Compiler Construction
Lectures 13 - 16

1. Return to lexical analysis :
application of Theory of Regular
Languages and Finite Automata

2. Generating Recursive descent
parsers

Beyond Recursive Descent Parsing |
Beyond Recursive Descent Parsing Il

ol

Lent Term, 2013

Lecturer: Timothy G. Griffin

Generating Lexical Analyzers

Parser

Source Lexical
— —tokens ——
Program Analyzer
DFA Transitions

| Scanner
Generator
(11 LEX ”

Lexical specification

The idea : use reqular expressions as the basis of a
lexical specification. The core of the lexical analyzer is
then a deterministic finite automata (DFA)

Recall from Regular Languages and Finite
Automata (Part 1A)

Regular expressions over an alphabet X

each symbol a € X is a regular expression

€ is a regular expression

() is a regular expression

e if 7 and s are regular expressions, then so is (7|s)
e if 7 and s are regular expressions, then so is s

e if 7 is a regular expression, then so is (7)*

Every regular expression is built up inductively, by finitely many
applications of the above rules.

(N.B. we assume €, {, (,), |, and * are not symbols in X.)

Slide 5

Traditional Regular Language Problem

Given a regular expression,
e

and an input string ; determine if WE L(e)

One method: Construct a DFA M from e and test if it accepts w.

Something closer to the “lexing
problem?”

Given an ordered list of regular expressions,

el e2 [11 ek

and an input string 1 find a list of pairs

(i, w), (5, wy), ... (i, W,)
such that
) w=ww,..w,
2) w, EL(el.j)
3) w,EL(e,)—=i;<s (priority rule)
4) Vj:Vueprefix(w, ,w, ,-w)iu=¢

J+177)

—Vs:wuL(e,) (longest match)

5

Define Tokens with Regular Expressions (Finite
Automata)

Keyword: if

This FA is really shorthand for:

Define Tokens with Regular Expressions (Finite

Automata)

Regular Expression Finite Automata Token
i':eyw"d KEY(IF)
Keyword
then KEY(then)

Identifier:
() [a-zA-Z] ID(s)

[a-zA-Z][a-zA-Z0-9]*

Define Tokens with Regular Expressions (Finite

Automata)
Regular Expression Finite Automata Token
[0-9]
number: —>®—>
[0-9][0-9]* [0-9] NUM(n)
[0-9]
real: 1
([0-9]+ ‘.’ [0-9]*) [0-9] NUM(n)
| ([0-9]* °." [0-9]+) .
[0-9]

-

[0-9]

No Tokens for “White-Space”

[A-za-z0-9"]

White-space:

([] [] I ‘\n’ I ‘\t’)+

| ‘%’ [A-Za-z0-9' ‘1+'\n’

9
Constructing a Lexer

INPUT: _
an ordered Construct all Construct a single Construct a single
list of regular corresponding non-deterministic deterministic

finite automata finite automata finite automata

NFA,
NFA, NFA) DFA
NFA

k

expressions

€
-
e

k

(1) Keyword : then

(2) Ident : [a-z][a-z]* ‘

(2) White-space: ‘ °

What about longest match?

Start in initial state,

Repeat:
(1) read input until dead state is
reached. Emit token associated
with last accepting state.
(2) reset state to start state

| = current position, $=EOF

’ current state ‘

Input

[then thenx$
tlhen thenx$
thlen thenx$
the|n thenx$
then| thenx$
then |thenx$
then| thenx$
then |thenx$
then tlhenx$
then |thenx$
then tlhenx$
then th|enx$
then the|nx$
then then|x$
then thenx|$

