C and C++
1. Types — Variables — Expressions & Statements

Alan Mycroft

University of Cambridge
(heavily based on previous years’ notes — thanks to Alastair Beresford and Andrew Moore)

Michaelmas Term 2012-2013

23

Structure of this course

Programming in C:
> types, variables, expressions & statements
» functions, compilation, pre-processor
> pointers, structures

> extended examples, tick hints ‘n’ tips

Programming in C4++:
» references, overloading, namespaces,C/C++ interaction
» operator overloading, streams, inheritance
> exceptions and templates

» standard template library

Java native interface (JNI)

N

23

Text books

There are literally hundreds of books written about C and C++; five you
might find useful include:

>

Eckel, B. (2000). Thinking in C++, Volume 1: Introduction to
Standard C++ (2nd edition). Prentice-Hall.
(http://waw.mindview.net/Books/TICPP/ThinkingInCPP2e . html)
Kernighan, B.W. & Ritchie, D.M. (1988). The C programming
language (2nd edition). Prentice-Hall.

Stroustrup, B. (2000). The C++ Programming Language Special
Edition (3rd edition). Addison Wesley Longman

Stroustrup, B. (1994). The design and evolution of C++.
Addison-Wesley.

Lippman, S.B. (1996). Inside the C++ object model.
Addison-Wesley.

23

http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html

Past Exam Questions

VVYV VYV VvV VYV VVVVYVYyYVYY

1993 Paper 5 Question 5 1993 Paper 6 Question 5
1994 Paper 5 Question 5 1994 Paper 6 Question 5
1995 Paper 5 Question 5 1995 Paper 6 Question 5
1996 Paper 5 Question 5 (except part (f) setjmp)
1996 Paper 6 Question 5

1997 Paper 5 Question 5 1997 Paper 6 Question 5
1998 Paper 6 Question 6 *

1999 Paper 5 Question 5 * (first two sections only)
2000 Paper 5 Question 5 *

2006 Paper 3 Question 4 *

2007 Paper 3 Question 4 2007 Paper 11 Question 3
2008 Paper 3 Question 3 2008 Paper 10 Question 4

2009 Paper 3 Question 1
2010 Paper 3 Question 6
2011 Paper 3 Question 3

* denotes CPL questions relevant to this course.

4/23

Context: from BCPL to Java

1966 Martin Richards developed BCPL

1969 Ken Thompson designed B

1972 Dennis Ritchie's C

1979 Bjarne Stroustrup created C with Classes

1983 C with Classes becomes C+4+

1989 Original C90 ANSI C standard (ISO adoption 1990)
1990 James Gosling started Java (initially called Oak)
1998 ISO C++ standard

1999 C99 standard (ISO adoption 1999, ANSI, 2000)
2011 C++11 ISO standard (a.k.a. C++0x)

vV Vv vV V. VY Y vV VY

5/23

Cis a “low-level” language

v

C uses low-level features: characters, numbers & addresses

» Operators work on these fundamental types

» No C operators work on “composite types”

e.g. strings, arrays, sets

Only static definition and stack-based local variables
heap-based storage is implemented as a library

There are no read and write primitives
instead, these are implemented by library routines

There is only a single control-flow
no threads, synchronisation or coroutines

6

23

Classic first example

1 #include <stdio.h>

2

3 int main(void)

s {

5 printf("Hello, world\n");
6 return O;

7

}

Compile with:
$ cc examplel.c

Execute program with:

$./a.out
Hello, world
$

/23

Basic types

v

C has a small and limited set of basic types:
type | description (size)
char characters (> 8 bits)
int integer values (> 16 bits, commonly one word)
float | single-precision floating point number
double | double-precision floating point number

v

Precise size of types is architecture dependent

v

Various type operators for altering type meaning, including:
unsigned, long, short, const, volatile

v

This means we can have types such as long int and unsigned char

v

C99 added fixed width types int16_t, uint64_t etc. as typedefs

Constants

» Numeric constants can be written in a number of ways:

type style example

char none none

int number, character or es- | 12 *A’ ’\n’ ’\007’
cape seq.

long int number w/suffix 1 or L 1234L

float number with “.’, ‘e’ or ‘E’' | 1.234e3F or 1234.0f
and suffix f or F

double number with *.", ‘e’ or 'E’ | 1.234e3 1234.0

long double

number ‘., ‘e’ or ‘E' and
suffix 1 or L

1.234E31 or 1234.0L

» Numbers can be expressed in octal by prefixing with a ‘0’ and
hexadecimal with ‘0x’; for example: 52=064=0x34

Defining constant values

» An enumeration can be used to specify a set of constants; e.g.:
enum boolean {FALSE, TRUE}

» By default enumerations allocate successive integer values from zero

» It is possible to assign values to constants; for example:
enum months {JAN=1,FEB,MAR}
enum boolean {F,T,FALSE=0,TRUE,N=0,Y}

» Names for constants in different enums must be distinct; values in the
same enum need not

» The preprocessor can also be used (more on this later)

10/23

Variables

» Variables must be declared before use

» Variables must be defined (i.e. storage set aside) exactly once. (A
definition counts as a declaration).

