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Overview of the course

The course focuses on algorithms for DNA sequence and gene
expression data analysis. First we learn how to analyse one, two or
more sequences. Searching a database for nearly exact matches
(using Blast algorithm) is the most important routine work in a
Bioinformatics labs. We learn how to build trees to study
sequences relationship. We use hidden Markov models to infer
properties such as the exon/intron arrangements in a gene or the
structure of a protein. The second part of the course is about
clustering gene expression data using K-means or the Markov
clustering algorithm; then we can reconstruct the genetic networks
(Wagner algorithm). Finally, a network of biochemical reactions
could be simulated using the Gillespie algorithm. Key examples at
the end of each lecture (see links at the end of this course
material); figures sources acknowledged during the lectures.



Topics and List of algorithms

� Basic concepts in genetics and genomics.
� Dynamic programming (Longest Common Subsequence,

DNA, RNA alignment, linear space alignment).
� Progressive alignment (Clustal).
� Alignment of Short reads to a reference genome: the

Burrows-Wheeler transform
� Homology database search (Blast, Patternhunter).
� Phylogeny - parsimony-based - (Fitch, Wagner, Sankoff).
� Phylogeny - distance based - (UPGMA,Neighbour Joining).
� Phylogeny (consensus tree, tree rearrangements).
� Clustering (K-means, Markov Clustering)
� Hidden Markov Models applications in Bioinformatics

(Genscan, TMHMM).
� Pattern search in sequences (Gibbs sampling).
� Biological Networks reconstruction (Wagner) and simulation

(Gillespie).



1. DNA could be thought as a string of symbols from a 4-letter
(bases) alphabet, A (adenine), T (thymine), C (cytosine) and
G (guanine). In the double helix A pairs with T, C with G. A
gene is a string of DNA that contains information for a cell
function. The Genome is the entire DNA in a cell.

2. RNA is same as DNA but T → U (uracil); proteins are strings
from an alphabet of 20 amino acids. The proteins have also a
3D shape which could be described as a 3 D graph. The
genetic code is a map between DNA and proteins (3 DNA
bases, i.e. 1 triplet, correspond to one amino acid).



Top: a human cell (it measures 10µm across); bottom: a plant cell



A bacterial cell (for example E. coli) measures about 2µm in
length, yet it contains about 1, 600µm (1.6 mm) of circular double
strands DNA (5 x106 DNA bases in E. coli).



In eucaryotes the genetic information is distributed over different
DNA molecules. A human cell contains 24 different such
chromosomes. If all DNA of a human cell would be laid out
end-to-end it would reach approximately 2 meters. The nucleus
however measures only 6µm. Equivalent of packing 40 km of fine
thread into a tennis ball with a compression ratio of 10000.



DNA makes RNA (also called mRNA) makes proteins (the 3D
graph below); given the pairing rule in a DNA double strands
molecule, all the information is in each single strand. The RNA is
termed mRNA and is translated by triplet of bases into a chain of
amino acids (the protein).



Figure: The central dogma of molecular biology is that DNA is
transcribed to RNA which is translated to protein. The amount of RNA
depends on gene activity which is influenced by other proteins binding
before the start of the gene; different tissues contain cells with different
amount of RNA for each gene



Figure: The genetic code provides the information for the translation of
codons (triplets of bases, in black) into amino acids (single and triple
letter code in red) that are chained together to form a protein; 61 codons
make 20 amino acids; 3 special codons say “stop message”



Figure: Type and frequency of mutations in the human genome per
generation



The structure of a human gene

A gene starts with the promoter region, which is followed by a
transcribed but non-coding region called 5’ untranslated region (5’
UTR). Then follows the initial exon which contains the start codon
which is usually ATG. There is an alternating series of introns and
internal exons, followed by the terminating exon, which contains
the stop codon. It is followed by another non-coding region called
the 3’ UTR; at the end there is a polyadenylation (polyA) signal,
i.e. a repetition of Adenine (example AAAAA). The intron/exon
and exon/intron boundaries are conserved short sequences and
called the acceptor and donor sites.

Figure: Comparison between distributed systems and molecular biology





�TOPIC: The Biological information we extract by aligning 2
sequences

Alignment is a way of arranging two DNA or protein sequences to
identify regions of similarity that are conserved among species.
Each aligned sequence appears as a row within a matrix. Gaps are
inserted between the residues (=amino acids) of each sequence so
that identical or similar bases in different sequences are aligned in
successive positions. Each gap spans one or more columns within
the alignment matrix. Given two strings x = x1, x2, , xM ,
y = y1, y2, , yN , an alignment is an assignment of gaps to positions
0, ,M in x, and 0, ,N in y, so as to line up each letter in one
sequence with either a letter, or a gap in the other sequence.



