
1

Compiler Construction
Lectures 13 – 16

Lent Term, 2013

Lecturer: Timothy G. Griffin

Computer Laboratory

 

 

 

 

2

Generating Lexical Analyzers

Lexical

Analyzer

Source

Program
tokens

Scanner

Generator

�LEX�

Lexical specification

DFA Transitions

Parser

The idea : use regular expressions as the basis of a
lexical specification. The core of the lexical analyzer is
then a deterministic finite automata (DFA)

4

Traditional Regular Language Problem

Given a regular expression,

and an input string , determine if

.

e

w)(eLw∈

One method: Construct a DFA M from e and test if it accepts w.

5

Something closer to the “lexing
problem”

Given an ordered list of regular expressions,

and an input string , find a list of pairs

such that

.

1
e

2
e

k
e…

n
wwww ...)1 21=

w

)()2
jij eLw ∈

)(...),,(),,(,2211 nn
wiwiwi

rule)(priority)()3 sieLw jsj ≤→∈

match)(longest)(: sj eLuws ∉∀→

ε≠∈∀∀ ++ uwwwuj
njj
:)(prefix:)4 21 !

6

Define Tokens with Regular Expressions (Finite
Automata)

Keyword: if

1
i

2
f

3

1
i

2
f

3

0

-{f}

-{i}

This FA is really shorthand for:

 �dead state�

7

Define Tokens with Regular Expressions (Finite
Automata)

Keyword:
if

1
i

2
f

3 KEY(IF)

Keyword:
then

1
t

2
h

3

KEY(then)

5

e

n
4

Regular Expression Finite Automata Token

Identifier:
[a-zA-Z][a-zA-Z0-9]*

1 2
[a-zA-Z]

[a-zA-Z0-9]

ID(s)

8

Define Tokens with Regular Expressions (Finite
Automata)

Regular Expression Finite Automata Token

number:
[0-9][0-9]*

1 2
[0-9]

[0-9]

NUM(n)

real:
([0-9]+ �.� [0-9]*)
 | ([0-9]* �.� [0-9]+)

1

3

[0-9] NUM(n)
2

[0-9]

[0-9]
.

4

.

[0-9]
5

[0-9]

9

No Tokens for �White-Space�

White-space:
(� � | �\n� | �\t�)+
| �%� [A-Za-z0-9� �]+�\n�

1

3

%
2

[A-za-z0-9� �]

4

� �

\n

\t
\n

10

Constructing a Lexer

1
e

2
e

k
e

…

 INPUT:
an ordered
list of regular
expressions

1
NFA

2
NFA

k
NFA

…

Construct all
corresponding
finite automata

use priority NFA DFA

Construct a single
non-deterministic
finite automata

Construct a single
deterministic
finite automata

(1) Keyword : then

(2) Ident : [a-z][a-z]*

(2) White-space: � �

1
t

2:ID
h

3:ID

5:THEN

e

n

4:ID

7:W

� �

6:ID [a-mo-z]

[a-z]

[a
-s

u
-z

]

11

What about longest match?

1
t

2:ID
h

3:ID

5:THEN

e

n

4:ID

7:W

� �

6:ID [a-mo-z]

[a-z]

[a
-s

u
-z

]

|then thenx$ 1 0
t|hen thenx$ 2 2
th|en thenx$ 3 3
the|n thenx$ 4 4
then| thenx$ 5 5
then |thenx$ 0 5 EMIT KEY(THEN)
then| thenx$ 1 0 RESET
then |thenx$ 7 7
then t|henx$ 0 7 EMIT WHITE(� �)
then |thenx$ 1 0 RESET
then t|henx$ 2 2
then th|enx$ 3 3
then the|nx$ 4 4
then then|x$ 5 5
then thenx|$ 6 6
then thenx$| 0 6 EMIT ID(thenx)

Start in initial state,
Repeat:
 (1) read input until dead state is
 reached. Emit token associated
 with last accepting state.
 (2) reset state to start state

| = current position, $ = EOF

Input
current state

last accepting state

12

Predictive (Recursive Descent) Parsing
Can we automate this?