OO NP, WN-_2O0ON_LOCAPLWON - €

‘/J‘ last accepting state

A~ WONO

5
5 EMIT KEY(THEN)
0 RESET

7

7 EMIT WHITE()
0 RESET

OO, WN

11
then thenx$| EMIT ID(thenx)
Predictive (Recursive Descent) Parsing
Can we automate this?
(G5) int tok = getToken();
void advance() {tok = getToken();}
S: =ifE then Selse S void eat (int t) {if (tok == t) advance(); else error();}
| begin S L void SO {switch(tok) {
| print E case IF: eat(IF); E(); eat(THEN);
s(Q; eat(ELSE); SO ; break;
case BEGIN: eat(BEGIN); SO; L(Q; break;
E ::= NUM = NUM case PRINT: eat(PRINT); E(Q); break;
" default: error(Q);
13
L ::=end void LO {switch(tok) {
| ;S L case END: eat(END); break;
case SEMI: eat(SEMI); SO ; L(Q; break;
default: error(Q);
13
void EQ) {eat(NuM) ; eat(EQ); eat(NuMm); }
Parse corresponds to a left-most derivation
constructed in a “top-down” manner 1

From Andrew Appel, “Modern Compiler Implementation in Java” page 46

Elliminate Left-Recursion

A
Immediate left-recursion /I%
A
A:=Aal |Aa2] . .. |Adk | AN
B1|B2|...|pn % o
A
4 AN
Az=BIA|B2A|...|BnA N
/] N
A:=alA|a2A|...|akA e €

.. . . . 13
For eliminating left-recursion in general, see Aho and Ullman.

Eliminating Left Recursion

Note that
E:=Tand (gfi)_ ES$
Ex=E+T C
will cause problems E.=TE
(G2 since FIRST(T) will be included B
S =E$ in FIRST(E + T) ---- so how can E =+ TE
" we decide which poduction . T
E=E+T To use based on next token? : -
| E - T “ . n'
T Solution: eliminate “left recursion™! T=FT
T:=T*F Ew=TE T w=*FT
I::'/F E s s TE | /FT
| | |
F ::=NUM F ::= NUM
| 1D | ID
[(E) [(E)
4

FIRST and FOLLOW

For each non-terminal X we need to compute

FIRST[X] = the set of terminal symbols that
can begin strings derived from X

FOLLOWI[X] = the set of terminal symbols that
can immediately follow X in some
derivation

nullable[X] = true of X can derive the empty string,
false otherwise

nullable[Z] = false, for Zin T

nullable[Y1 Y2 ... YK] = nullable[Y1] and ... nullable[YK], for Y(i) in N union T.

FIRST[Z] ={Z}, for Zin T

FIRST[X Y1 Y2 ... YK] = FIRST[X] if not nullable[X]

FIRST[X Y1 Y2 ... Y] =FIRST[X] union FIRST[Y1 ... Yk] otherwise

Computing First, Follow, and nullable

For each terminal symbol Z
FIRST[Z] := {Z};
nullable[Z] := false;

For each non-terminal symbol X
FIRST[X] := FOLLOWI[X] := {};
nullable[X] := false;

repeat
for each production X 2> Y1Y2 ... Yk
if Y1, ... Yk are all nullable, ork =0
then nullable[X] := true
for each i from 1 to k, each j fromi + 1 to k
if Y1 ... Y(i-1) are all nullable ori =1
then FIRST[X] := FIRST[X] union FIRSTLY(i)]
if Y(i+1) ... Yk are all nullable or ifi = k
then FOLLOWI[Y (i)] := FOLLOWTIY(i)] union FOLLOWI[X]
if Y(i+1) ... Y(j-1) are all nullable or i+1 =j
then FOLLOWTIY(i)] := FOLLOWI[Y((i)] union FIRST[Y(j)]
until there is no change

15

16

First, Follow, nullable table for G6

(G6)
S:=E$
Nullable FIRST FOLLOW
Ex=TE’
False {(, 1D, NUM } {}
E ==+TE
False {(, 1D, NUM} 0),$} I -TE
True {+’-} {)’$} ,
Tu=FT
False {(, 1D, NUM} O +-%$)
T w=*FT
True (* 1} {)+-9$} I/FT’
False {(, 1D, NUM} (0,5 +-$)
F ::= NUM
|ID
| (E)

Predictive Parsing Table for G6

Table[X, T] = Set of productions

X :=Y1...Yk inTable[X, T]
if Tin FIRST[Y1 ... YK]

or if (T in FOLLOWI[X] and nullable[Y1 ... YK])

NOTE: this could

lead to more than

one entry! If so, out

of luck --- can’ t do
recursive descent parsing!