Figure: The Hamming distance is a column by column number of
mismatches; the Edit distance between two strings is the minimum
number of operations (insertions, deletions, and substitutions) to
transform one string into the other



Figure: Create a matrix M with one sequence as row header and the
other sequence as column header Assign a 1 where the column and row
site matches (diagonal segments), zero otherwise (horizontal or vertical
segments); Sequence alignment can be viewed as a Path in the Edit
Graph. The edit graph is useful to introduce the dynamic programming
technique



Dynamic programming

1. A method for reducing a complex problem to a set of identical
sub-problems

2. The best solution to one sub-problem is independent from the
best solution to the other sub-problem

3. Consider the Fibonacci Series: F (n) = F (n − 1) + F (n − 2)
where F (0) = 0 and F (1) = 1.

4. A recursive algorithm will take exponential time to find F(n)
while a Dynamic Programming solution takes only n steps
(linear time)

5. A recursive algorithm is likely to be polynomial if the sum of
the sizes of the subproblems is bounded by kn.

6. If, however, the obvious division of a problem of size n results
in n problems of size n-1 then the recursive algorithm is likely
to have exponential growth.



1. Dynamic programming can be thought of as being the reverse
of recursion. Recursion is a top-down mechanism, we take a
problem, split it up, and solve the smaller problems that are
created.

2. Dynamic programming is a bottom-up mechanism: we solve
all possible small problems and then combine them to obtain
solutions for bigger problems.

3. The reason that this may be better is that, using recursion, it
is possible that we may solve the same small subproblem
many times. Using dynamic programming, we solve it once.

4. Needleman-Wunsch (global alignment, see later) algorithm
turns string alignment into a problem in dynamic programming



The Longest Common Subsequence (LCS)

� The Longest Common Subsequence (LCS) problem is the
simplest form of sequence alignment allows only insertions
and deletions (no mismatches).

� Given two sequences v = v1 v2 , vm and w = w1 w2 ,wn. The
LCS of v and w is a sequence of positions in v:
1 < i1 < i2 << it < m and a sequence of positions in w:
1 < j1 < j2 << jt < n such that it letter of v equals to
jt-letter of w and t is maximal

� In the LCS problem, we score 1 for matches and 0 for indels

� In alignment: Consider penalising indels and mismatches with
negative scores



The Longest Common Subsequence

Figure: It takes O(nm) time to fill in the n by m dynamic programming
matrix. The pseudocode consists of two nested for loops to build up a n
by m matrix.



Figure: The same sequences could be used in both alignments; we need
to set the match score, the mismatch and gap penalties (next slide, d)



Needleman-Wunsch algorithm (Global alignment)



Example

Figure: Given a m x n matrix, the overall complexity of computing all
sub-values is O(nm). The final optimal score is the value at position n,m.
In this case we align the sequences AGC and AAAC.



How good is an alignment?

The score of an alignment is calculated by summing the rewarding
scores for match columns that contain the same bases and the
penalty scores for gaps and mismatch columns that contain
different bases. A scoring scheme specifies the scores for matches
and mismatches, which form the scoring matrix, and the scores for
gaps, called the gap cost. There are two types of alignments for
sequence comparison. Given a scoring scheme, calculating a global
alignment is a kind of global optimization that forces the
alignment to span the entire length of two query sequences,
whereas local alignments just identify regions of high similarity
within two sequences. The method of computing the entropy,
explained in the multiple sequence alignment section could be used
also for pairwise alignment.







Example, Local alignment TAATA vs TACTAA



Affine: two penalties for gap insertion

if there are many gaps we do not want to penalise too much; so we
think at due penalties: one for the first gap (opening) and one,
smaller, for the following required gaps.



Time complexity - As before O(nm), as we only compute four
matrices instead of one. Space complexity - There’s a need to save
four matrices (for F, G, H and V respectively) during the
computation. Hence, O(nm) space is needed, for the trivial
implementation.