(G5)

S :: = if E then S else S
 | begin S L
 | print E

E ::= NUM = NUM

L ::= end
 | ; S L

From Andrew Appel, �Modern Compiler Implementation in Java� page 46

Parse corresponds to a left-most derivation
constructed in a �top-down� manner

13

 Elliminate Left-Recursion

A ::= Aα1 | Aα2 | . . . | Aαk |
 β1 | β2 | . . . | βn

Immediate left-recursion

A ::= β1 A’ | β2 A’ | . . . | βn A’

A’ ::= α1 A’ | α2 A’| . . . | αk A’ | ε

For eliminating left-recursion in general, see Aho and Ullman.

A

A

A

β

α

α

A

A’
β

α

α

A’

A’

ε

14

Eliminating Left Recursion

(G2)
 S :: = E$

 E ::= E + T
 | E – T
 | T

T ::= T * F
 | T / F
 | F

F ::= NUM
 | ID
 | (E)

Note that
 E ::= T and
 E ::= E + T
will cause problems
since FIRST(T) will be included
in FIRST(E + T) ---- so how can
we decide which poduction
To use based on next token?

Solution: eliminate �left recursion�!

 E ::= T E�

 E� ::= + T E�
 |

Eliminate left recursion

(G6)
 S :: = E$

 E ::= T E�

 E� ::= + T E�
 | – T E�
 |

T ::= F T�

T� ::= * F T�
 | / F T�
 |

F ::= NUM
 | ID
 | (E)

15

FIRST and FOLLOW

 FIRST[X] = the set of terminal symbols that
 can begin strings derived from X

FOLLOW[X] = the set of terminal symbols that
 can immediately follow X in some
 derivation

 nullable[X] = true of X can derive the empty string,
 false otherwise

For each non-terminal X we need to compute

nullable[Z] = false, for Z in T

nullable[Y1 Y2 ! Yk] = nullable[Y1] and ! nullable[Yk], for Y(i) in N union T.

FIRST[Z] = {Z}, for Z in T

FIRST[X Y1 Y2 ! Yk] = FIRST[X] if not nullable[X]

FIRST[X Y1 Y2 ! Yk] =FIRST[X] union FIRST[Y1 ! Yk] otherwise

16

Computing First, Follow, and nullable

For each terminal symbol Z
 FIRST[Z] := {Z};
 nullable[Z] := false;

For each non-terminal symbol X
 FIRST[X] := FOLLOW[X] := {};
 nullable[X] := false;

repeat
 for each production X ! Y1 Y2 ! Yk
 if Y1, ! Yk are all nullable, or k = 0
 then nullable[X] := true
 for each i from 1 to k, each j from i + I to k
 if Y1 ! Y(i-1) are all nullable or i = 1
 then FIRST[X] := FIRST[X] union FIRST[Y(i)]
 if Y(i+1) ! Yk are all nullable or if i = k
 then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FOLLOW[X]
 if Y(i+1) ! Y(j-1) are all nullable or i+1 = j
 then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FIRST[Y(j)]
until there is no change

17

First, Follow, nullable table for G6

S

E

E�

T

T�

F

Nullable FIRST FOLLOW

False

False

True

False

True

False

{ (, ID, NUM }

{ (, ID, NUM }

{ +, - }

{ (, ID, NUM }

{ *, / }

{ (, ID, NUM }

{}

{), $ }

{), $ }

{), +, -, $ }

{), +, -, $ }

{), *, /, +, -, $ }

(G6)
 S :: = E$

 E ::= T E�

 E� ::= + T E�
 | – T E�
 |

T ::= F T�

T� ::= * F T�
 | / F T�
 |

F ::= NUM
 | ID
 | (E)

18

Predictive Parsing Table for G6

S

E

E�

T

T�

F

 + * () ID NUM $

E� ::= + T E�

T� ::=

T� ::= * F T�

S ::= E$

E ::= T E�

T ::= F T�

F ::= (E)