* ’ () ID NUM $
S:=E$ S:=E$ S:=E$
E:=TE E:=TFE’ E:=TE
E :=+TF’ E = E -
Tu=FT Tu=FT Tu=FT
T == Tu=rFT T == T -
F = (E) F:=ID F ::= NUM

(entries for /, - are similar...)

18

Left-most derivation is constructed
by recursive descent

Left-most derivation

(G6) call S()
S:=E$ SjTES,;’$ on ‘(* call E()
, >FT E$ on ‘(‘call T()
E:=TE >(E)T E'$ 1.
S>(TE)T E'$
E =:=+TE S(FTE)T E'$
| —TE’ S>(17T E)T E'$
| >(17E)T E'S
> (17+TE)T E'$
_ S>(17+FT E)T E'$
To=FT >(17+4T E)T E'S
, S (17+4E)T E'$
T o=*FT > (17+4)T E'$
| /IFT > (17+4)*FT E'$
| > ..
> .
_ > (17+4)*(2-10)T E'$
F ||’\[1)UM > (17+4)*(2-10)E’$
> (17+4)*(2-10
(E) (17+4)*(2-10)
19
As a stack machine
S > E$ ES$
>TE'$ TE'$
>FT E$ FT E’$
>(E)T E'$ (E)T E'$
>(TE)T E'S (TE)T E'$
>(FT E)T E'$ (FT'E)T E'$
> (17T E)T E'S (17 TE)TES
> (178)T E'$ (17 E)T E'$
>(17+TE)T E'$ (17 + TE)T E'$
>(17+FT E)T E'S$ (17 + FT'E)T E'$
>(17+4T E')T E'$ (17 +4 TE)TES
> (17+4E)T E'$ (17 + 4 E')T ES$
>(17+4)T E'$ (17 +4) T ES
3(17+4) FT E'$ (17 +4)* FT'E'$
> ..
>(17+4)*(2-10)T E'$ (17+4)*(2-10) T E’'$
>(17+4)*(2-10)E’$ (17+4)*(2-10) E’$
2(17+4)*(2-10) (17+4)*(2-10)

20

But wait! What if there are conflicts in
the predictive parsing table?

(G7) Nullable FIRST FOLLOW
S:==d|XYS S false {c,d,a} {1}

Y:i=c| Y true {c} {cd,a}
X==Y]|a X true {ca} {c,a,d}

The resulting “predictive” table is not so predictive....

a

s | {S:=XYS) {S:=XYS) @xvs@
v | {Y:=} (..- Yi=a)) {Yu=)
_—

x%zfa,x:::Y {X:=Y} {X:=Y}

N

21

LL(1), LL(k), LR(0), LR(1), ...

* LL(k) : (L)eft-to-right parse, (L)eft-most
derivation, k-symbol lookahead. Based on
looking at the next k tokens, an LL(k) parser
must predict the next production. We have been
looking at LL(1).

* LR(k) : (L)eft-to-right parse, (R)ight-most
derivation, k-symbol lookahead. Postpone
production selection until the entire right-hand-
side has been seen (and as many as k symbols
beyond).

 LALR(1) : A special subclass of LR(1).

22

Example

(G8)
S:=S;S|ID=E|print (L)

ID | NUM | E + E | (S, E)

L ::

E|LE

To be consistent, | should write the following, but | won’ t...

(G8)

S:: =S SEMI S | ID EQUAL E | PRINT LPAREN L RPAREN
E::=ID| NUM| EPLUS E | LPAREN S COMMA E RPAREN

L:=E|LCOMMAE

23

A right-most derivation ...