Figure: Space complexity of computing just the score itself is O(n); we
only need the previous column to calculate the current column, and we
can then throw away that previous column once we have done using it



Alignment in linear space, Hirschberg algorithm



Define (m/2,k) as the vertex where the longest path crosses the
middle column
F (M,N) = maxK=0,N (F (M/2,K ) + F r (M/2,N − K ))









�Topic: Biology of RNA

Figure: Examples of RNA molecules in nature; many molecules of RNA
do not translate into proteins; the molecules fold into 2d (secondary) and
3d (tertiary) structures and regulate cell processes by interacting among
each other and with proteins



Folding i.e. intra chain alignment of a RNA molecule

The intrachain folding of RNA reveals RNA Secondary Structure
This tells which bases are paired in the subsequence from xi to xj

Every optimal structure can be built by extending optimal
substructures.

Figure: Set of paired positions on interval [i,j]. Suppose we know all
optimal substructures of length less than j − i + 1. The optimal
substructure for [i , j ] must be formed in one of four ways: i,j paired; i
unpaired; j unpaired; combining two substructures. Note that each of
these consists of extending or joining substructures of length less than
j − i + 1



Nussinov dynamic programming algorithm for RNA folding

1. Let γ(i , j) be the maximum number of base pairs in a folding
of subsequence S[i . . . j].

2. for 1 ≤ i ≤ n and i < j ≤ n: γ(i , i) = 0;
for i = 1, ..., n γ(i , i − 1) = 0

3. starting from i = 2, ..., n

γ (i , j) = max






γ (i + 1, j)

γ (i , j − 1)

γ (i + 1, j − 1) + δ (i , j)

maxi<k<j [γ (i , k) + γ (k + 1, j)]

4. Where δ(i , j) = 1 if xi and xj are a complementary base pair
i.e. (A, U) or (C, G), and δ(i , j) = 0, otherwise.

There are O(n2) terms to be computed, each requiring calling of
O(n) already computed terms for the case of bifurcation. Thus
overall complexity is O(n3) time and O(n2) space.



Nussinov algorithm for RNA folding

Note that only the upper (or lower) half of the matrix needs to be
filled. Therefore, after initialization the recursion runs from smaller
to longer subsequences as follows:

1. for l = 1 to n do

2. for i = 1 to (n + 1− l) do

3. j = i + l

4. compute γ(i , j)

5. end for

6. end for



Nussinov algorithm: example

Figure: order: top left, bottom left,
right: a matrix will be filled along
the diagonals and the solution can
be recovered through a traceback
step.



�Topic: Homology search algorithms: The Biological problem

The sequence structures of genes and proteins are conserved in
nature. It is common to observe strong sequence similarity
between a protein and its counterpart in another species that
diverged hundreds of millions of years ago. Accordingly, the best
method to identify the function of a new gene or protein is to find
its sequence- related genes or proteins whose functions are already
known. The Basic Local Alignment Search Tool (BLAST) is a
computer program for finding regions of local similarity between
two DNA or protein sequences. It is designed for comparing a
query sequence against a target database. It is a heuristic that
finds short matches between query and database sequences and
then attempts to start alignments from these seed hits. BLAST is
arguably the most widely used program in bioinformatics. By
sacrificing sensitivity for speed, it makes sequence comparison
practical on huge sequence databases currently available.



BLAST programs (Basic Local Alignment Search Tools

While Dynamic Programming (DP) is a nice way to construct
alignments, it will often be too slow. Since the DP is O(n2),
matching two 3, 000, 000, 000 length sequences would take about
9x1018 operations. BLAST is an alignment algorithm which runs
in O(n) time. For sequences of length 3, 000, 000, 000, this will be
around 3, 000, 000, 000 times faster. The key to BLAST is that
we only actually care about alignments that are very close to
perfect. A match of 70% is worthless; we want something that
matches 95% or 99% or more. What this means is that correct
(near perfect) alignments will have long substrings of nucleotides
that match perfectly. Most popular Blast-wise algorithms use a
seed-and-extend approach that operates in two steps: 1. Find a set
of small exact matches (called seeds) 2. Try to extend each seed
match to obtain a long inexact match.



The steps are as follows:

1. Pre-processing step of BLAST is to make sure that all
substrings of W consecutive nucleotides will be included in a
database (or in a hash table). These are called the W-mers of
the database.

2. Split query into overlapping words of length W (the W-mers)

3. Find a neighborhood of similar words for each word (see
below)

4. Lookup each word in the neighborhood in a hash table to find
where in the database each word occurs. Call these the seeds,
and let S be the collection of seeds.

