  
with a sequence  
of many  
instructions ….  



14 

Hardware implementation of “call”? 

We need to  
  (1) push fp of caller on stack  
  (2) set current fp  
  (3) push return address on stack 
  (4) jump to address of caller  

By using a VM we have “kicked the can down the road” for  
dividing the work between caller and callee.  
 
It seems natural that 1-4 all be done by the caller.  
 
But it is possible to imagine 1-3 being done by callee if it could  
find the return address somewhere (perhaps the hardware has 
a special kind of jump that saves the address of the next  
instruction in a special register ….)  



15 

return  

return  

cp 
Code 

sp 

fp 

j : return 

m : …….. 

FREE 

 m:  

value 

cp 

Code 

sp 

fp 

j : return 

m : …….. 

FREE 
value 

As with call 
there are still 
various options 
for the caller/callee 
division of labor 
at the hardware 
level.  



16 

Translation of function call   

 f(e_1, …, e_n) 

code for e_1 

call k 

code for e_n 

: 
: 

: 
: 

This will leave 
the values of each 
arg on the stack,  
with the value of  
e_n at the top 

k = address of  
      code for f  

return e; 

return 

code for e 



17 

First step beyond simple scenario: 
Nested functions 

fun f(x) { 
   let a = …; 
   fun h(y) { 
     let b = …;  
     fun g(w) { 
        let c = …; 
        if ..  
        then return a;  
        else return h(c) 
     } 
     return b + g(y);  
   }  
   return x + h(a); 
} 
 
f(17) 
 

How this call to h  
access the value of  
a and x?  

f’s frame 
a 

17 

h’s frame 

b 

g’s frame 

c 

x 

h’s frame 

b 



But first, a word about “dynamic 
binding” --- IT IS A VERY BAD IDEA 

!
let val x = 1 !
    fun g(y) = x + y !
    fun h(x) = g(x) + 1   !
in !
   h(17) !
end  !

With good old static  
binding we get 19. 

With insane dynamic  
binding we get 35. 

We will stick to static binding …  



19 

Alternative 1: Dijkstra Displays 

     a 

     x 

    :  : 

     b 

    :  : 

f 

f 

g 

    :  : 

h 
fun f(x) { 
   let a = …; 
   fun h(y) { 
     let b = …;  
     fun g(w) { 
        let c = …; 
        if ..  
        then return a;  
        else return h(c) 
     } 
     return b + g(y);  
   }  
   return x + h(a); 
} 
 
 

Depth 0 

Depth 1 

Depth 2 

F[0] 

(+) at run-time 
only need a fixed 
number of indirections 
to find the value of a 
non-local variable 
 
(-)  slows down non-local  
variable access 

h 

F[2] 

F[1] 

     c 

Where to store 
The array F? 
 
How is it managed? 

Use an array 
F[d] to point at 
the most recent 
activation record 
at nesting  
depth d.   



20 

Alternative 2: Single Static Link per Frame  

     a 

     x 

    a 
    :  : 

     b 
    :  : 
    y 

f 

h 

g     :  : 
    c 

h fun f(x) { 
   let a = …; 
   fun h(y) { 
     let b = …;  
     fun g(w) { 
        let c = …; 
        if ..  
        then return a;  
        else return h(c) 
     } 
     return b + g(y);  
   }  
   return x + h(a); 
} 
 
 

Static frame pointer 
Depth 0 

Depth 1 

Depth 2 

If function g is at static nesting depth i,  
then use a single static link to the most  
recent frame for nesting depth i-1. 

(+) takes 
less time to set up and  
tear down.  
 
(-) At run-time, need to  
“chase pointers” to find 
the value of a non-local  
variable. 



21 

Alternative 3: “Lambda Lifting”  

fun f(x) { 
   let a = …; 
   fun h(y) { 
     let b = …;  
     fun g(w) { 
        let c = …; 
        if ..  
        then return a;  
        else return h(c) 
     } 
     return b + g(y);  
   }  
   return x + h(a); 
} 
 
f(17) 
 

fun g’(w, x, a, y, b) { 
   let c = …; 
   if ..  
   then return a;  
   else return h’(c, x, a ) 
} 
fun h’(y, x, a) { 
   let b = …; 
   return b + g’(y, x, a, y, b)  
}  
 
fun f’(x) { 
   let a = …; 
   return x + h’(a, x, a); 
} 
 
f’(17) 



22 

Stack 
Evaluation  

fun g’(w, x, a, y, b) { 
   let c = …; 
   if ..  
   then return a;  
   else return h’(c, x, a) 
} 
fun h’(y, x, a) { 
   let b = …; 
   return b + g’(y, x, a, y, b)  
}  
 
fun f’(x) { 
   let a = …; 
   return x + h’(a, x, a); 
} 
 
f’(17) 

     a 

     x 

    a 
    x 

    :  : 
    a 

     b 
    :  : 

    a 
    x 
    y 

    y 
    b 

f’ 

h’ 

g’     :  : 

    a 
    x 
    c 

h’ 

Problem : can lead to a lot of  
duplication on the stack ….  



23 

A Classic Trade Off 

Lower Call-time set up cost  
(on a stack-oriented machine) 

Lower run-time 
cost of variable 
access  

Displays 

Static Pointer 
Chains 

Where we want 
to be … 

lambda  
lifting 



24 

What about functions-as-values? 

fun f(a : int) : int -> int  
{  
   fun g(x :int) : int {return a + x;}  
   return g;  
}  
 
let add21 : int -> int  = f(21);  
let add17 : int -> int  = f(17);  
 
add17(3) + add21(-1)  

Oh NO!  Our previous approaches 
no longer work!  
 
The values associated with “a” have to  
outlive f’s activation records!  



25 

Similar problem with the lifetime of 
reference cells 

fun f(a : int) : int ref  
{  
   let b : int ref := a;  
   return b;  
}  
 
let z : int ref = f(17); 
 
!z  
 

We need some way to store data that outlives the activation  
record in which it is created.  
 
Solution:  The “Heap” ….  