(G8)

S$u=8;S
|ID=E
| print (L)

E:=:=1ID
| NUM
|E+E
| (S, E)

L=:=E
|L, E

S
>S8;8
> S8S;ID=E
> S;ID=E+E
>S;ID=E+(S,E)
>S;ID=E+(S,ID)
>S;ID=E+(S,d)
>S8S;ID=E+(ID=E,d)
> S;ID=E+(ID=E+E,d)
>S8S;ID=E+ (ID=E +NUM,d)
> S;ID=E+(ID=E+6,d)
> S8S;ID=E+ (ID=NUM+6,d)
>S;ID=E+(ID=5+6,d)
>S;ID=E+(d=5+6,d)
>S;ID=ID+(d=5+6,d)
>S8;ID=c+(d=5+6,d)
>S8S;b=c+(d=5+6,d)
>ID=E;b=c+(d=5+6,d)
>ID=NUM;b=c+(d=5+6,d)
>1ID=7;b=c+(d=5+6,d)
>a=7;b=c+(d=5+6,d)

24

Now, slice it down the middle...

Now, turn it upside down ...

>a=7;b=c+(d=5+6,d)
>ID=7;b=c+(d=5+6,d)
>ID=NUM;b=c+(d=5+6,d)
>ID=E;b=c+(d=5+6,d)
>S;b=c+(d=5+6,d)
>8S;ID=c+(d=5+6,d)
->S;ID=ID+(d=5+6,d)
>S;ID=E+(d=5+6,d)
>S;ID=E+(ID=5+6,d)
> S;ID=E+(ID=NUM+6,d)
>S;ID=E+(ID=E+6,d)
> S;ID=E+ (ID=E+NUM,d)
>S;ID=E+(ID=E+E,d)
>S;ID=E+(ID=E,d)
>S;ID=E+(S,d)
>S;ID=E+(S,ID)
>S;ID=E+(S,E)
> S;ID=E+E
> S;ID=E
->8;S8

S

25

a=7:b=c+ (d=5+6,d)
ID =7 :;b=c+ (d=5+6,d)
ID = NUM i b=c+ (d=5+6, d)
ID = E ;s b=c+ (d=5+6,d)
S i b=c+ (d=5+6, d)
S ; ID =c+ (d=5+6, d)
S ; ID = ID + (d=5+6, d)
S ; ID = E + (d=5+6, d)
S;ID=E+ CID =5+6,d)
S ;ID=E+ (ID = NUM +6, d)
S;ID=E+ (ID=E +6, d)
S; ID=E+ (ID=E + NUM , d)
S, ID=E+ (ID=E + E Cd)
S;ID=E+ (ID=E ,d)
S;ID=E+ (S Cd)
S;ID=E+ (S, ID)
S;ID=E+ (S, E)
S, ID=E + E
S ; ID=E
S; S
S

The rest of the input string

A stack of terminals and
non-terminals

26

Now, add some actions. s = SHIFT, r = REDUCE

ID
ID = NUM
ID=E

S

S;ID
S;ID=1ID
S;ID=E

S;ID=E+(ID
S;ID=E + (1D = NUM
S;ID=E+(ID=E
S;ID=E+ (ID=E + NUM
S;ID=E+(ID=E+E
S;ID=E+(ID=E
S;ID=E+(S
S;ID=E+(S,ID
S;ID=E+(S,E)
S;ID=E+E
S;ID=E

$;S

S
SHIFT = LEX + move token to stack

0OO000O00

+(d=5+6,d) |s
+(d=5+6,d) |s,s
+(d=5+6,d) |[rE:= NUM
+(d=5+6,d) |rS:=ID=E
+(d=5+6,d) |s,s
+(d=5+6,d) |s,s
+(d=5+6,d) [rE:=1ID
+(d=5+6,d) |s,s,s
=5+6,d) |s,s
+6,d) [rE:=NUM
+6,d) s,s
,d) | rE::x=NUM
yd) | rEx=E+E,s, s
,d) | rS=u:=ID=E
) | RE:==1D
) |s, rE = (S, E)
rEx=E+E
rS=:=ID=E
rS$=:=8;S8S
| ACTIONS