E� ::=

T� ::=

S ::= E$

E ::= T E�

T ::= F T�

F ::= ID

S ::= E$

E ::= T E�

T ::= F T�

F ::= NUM

E� ::=

T� ::=

Table[X, T] = Set of productions

X ::= Y1!Yk in Table[X, T]
 if T in FIRST[Y1 ! Yk]
 or if (T in FOLLOW[X] and nullable[Y1 ! Yk])

NOTE: this could
lead to more than
one entry! If so, out

of luck --- can�t do
recursive descent parsing!

(entries for /, - are similar!)

19

Left-most derivation is constructed
by recursive descent

S ! E$
 ! T E�$
 ! F T� E�$
 ! (E) T� E�$
 ! (T E�) T� E�$

 ! (F T� E�) T� E�$
 ! (17 T� E�) T� E�$
 ! (17 E�) T� E�$
 ! (17 + T E�) T� E�$
 ! (17 + F T� E�) T� E�$
 ! (17 + 4 T� E�) T� E�$

 ! (17 + 4 E�) T� E�$
 ! (17 + 4) T� E�$
 ! (17 + 4) * F T� E�$
 ! !

 ! !
 ! (17 + 4) * (2 – 10) T� E�$
 ! (17 + 4) * (2 – 10) E�$
 ! (17 + 4) * (2 – 10)

(G6)
 S :: = E$

 E ::= T E�

 E� ::= + T E�
 | – T E�
 |

T ::= F T�

T� ::= * F T�
 | / F T�
 |

F ::= NUM
 | ID
 | (E)

Left-most derivation

call S()
 on �(� call E()
 on �(� call T()
 .l..
 !

20

As a stack machine

S ! E$
 ! T E�$
 ! F T� E�$
 ! (E) T� E�$
 ! (T E�) T� E�$

 ! (F T� E�) T� E�$
 ! (17 T� E�) T� E�$
 ! (17 E�) T� E�$
 ! (17 + T E�) T� E�$
 ! (17 + F T� E�) T� E�$
 ! (17 + 4 T� E�) T� E�$

 ! (17 + 4 E�) T� E�$
 ! (17 + 4) T� E�$
 ! (17 + 4) * F T� E�$
 ! !

 ! !
 ! (17 + 4) * (2 – 10) T� E�$
 ! (17 + 4) * (2 – 10) E�$
 ! (17 + 4) * (2 – 10)

 E$
 T E�$
 F T� E�$
 (E) T� E�$
 (T E�) T� E�$

 (F T� E�) T� E�$
 (17 T� E�) T� E�$
 (17 E�) T� E�$
 (17 + T E�) T� E�$
 (17 + F T� E�) T� E�$
 (17 + 4 T� E�) T� E�$

 (17 + 4 E�) T� E�$
 (17 + 4) T� E�$
 (17 + 4) * F T� E�$
 !

 !
 (17 + 4) * (2 – 10) T� E�$
 (17 + 4) * (2 – 10) E�$
 (17 + 4) * (2 – 10)

21

But wait! What if there are conflicts in
the predictive parsing table?

(G7)

 S :: = d | X Y S

Y ::= c |

X ::= Y | a

S

Y

X

Nullable FIRST FOLLOW

false

true

true

{ c,d ,a}

{ c }

{ c,a }

{ }

{ c,d,a }

{ c, a,d }

S

Y

X

a c d

{ S ::= X Y S }

{ Y ::= }

{ X ::= a, X ::= Y }

{ S ::= X Y S }

{ Y ::= , Y ::= c}

{ X ::= Y }

{ S ::= X Y S, S ::= d }

{ Y ::= }

{ X ::= Y }

The resulting �predictive� table is not so predictive….

22

LL(1), LL(k), LR(0), LR(1), …

•  LL(k) : (L)eft-to-right parse, (L)eft-most
derivation, k-symbol lookahead. Based on
looking at the next k tokens, an LL(k) parser
must predict the next production. We have been
looking at LL(1).