» A variable name can be composed of letters, digits and underscore
(_); a name must begin with a letter or underscore

» Variables are defined by prefixing a name with a type, and can
optionally be initialised; for example: long int i = 28L;

» Multiple variables of the same basic type can be declared or defined
together; for example: char c,d,e;

11/23

Operators

» All operators (including assignment) return a result

» Most operators are similar to those found in Java:

type operators

arithmetic | + - x / ++ —- 9

logic == l=>>= < <= || && !

bitwise | & << >> ~ ~

assignment | = += -= %= /= J= <<= >>= &= |= "=
other sizeof

12 /23

Type conversion

» Automatic type conversion may occur when two operands to a binary
operator are of a different type

» Generally, conversion “widens” a variable (e.g. short — int)

» However “narrowing” is possible and may not generate a compiler
warning; for example:

1 int i = 1234;
2 char c;
3 ¢ = 1i+l; /* i overflows c */

» Type conversion can be forced by using a cast, which is written as:
(type) exp; for example: ¢ = (char) 1234L;

13/23

Expressions and statements

> An expression is created when one or more operators are combined;
for example x *= y % z

» Every expression (even assignment) has a type and a result

» Operator precedence provides an unambiguous interpretation for every
expression

» An expression (e.g. x=0) becomes a statement when followed by a
semicolon (i.e. x=0;)

> Several expressions can be separated using a comma ‘,’; expressions
are then evaluated left to right; for example: x=0,y=1.0

» The type and value of a comma-separated expression is the type and
value of the result of the right-most expression

14 /23

Blocks or compound statements

> A block or compound statement is formed when multiple statements
are surrounded with braces ({ })

» A block of statements is then equivalent to a single statement

» In ANSI/ISO C90, variables can only be declared or defined at the
start of a block (this restriction was lifted in ANSI/ISO C99)

> Blocks are typically associated with a function definition or a control
flow statement, but can be used anywhere

15/23

Variable scope

> Variables can be defined outside any function, in which case they:

» are often called global or static variables

» have global scope and can be used anywhere in the program
» consume storage for the entire run-time of the program

> are initialised to zero by default

» Variables defined within a block (e.g. function):
» are often called local or auto variables (register encourages the
compiler to use a register rather than stack)
» can only be accessed from definition until the end of the block
» are only allocated storage for the duration of block execution
» are only initialised if given a value; otherwise their value is undefined

16 /23

Variable definition versus declaration

» A variable can be declared but not defined using the extern keyword;
for example extern int a;

» The declaration tells the compiler that storage has been allocated
elsewhere (usually in another source file)
» If a variable is declared and used in a program, but not defined, this

will result in a link error (more on this later — and in the Compiler
Construction course)

17/23

Scope and type example

1 #include <stdio.h>

2

3 int a;

4 unsigned char b = ’A’;
extern int alpha;

extern unsigned char b;

5

6

7 int main(void) {
8

9 double a = 3.4;

o o

11 extern a;

12 printf ("%d %d\n",b,a+1);
13 ¥

15 return O;

/*what value does a have? */

/* safe to use this?

/* is this needed?

/*why is this sloppy?
/*what will this print?

*/

*/

*/
*/

18/23

Arrays and strings

> One or more items of the same type can be grouped into an array; for
example: long int i[10];

» The compiler will allocate a contiguous block of memory for the
relevant number of values

» Array items are indexed from zero, and there is no bounds checking

» Strings in C are typically represented as an array of chars, terminated
with a special character *\0’

» There is language support for this representation of string constants
using the ‘"' character; for example:
char str[]="two strs mer" '"ged and terminated"
(note the implicit compile-time concatenation)

» String support is available in the string.h library

19/23

Control flow

» Control flow is similar to Java:

> €xp 7 exp : exp
» if (exp) stmt; else stmt;
» switch(exp) {
case expy:
stmty

default:
stmt,y1
}
» while (exp) stmt
» for (exp;; expy; expz) stmt
» do stmt while (exp);

» The jump statements break and continue also exist

20/23

Control flow and string example

1 #include <stdio.h>

2 #include <string.h>

3

4 char s[]="University of Cambridge Computer Laboratory";
5

6 int main(void) {

7

8 char c;

9 int i, j;

10 for (i=0,j=strlen(s)-1;i<j;i++,j--) /* strlen(s)-1 7 */
11 c=s[i], slil=s[j], sljl=c;

12

13 printf("%s\n",s);

14 return O;

15}

21/23

Goto (considered harmful)

» The goto statement is never required
> It often results in code which is hard to understand and maintain

» Exception handling (where you wish to exit or break from two or
more loops) may be one case where a goto is justified:

1 for (...) {
for (...) {

if (critical_problem)
goto error;

}

2
3
4
5
6
7
8
9

error:

fix problem, or abort

22/23

Exercises

1. What is the difference between ’a’ and "a"?

2. Will char i,j; for(i=0; i<10,j<5; i++,j++) ; terminate? If so,
under what circumstances?

3. Write an implementation of bubble sort for a fixed array of integers.
(An array of integers can be defined as int i[] = {1,2,3,4}; the
2nd integer in an array can be printed using printf ("%d\n",i[1]);.)

4. Modify your answer to (3) to sort characters into lexicographical

order. (The 2nd character in a character array i can be printed using
printf ("%c\n",i[11);.)

23/23