LL(k) vs. LR(k) reductions

A— =W

(BE(TUN), weT)

LL(K)

LR(k)

'

w

T k token look ahead

p

(left-most
symbol at

=)

Stack

top)

'

w
4

k token look

ahead
(right-most /)) A
symbol at
o >

Stack

The language of this
Stack IS REGULAR!

28

Q: How do we know when to shift and
when to reduce? A: Build a FSA from LR

(G10)

is a production, then
Xu=afp

is an LR(0) item.

(0) Items!

= ‘A$
n=A¢ $
n= ¢ (A)
n=(¢“A)
n=(A¢)

n=(¢)

>PP>P>P>PP>P>PD>PONOO

n=(A) ¢
=t ()

n=() ¢

LR(0) items indicate what is on the stack
(to the left of the ¢) and what is still in
the input stream (to the right of the ¢)

29

LR(k) states (non-deterministic)

The state (Aeao/)’, alaz'”ak)

should represent this situation:

Input: W' Stack: (sr;/?\:]tioTZtSt
T top)
%
i !
with /))alaz c o o ak : W

30

Key idea behind LR(0) items

 [If the “current state” contains the item
A = a,cp and the current symbol in the input buffer is c

— the state prompts parser to perform a shift action
— next state will contain A::= ac,,f

« If the “state” contains the item A ::= o ,,
— the state prompts parser to perform a reduce action

 [f the “state” contains theitem S ::=a,,$
and the input buffer is empty

— the state prompts parser to accept
« But How about A ::= o, X where X is a nonterminal?

31

The NFA for LR(0) items

* The transition of LR(0) items can be represented
by an NFA, in which
— 1. each LR(0) item is a state,
— 2. there is a transition from item A::=a,,cf

to item A ;= ac ., p with label ¢, where c is a terminal
symbol

— 3. there is an e-transition from item A ::=a ,, X to
X =y, where X is a non-terminal

—4.S = _ A $is the start state
— 5. A:=a,is afinal state.

32

Example NFA for Items

Su=‘A$ Su=A‘S$ A:==¢(A)
A=:x=(‘“A) A=:x=(A°‘) A=:x=(A)"
Az=x=¢() A== (°) Az=()¢
Su=,A%
€ '/(—N A)
A= _(A) | A=(,,A) | Ai=(A),)

The DFA from LR(0) items

» After the NFA for LR(0) is constructed, the resulting DFA
for LR(0) parsing can be obtained by the usual
NFA2DFA construction.

« we thus require
— e-closure (1)
— move(S, a)

Fixed Point Algorithm for Closure(l)
— Every item in | is also an item in Closure(l)
—IfA::= o, Bp isin Closure(l) and B ::= ,,y is an item,
then add B ::=,,y to Closure(l)

— Repeat until no more new items can be added to
Closure(l)

Examples of Closure

Closure({A:=(.,A)}) = S =:=:‘AS$

{A::= (.A) } Su=Af S

A= (A A=t (A)

A= () A:x=(“A)

A=:x=(A¢)

e closure({S == ,A$}) Az=(A) "

A== ¢ ()

S:= AS$ Az=(°¢)

{A::= . (A) } Axz=()¢
A= ()

35

Goto() of a set of items

» Goto finds the new state after consuming a
grammar symbol while in the current state

« Algorithm for Goto(l, X)
where | is a set of items
and X is a non-terminal

Goto(I, X) = Closure({ A= aX,p |A::= o, Xpinl })

« goto is the new set obtained by
“moving the dot” over X

36

Examples of Goto

* Goto ({A:=,(A) ()

A:= (,A)
A:= | (A)
A:= ()

« Goto ({A:=(,A)} A)

{A =(A,,) }

>>>P>P>P>PP>POG
Illlllllll..
>

_—

Building the DFA states

Essentially the usual NFA2DFA construction!!