•  LR(k) : (L)eft-to-right parse, (R)ight-most
derivation, k-symbol lookahead. Postpone
production selection until the entire right-hand-
side has been seen (and as many as k symbols
beyond).

•  LALR(1) : A special subclass of LR(1).

23

Example

(G8)

 S :: = S ; S | ID = E | print (L)

E ::= ID | NUM | E + E | (S, E)

L ::= E | L, E

(G8)

 S :: = S SEMI S | ID EQUAL E | PRINT LPAREN L RPAREN

E ::= ID | NUM | E PLUS E | LPAREN S COMMA E RPAREN

L ::= E | L COMMA E

To be consistent, I should write the following, but I won�t!

24

A right-most derivation …

(G8)

S ::= S ; S
 | ID = E
 | print (L)

E ::= ID
 | NUM
 | E + E
 | (S, E)

L ::= E
 | L, E

 S
 ! S ; S
 ! S ; ID = E
 ! S ; ID = E + E
 ! S ; ID = E + (S, E)

 ! S ; ID = E + (S, ID)
 ! S ; ID = E + (S, d)
 ! S ; ID = E + (ID = E, d)
 ! S ; ID = E + (ID = E + E, d)
 ! S ; ID = E + (ID = E + NUM, d)
 ! S ; ID = E + (ID = E + 6, d)

 ! S ; ID = E + (ID = NUM + 6, d)
 ! S ; ID = E + (ID = 5 + 6, d)
 ! S ; ID = E + (d = 5 + 6, d)
 ! S ; ID = ID + (d = 5 + 6, d)

 ! S ; ID = c + (d = 5 + 6, d)
 ! S ; b = c + (d = 5 + 6, d)
 ! ID = E ; b = c + (d = 5 + 6, d)
 ! ID = NUM ; b = c + (d = 5 + 6, d)
 ! ID = 7 ; b = c + (d = 5 + 6, d)

 ! a = 7 ; b = c + (d = 5 + 6, d)

25

Now, turn it upside down …

!  a = 7 ; b = c + (d = 5 + 6, d)
!  ID = 7 ; b = c + (d = 5 + 6, d)
!  ID = NUM; b = c + (d = 5 + 6, d)
! ID = E ; b = c + (d = 5 + 6, d)
! S ; b = c + (d = 5 + 6, d)
!  S ; ID = c + (d = 5 + 6, d)
!  S ; ID = ID + (d = 5 + 6, d)
! S ; ID = E + (d = 5 + 6, d)
!  S ; ID = E + (ID = 5 + 6, d)
!  S ; ID = E + (ID = NUM + 6, d)
!  S ; ID = E + (ID = E + 6, d)
!  S ; ID = E + (ID = E + NUM, d)
! S ; ID = E + (ID = E + E, d)
! S ; ID = E + (ID = E, d)
! S ; ID = E + (S, d)
! S ; ID = E + (S, ID)
! S ; ID = E + (S, E)
! S ; ID = E + E
! S ; ID = E
! S ; S
 S

26

Now, slice it down the middle…

a = 7 ; b = c + (d = 5 + 6, d)
 = 7 ; b = c + (d = 5 + 6, d)

 ; b = c + (d = 5 + 6, d)

 ; b = c + (d = 5 + 6, d)

 ; b = c + (d = 5 + 6, d)

 = c + (d = 5 + 6, d)
 + (d = 5 + 6, d)

 + (d = 5 + 6, d)

 = 5 + 6, d)

 + 6, d)

 + 6, d)
 , d)

 , d)

 , d)

 , d)

)