5. Extend the seeds in S until the score of the alignment drops
off below a threshold.

6. Report matches with overall highest scores



BLAST permits a trade off between speed and sensitivity, with the
setting of a ”threshold” parameter T. A higher value of T yields
greater speed, but also an increased probability of missing weak
similarities



To speed up the homology search process, BLAST employs a
filtration strategy: It first scans the database for length-w word
matches of alignment score at least T between the query and
target sequences and then extends each match in both ends to
generate local alignment (in the sequences) whose alignment score
is larger than a threshold S. The matches are called high-scoring
segment pairs (HSPs). BLAST outputs a list of HSPs together
with E-values that measure how frequent such HSPs would occur
by chance. A HSP has the property that it cannot be extended
further to the left or right without the score dropping significantly
below the best score achieved on part of the HSP. The original
BLAST algorithm performs the extension without gaps. Variants
are gapped Blast, psi-blast and others.



Statistical significance in Blast

� Assume that the length m and n of the query and database
respectively are sufficiently large; a segment-pair (s, t)
consists of two segments, one in m (say the amino acid string:
VALLAR) and one in n (say PAMMAR), of the same length.
We think of s and t as being aligned without gaps and score
this alignment using a substitution score; the alignment score
for (s, t) is denoted by σ(s, t).

� Given a cutoff score x, a segment pair (s, t) is called a
high-scoring segment pair (HSP), if it is locally maximal and
σ(s, t) ≥ x and the goal of BLAST is to compute all HSPs.

� The BLAST algorithm has three parameters: the word size W,
the word similarity threshold T and the minimum match score
x.



For protein sequences, BLAST operates as follows

The list of all words of length W that have similarity ≥ T to some
word in the query sequence m is generated. The database
sequence n is scanned for all hits t of words s in the list. Each such
seed (s, t) is extended until its score σ(s, t) falls a certain distance
below the best score found for shorter extensions and then all best
extensions are reported that have score ≥ x. In practice, W is
around 4 for proteins.
The list of all words of length W that have similarity ≥ T to some
word in the query sequence m can be produced in time
proportional to the number of words in the list. These are placed
in a keyword tree and then, for each word in the tree, all exact
locations of the word in the database n are detected in time linear
to the length of n. The original version of BLAST did not allow
indels, making hit extension very fast.
Note that the use of seeds of length W and the termination of
extensions with fading scores are both steps that speed up the
algorithm, but also imply that BLAST is not guaranteed to find all
HSPs.



For DNA sequences, BLAST operates as follows

� For DNA sequences, BLAST operates as follows: The list of
all words of length W in the query sequence m is generated.
The database n is scanned for all hits of words in this list.
Blast uses a two-bit encoding for DNA. This saves space and
also search time, as four bases are encoded per byte. In
practice, W is around 12 for DNA.

� HSP scores are characterized by two parameters, W and λ.
The expected number of HSPs with score at least S is given
by the E-value, which is: E (S) = Wmne−λS .

� Essentially, W and λ are scaling-factors for the search space
and for the scoring scheme, respectively.

� As the E-value depends on the choice of the parameters W
and λ, one cannot compare E-values from different BLAST
searches.



� For a given HSP (s, t) we transform the raw score S = σ(s, t)
into a bit-score thus: S � = λS−lnW

ln2 . Such bit-scores can be
compared between different BLAST searches. To see this,
solve for S in the previous equation and then plug the result
into the original E-value.

� E-values and bit scores are related by E = mn2−S �

� The number of random HSPs (s, t) with σ(s, t) ≥ x can be
described by a Poisson distribution. Hence the probability of
finding exactly k HSPs with a score ≥ S is given by
P(k) = Ek

k! e
−E

� The probability of finding at least one HSP by chance is
P = 1− P(X = 0) = 1− e−E , called the P-value, where E is
the E-value for S.

� BLAST reports E-values rather than P-values as it is easier,
for example, to interpret the difference between an E-value of
5 and 10, than to interpret the difference between a P-value
of 0.993 and 0.99995. For small E-values < 0.01, the two
values are nearly identical.



Example of Blast



Figure: Blast DNA query (top) against a database of proteins will
process all the potential triplets forming codons



Figure: Example of Blast Pitfalls



Patternhunter

The biggest problem for BLAST is low sensitivity (and low speed).
Massive parallel machines are built to do Smith Waterman
exhaustive dynamic programming. A spaced seed is formed by two
words, one from each input sequence, that match at positions
specified by a fixed pattern and one don’t care symbol respectively.
For example, the pattern 1101 specifies that the first, second and
four-th positions must match and the third one contain a
mismatch. PatternHunter (PH) was the first method that used
carefully designed spaced seeds to improve the sensitivity of DNA
local alignment. Spaced seeds have been shown to improve the
efficiency of lossless filtration for approximate pattern matching,
namely for the problem of detecting all matches of a string of
length m with q possible substitution errors.