Let A be the start symbol and S a new start
symbol.

Createanewrule S:=A %
Create the first state to be Closure({ S ::=,,A $})

Pick a state |

— foreachitem A::=a ,,Xp inl
» find Goto(l, X)
« if Goto(l, X) is not already a state, make one
« Add an edge X from state | to Goto(l, X) state

Repeat until no more additions possible

37

38

DFA Example

s
s0)——V Su=A.$
S:=,A$ qi A
A = (A) ==
a0 [ON|Aum) 2
A = () AR
A 1)
sb 1) s4
A= (), A= (A),,
39
Creating the Parse Table(s)
State () $ A
2 A- A S2 shift to s2 shift to s5 goto s3
(2) A== (R)] shift to s4
B) A== () ||ss reduce (2) reduce (2) reduce (2)
s5 reduce (3) reduce (3) reduce (3)
sl
s0 »——»S =A.$
S:u=,A$ qi A X
A = (A) =0
A= () (\> iz o) =
A =.() fA =(A.)
A 1)
s5 1) s4
A= (), A= (A)., 1P

Parsing with an LR Table

Use table and top-of-stack and input symbol to get action:

If action is
shift sn : advance input one token,
push sn on stack
reduce X ::= o : pop stack 2* || times (grammar symbols
are paired with states). In the state
now on top of stack,
use goto table to get next
state sn,
push it on top of stack
accept : stop and accept
error : weep (actually, produce a good error
message)

41

Parsing, again...

ACTION Goto

(G10) State () $ A
(1) S ==A$ sO shift to s2 goto s1
(2 A== (A) | |s? accept
(3) A== () s2 shiftto s2 shift to s5 goto s3

s3 shift to s4

s4 reduce (2) |reduce (2) |reduce (2)

s5 reduce (3) |reduce (3) |reduce (3)

s0 (())$ shift s2

s0 (s2 0)$ shift s2

s0 (s2 (s2))$ shift s5
sO(s2(s2)s5)$ reduce A ::= ()
sO(s2A)$ goto s3

sO (s2As3)$ shift s4
sO(s2As3)s4 $ reduce A::= (A)
sOA $ goto s1

s0 A s1 $ ACCEPT! 42

LR Parsing Algorithm

Stack of i
st:tces(;nd al - 19 - 19y $ input
grammar symbols T
Sm \
Yo, LR Parsing — output
Algorithm
Sm-1
Ym_1 A
Action Table Goto Table
terminals and $ non-terminal
ts four different ts each item is
a actions a a state
S1 t t number
e e
Y1 s s
43
So

Problem With LR(0) Parsing

‘ No lookahead
‘ Vulnerable to unnecessary

conflicts

— Shift/Reduce Conflicts (may reduce
too soon in some cases)

— Reduce/Reduce Conflicts

¢ Solutions:

- LR(1) parsing - systematic lookahead

44

LR(1) Items

« An LR(1) item is a pair:
(X:=a.p, a)
— X = af} is a production
— a is a terminal (the lookahead terminal)
— LR(1) means 1 lookahead terminal

« [X:=a.p, a] describes a context of the parser
— We are trying to find an X followed by an a, and
— We have (at least) a already on top of the stack
— Thus we need to see next a prefix derived from fa

45

The Closure Operation

* Need to modify closure operation..

Closure(ltems) =
repeat
foreach [X :=a . Yf, a] in ltems
for each production Y ::=y
for each b in First(pfa)
add [Y ;= .y, b] to Items
until Items is unchanged

46

Constructing the Parsing DFA (2)

« A DFA state is a closed set of LR(1) items

 The start state contains (S’ ::= .S$, dummy)

A state that contains [X ::= a., b] is labeled
with “reduce with X ::= o on lookahead b”

 And now the transitions ...