A stack of terminals and
non-terminals

The rest of the input string

27

Now, add some actions. s = SHIFT, r = REDUCE

ID
ID = NUM
ID = E
S

S ; ID
S ; ID = ID
S ; ID = E
S ; ID = E + (ID
S ; ID = E + (ID = NUM
S ; ID = E + (ID = E

S ; ID = E + (ID = E + NUM
S ; ID = E + (ID = E + E
S ; ID = E + (ID = E
S ; ID = E + (S

S ; ID = E + (S, ID
S ; ID = E + (S, E)
S ; ID = E + E
S ; ID = E
S ; S

S

a = 7 ; b = c + (d = 5 + 6, d)
 = 7 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 = c + (d = 5 + 6, d)
 + (d = 5 + 6, d)
 + (d = 5 + 6, d)
 = 5 + 6, d)
 + 6, d)
 + 6, d)
 , d)
 , d)
 , d)
)
)

s
s, s
r E ::= NUM
r S ::= ID = E
s, s
s, s
r E ::= ID
s, s, s
s, s
r E ::= NUM
s, s
r E ::= NUM
r E ::= E+E, s, s
r S ::= ID = E
R E::= ID
s, r E ::= (S, E)
r E ::= E + E
r S ::= ID = E
r S ::= S ; S

ACTIONS

SHIFT = LEX + move token to stack

28

LL(k) vs. LR(k) reductions

)',)((' ***
TwNTwA ∈∪∈⇒→ ββ

)(kLL)(kLR

'w

k token look ahead

Stack

A β (left-most
symbol at
top)

'w

k token look
ahead

Stack

Aβ(right-most
symbol at
top)

A

The language of this
Stack IS REGULAR!

29

Q: How do we know when to shift and
when to reduce? A: Build a FSA from LR

(0) Items!

 S ::= • A $

S ::= A • $

A ::= • (A)

A ::= (• A)

A ::= (A •)

A ::= (A) •

A ::= • ()

A ::= (•)

A ::= () •

LR(0) items indicate what is on the stack
(to the left of the •) and what is still in
the input stream (to the right of the •)

If

 X ::=

is a production, then

 X ::= α • β%

is an LR(0) item.

30

LR(k) states (non-deterministic)

),(21 k
aaaA !βα •→

'w Stack: α

'
*

21
waaa

k
⇒!β

(right-most
symbol at
top)

The state

should represent this situation:

Input:

with

31

Key idea behind LR(0) items

•  If the “current state” contains the item
A ::= α • c β and the current symbol in the input buffer is c

–  the state prompts parser to perform a shift action

–  next state will contain A ::= α c • β

•  If the “state” contains the item A ::= •
–  the state prompts parser to perform a reduce action

•  If the “state” contains the item S ::= • $
and the input buffer is empty
–  the state prompts parser to accept

•  But How about A ::= α • X β where X is a nonterminal?

32

The NFA for LR(0) items

•  The transition of LR(0) items can be represented
by an NFA, in which

–  1. each LR(0) item is a state,

–  2. there is a transition from item A ::= α • c β

 to item A ::= αc • β with label c, where c is a terminal
symbol

–  3. there is an ε-transition from item A ::= α • X β to
X ::= • γ, where X is a non-terminal

–  4. S ::= • A $ is the start state

–  5. A ::= α • is a final state.%

33

Example NFA for Items

 S • S • $ •
 • • •

 • (• •

A ::= (A •)

A ::= (•)

A ::= (A) • S ::= A • $ S ::= • A $

A ::= • () A ::= () •

A ::= (• A) A ::= • (A)

A

A
ε%

ε%

ε%

34

The DFA from LR(0) items

•  After the NFA for LR(0) is constructed, the resulting DFA
for LR(0) parsing can be obtained by the usual
NFA2DFA construction.

