
1

Compiler Construction

Lent Term 2013

Lecture 12 (of 16)

Timothy G. Griffin

tgg22@cam.ac.uk

Computer Laboratory

University of Cambridge

•  Implementing Slang.2 functions in
the VSM

•  L3-specific details require some
extra effort
–  e1(e2)

•  Why VRM is more difficult
–  Register allocation

–  Calling conventions

5

Call (modified from Lecture 5)

calldirect

Code

FREE

j : call

f : ……..

Code

f : ……..

FREE

j+1

caller�s

 frame

calldirect

now finds

address f on

the stack.

f

arg value

arg value

6

returndirect

returndirect

Code

j : return

m : ……..

FREE

 m:

return value

Code

j : return

m : ……..

FREE

return value
This is different

from Lecture 5

in that the arg

value is removed

from the stack

arg value

Simple function call

 calldirect f e

code for e

calldirect

push f

Leave argument value of e on top of stack

Put address f on stack

8

New works well with function-

valued expressions

 calldirect e1 e2

code for e1

calldirect

code for e2 Leave argument value of e on top of stack

leave an address on stack

Why is address of function below argument
value on stack?

Remember : left-to-right evaluation

Callclosure

callclosure
Code

FREE

j : callclosure

f : ……..

Code

f : ……..

FREE

j+1

caller�s

 frame

In heap

a1 = v1

f address

a2 = v2

 ….

ak = vk

arg value arg value

11

returndirect

returnclosure

Code

j : return

m : ……..

FREE

 m:

return value

Code

j : return

m : ……..

FREE

return value

This return replaces

two values

on the stack

With the return value.

arg value

closure

Calling a closure

 callclosure e1 e2

code for e1

callclosure

code for e2 Leave argument value on top of stack

Leave a pointer into the heap on stack

Problem

apply e1 e2 !

How can we compile the following expression?

apply (if e then h else f) e2 !

We do not know until run time if e1 will need a
calldirect or a callclosure. For example, suppose

h is a bound to a direct function and f is bound

to a closure in the following:

Solution : functional values need to identify themselves
at run-time as being direct or closure.

We will use the first bit of the word for a function location:

0 for direct, 1 for closure. Note that this reduces our

address space for functions by ½.

call

 call e1 e2

code for e1

call

code for e2 Leave argument value on top of stack

Leaves functional value on stack: the first bit is either
a 0 (for direct) or a 1 (for closure).

This now does either calldirect or callclosure depending
On the value 0 or 1 associated with function part.

call (with 0)

calldirect

FREE

 (0)function

arg value

call

FREE

 (0)function

arg value

call (with 1)

callclosure

FREE

 (1)function

arg value

call

FREE

 (1)function

arg value

What is the “register allocation problem”?

At some point in the back-end, the compiler must confront the fact that

the target machine does not have an infinite number of registers.

A solution will

Good solutions to this problem require the kind of “dataflow analysis” that is

covered in Optimising Compilers (Part II). In the meantime, if you are curious

see Appel Chapters 10 and 11.

•  Assign temporaries to finite number of registers

•  Attempt to assign source and target of “move” instructions to

same register so that the move can be eliminated

Of course the “live” temporaries at a given point in a program may not fit in the

available registers, so the associated values must be “spilled” into memory (into a

stack frame, or onto the heap).