47

The DFA Transitions

» A state s that contains [X ::= a.Y[3, b] has
a transition labeled y to the state obtained
from Transition(s, Y)

—Y can be a terminal or a non-terminal

Transition(s, Y)
ltems = {}
foreach [X ::= a.Yp, bl ins
add [X ! aY.f3, b] to Items

return Closure(ltems) 48

LR(1)-the parse table

 Shift and goto as before

 Reduce

— state | with item (A—a., z) gives a reduce
A—aq if z is the next character in the input.

« LR(1)-parse tables are very big

49
(G11) S —>S.$ 9 [S >V.=E § 3= S >V=.E $ ¢
\ 7 AME > V. $|7 > |E—>.V $
s, .._s Y / 5 V > .x $
[k $ S >.S$ 9 1 S > E. $ Q V =>.*E $
S > .V=E § % , « JE
ll= = . E V.
xe.x %,: X 5lv > x $.=8 L
> *E - . 13
_ . , V > *_ E $
Ex=V ¢ 6$ vV > x. $ Ll X E—>.V $>
+ |V —=>*E $= - V > .x $ |—
V =X <E%V $,= V;E%V $=12 V > . *E $
I*E V = . x $,= vE
T - .*E $= —E>V9*E. = 10 V > *E. s |1

From Andrew Appel, “Modern Compiler Implementation in Java” page 65
50

LR(1)-parse table

X = $ S E \Y X = $ E \Y
1 s8 |sb6 g2 (g5 |93 |8 4 |r4
2 acc 9 r1
3 s4 |r3 10 r5 |r5
4 s11 | s13 g9 |g7 |11 r4
5 r2 12 r3 |r3
6 s8 |[s6 g10 [g12]13 |s11 [s13 gl14 | g7
7 r3 14 r5

» Consider for example the LR(1) states
{(X:=oa.,al,[Y ::=p.,c]}
{(X:=a.,b],[Y :=p.,d]}

* They have the same core and can be

LALR States

merged to the state

{[X::=a.,alb], [Y :=f., c/d]}
* These are called LALR(1) states

— Stands for LookAhead LR

— Typically 10 times fewer LALR(1) states than

LR(1)

51

52

For LALR(1), Collapse States ...

Combine states 6 and 13, 7 and 12, 8 and 11, 10 and 14.

S —> S.§ S >V=.E §$
< E = .V $
\.4 / V = .x $
S >.S$ V =>.*E $
S > .V=E w ¢E
S — .E 9
E oV S >V=E. $
V > x
V —> *E V > * E s |13
E > .V $
« |V = *E V —> .x $ >*
E—>.V V —> .*E $
NV —> . x e
T — . *E V%*'E. 3 14
53
LALR(1)-parse-table
X * = $ S E V
1 s8 s6 g2 g5 g3
2 acc
3 s4 r3
4 s8 s6 g9 g7
5
6 s8 s6 g10 |g7
7 r3 r3
8 r4 r4
9 r1
10 r5 r5

54

LALR vs. LR Parsing

« LALR languages are not “natural”
— They are an efficiency hack on LR languages

* You may see claims that any reasonable programming
language has a LALR(1) grammar, {Arguably this is

done by defining languages without an LALR(1)
grammar as unreasonable © }.

* In any case, LALR(1) has become a standard for

programming languages and for parser generators, in

spite of its apparent complexity.

Lexer and Parser Generators

http://catalog.compilertools.net/lexparse.html

ACCENT
AFLEX AYACC
ALE
ANAGRAM
BISON
BISON/EIFFEL
BTYACC
BYACC
COGENCEE
CcoCo
DEPOT4

FLEX

HAPPY

HOLUB

LEX

LLGEN
PCYACC
PRECC
PROGRAMMAR
RDP
VISUALPARSE++
YACC

YACC++

55

56