•  we thus require
–  ε-closure (I)

–  move(S, a)

Fixed Point Algorithm for Closure(I)

–  Every item in I is also an item in Closure(I)

–  If A ::= α • B β is in Closure(I) and B ::= • γ is an item,
then add B ::= • γ to Closure(I)

–  Repeat until no more new items can be added to
Closure(I)

35

Examples of Closure

Closure({A ::= (• A)}) =

A ::= (• A)
A ::= • (A)
A ::= • ()

S ::= • A $

A ::= • (A)

A ::= • ()

•  closure({S ::= • A $})

 S ::= • A $

S ::= A • $

A ::= • (A)

A ::= (• A)

A ::= (A •)

A ::= (A) •

A ::= • ()

A ::= (•)

A ::= () •

36

Goto() of a set of items

•  Goto finds the new state after consuming a
grammar symbol while in the current state

•  Algorithm for Goto(I, X)
where I is a set of items
and X is a non-terminal

Goto(I, X) = Closure({ A ::= α X • β | A ::= α • X β in I })

•  goto is the new set obtained by
“moving the dot” over X

37

Examples of Goto

•  Goto ({A ::= •(A)}, ()

A ::= (• A)

A ::= • (A)

A ::= • ()

 •  Goto ({A ::= (• A)}, A)

A ::= (A •)

 S ::= • A $

S ::= A • $

A ::= • (A)

A ::= (• A)

A ::= (A •)

A ::= (A) •

A ::= • ()

A ::= (•)

A ::= () •

38

•  Essentially the usual NFA2DFA construction!!
•  Let A be the start symbol and S a new start

symbol.
•  Create a new rule S ::= A $
•  Create the first state to be Closure({ S ::= • A $})
•  Pick a state I

–  for each item A ::= • X β in I
•  find Goto(I, X)
•  if Goto(I, X) is not already a state, make one
•  Add an edge X from state I to Goto(I, X) state

•  Repeat until no more additions possible

Building the DFA states

39

DFA Example

S ::= • A$
A ::= • (A)
A ::= • ()

s0
S ::= A • $
s1

A ::= (• A)
A ::= (•)
A ::= • (A)
A ::= • ()

s2

A ::= (A •)
s3

A ::= () •
s5

A ::= (A) •
s4

40

Building Parse Table Example

S ::= • A$
A ::= • (A)
A ::= • ()

s0
S ::= A • $
s1

A ::= (• A)
A ::= (•)
A ::= • (A)
A ::= • ()

s2

A ::= (A •)
s3

A ::= () •
s5

A ::= (A) •
s4

Creating the Parse Table(s)

State () $ A

s0 shift to s2 goto s1

s1 accept

s2 shift to s2 shift to s5 goto s3

s3 shift to s4

s4 reduce (2) reduce (2) reduce (2)

s5 reduce (3) reduce (3) reduce (3)

 

 

 

41

Parsing with an LR Table

Use table and top-of-stack and input symbol to get action:

If action is
 shift sn : advance input one token,
 push sn on stack
 reduce X ::= α : pop stack 2* |α| times (grammar symbols
 are paired with states). In the state
 now on top of stack,
 use goto table to get next
 state sn,
 push it on top of stack
 accept : stop and accept
 error : weep (actually, produce a good error
 message)

42

Building Parse Table Example Parsing, again…

ACTION Goto

State () $ A

s0 shift to s2 goto s1

s1 accept

s2 shift to s2 shift to s5 goto s3

s3 shift to s4

s4 reduce (2) reduce (2) reduce (2)

s5 reduce (3) reduce (3) reduce (3)

s0 (())$ shift s2
s0 (s2 ())$ shift s2
s0 (s2 (s2))$ shift s5
s0 (s2 (s2) s5)$ reduce A ::= ()
s0 (s2 A)$ goto s3
s0 (s2 A s3)$ shift s4
s0 (s2 A s3) s4 $ reduce A::= (A)
s0 A $ goto s1
s0 A s1 $ ACCEPT!

 

 

 

43

LR Parsing Algorithm

sm

Ym

sm-1

Ym-1

 .

 .

s1

Y1

s0

a1 ... ai ... an $

Action Table

 terminals and $
s
t four different
a actions
t
e
s

Goto Table

 non-terminal
s
t each item is
a a state
t number
e
s

LR Parsing
Algorithm

Stack of
states and
grammar symbols

input

output

44

Problem With LR(0) Parsing

•  No lookahead

•  Vulnerable to unnecessary
conflicts

– Shift/Reduce Conflicts (may reduce
too soon in some cases)

– Reduce/Reduce Conflicts

•  Solutions:

– LR(1) parsing - systematic lookahead

45

LR(1) Items

•  An LR(1) item is a pair:

 (X ::= α . β, a)

–  X ::= αβ is a production

–  a is a terminal (the lookahead terminal)

–  LR(1) means 1 lookahead terminal

•  [X ::= α . β, a] describes a context of the parser

–  We are trying to find an X followed by an a, and

–  We have (at least) α already on top of the stack

–  Thus we need to see next a prefix derived from βa

46

The Closure Operation

•  Need to modify closure operation:.

Closure(Items) =

 repeat

 for each [X ::= α . Yβ, a] in Items

 for each production Y ::= γ

 for each b in First(βa)

 add [Y ::= .γ, b] to Items

 until Items is unchanged

47

Constructing the Parsing DFA (2)

•  A DFA state is a closed set of LR(1) items

•  The start state contains (S� ::= .S$, dummy)

•  A state that contains [X ::= α., b] is labeled
with reduce with X ::= α on lookahead b

•  And now the transitions !

48

The DFA Transitions

•  A state s that contains [X ::= α.Yβ, b] has
a transition labeled y to the state obtained
from Transition(s, Y)

– Y can be a terminal or a non-terminal

Transition(s, Y)

 Items = {}

 for each [X ::= α.Yβ, b] in s

 add [X ! αY.β, b] to Items

 return Closure(Items)

49

LR(1)-the parse table

•  Shift and goto as before

•  Reduce

– state I with item (A→α., z) gives a reduce
A→α if z is the next character in the input.

•  LR(1)-parse tables are very big

50

LR(1)-DFA

From Andrew Appel, �Modern Compiler Implementation in Java� page 65

(G11)

S� ::= S$

S ::= V = E
 | E

E ::= V

V ::= x
 | *E

51

LR(1)-parse table

x * = $ S E V x * = $ S E V

1 s8 s6 g2 g5 g3 8 r4 r4

2 acc 9 r1

3 s4 r3 10 r5 r5

4 s11 s13 g9 g7 11 r4

5 r2 12 r3 r3

6 s8 s6 g10 g12 13 s11 s13 g14 g7

7 r3 14 r5

52

LALR States

•  Consider for example the LR(1) states

 {[X ::= α. , a], [Y ::= β. , c]}

 {[X ::= α. , b], [Y ::= β. , d]}

•  They have the same core and can be
merged to the state

 {[X ::= α. , a/b], [Y ::= β. , c/d]}

•  These are called LALR(1) states

– Stands for LookAhead LR

– Typically 10 times fewer LALR(1) states than
LR(1)

53

For LALR(1), Collapse States ...

Combine states 6 and 13, 7 and 12, 8 and 11, 10 and 14.

54

LALR(1)-parse-table

x * = $ S E V

1 s8 s6 g2 g5 g3

2 acc

3 s4 r3

4 s8 s6 g9 g7

5

6 s8 s6 g10 g7

7 r3 r3

8 r4 r4

9 r1

10 r5 r5

55

LALR vs. LR Parsing

•  LALR languages are not �natural�
–  They are an efficiency hack on LR languages

•  You may see claims that any reasonable programming
language has a LALR(1) grammar, {Arguably this is
done by defining languages without an LALR(1)
grammar as unreasonable ☺ }.

•  In any case, LALR(1) has become a standard for
programming languages and for parser generators, in
spite of its apparent complexity.

56

Lexer and Parser Generators

ACCENT
AFLEX AYACC
ALE
ANAGRAM
BISON
BISON/EIFFEL
BTYACC
BYACC
COGENCEE
COCO
DEPOT4
FLEX

HAPPY
HOLUB
LEX
LLGEN
PCYACC
PRECC
PROGRAMMAR
RDP
VISUALPARSE++
YACC
YACC++
…