Blast vs PH vs PH II

If you want to speed up, have to use a longer seed. However, we
now face a dilemma: increasing seed size speeds up, but looses
sensitivity; decreasing seed size gains sensitivity, but looses speed.
How do we increase sensitivity and speed simultaneously? Spaced
Seed: nonconsecutive matches and optimized match positions.
Represent BLAST seed by 11111111111; Spaced seed:
111010010100110111 where 1 means a required match and 0
means dont care position. This simple change makes a huge
difference: significantly increases hit to homologous region while
reducing bad hits. Spaced seeds give PH a unique opportunity of
using several optimal seeds to achieve optimal sensitivity, this was
not possible by BLAST technology. PH II uses multiple optimal
seeds; it approaches Smith-Waterman sensitivity while is 3000
times faster. Example: Smith-Waterman (SSearch): 20 CPU-days,
PatternHunter II with 4 seeds: 475 CPU-seconds: 3638 times
faster than Smith-Waterman dynamic programming at the same
sensitivity











Figure: sensitivity versus alignment score



Difficulties of extending dynamic programming to n sequences

� For two sequences, there are three ways to extend an
alignment

� for n sequences, a n-dimensional dynamic programming
hypercube has to be computed and for each entry we have to
evaluate (2n − 1) predecessors.

� Given 3 sequences, the figure below shows a three-dimensional
alignment path matrix: there are = (23 − 1) = 7 ways to
extend an alignment.



Progressive alignment

� Progressive alignment methods are heuristic in nature. They
produce multiple alignments from a number of pairwise
alignments.

� Perhaps the most widely used algorithm of this type is
CLUSTALW.

� Given N sequences, align each sequence against each other
and obtain a similarity matrix; Similarity = exact matches /
sequence length (percent identity)

� Create a guide tree using the similarity matrix; the tree is
reconstructed using clustering methods such as UPGMA or
neighbor-joining (explained later).

� Progressive Alignment guided by the tree.



Not all the pairwise alignments build well into multiple sequence
alignment; the progressive alignment greedily builds a final
alignment along the guide tree using a given method to merge
sub-alignments.



Progressive alignment

Figure: Progressive alignment of 4 sequences: 1) pairwise alignment; 2)
pairwise alignment score analysis; tree showing the best order of
progressive alignment, 3) building up the alignment



Blosum is a symmetric amino acid replacement matrix used as
scoring matrix in Blast search and in phylogeny. Starting from a
MSA of conserved portions of protein sequences we compute pij

the probability of two amino acids i and j replacing each other in
each column, and pi and pj are the background probabilities of
finding the amino acids i and j in any protein sequence. Then we
compute: Scoreij = (k−1)log(pij/pipj) where the k is a scaling
factor.



Entropy measure of a multiple alignment of 4 sequences of three
bases each

Compute the frequencies for the occurrence of each letter in each
column of multiple alignment pA = 1, pT=pG=pC=0 (1st column)
pA = 0.75, pT = 0.25, pG=pC=0 (2nd column)
pA = 0.50, pT = 0.25, pC=0.25 pG=0 (3rd column)
Compute entropy of each column: E = −

�
X=A,C ,G ,T px log (px)

Entropy for a multiple alignment is the sum of entropies of its
columns



Figure: The globin proteins from different species could be aligned
because they have many similar substrings



Insight into protein structure (3D graph) from MSA analysis

Figure: Human globin 3D structure. Although DNA sequences mutate
and diverge, because of the small amount of changes all the globin
sequences in the alignment of the previous slide are likely to have the
same or very similar structure. Columns rich of gaps often correspond to
unstructured regions (loops); conserved regions often correspond to
binding sites or regions where one protein interacts with a DNA site or
with another protein



Aligning short reads against a reference genome

� The current sequencing procedures are characterized by highly
parallel operations, much lower cost per base, but
(unfortunately) they produce short stretches of DNA bases,
called reads (usually 35-400bp). Todays machines are
commonly referred to as short-read sequencers or
next-generation sequencers (NGS)

� Given a reference genome and a set of reads, we need to find
at least one ”good” local alignment for each read

� Genomes are too large and reads are too many for direct
approaches like dynamic programming

� to map reads on the genome, the Burrows- Wheleer
transform, BWT (a text compression method) is used



Burrows-Wheeler Transform

INPUT (example): T = “abraca”; then we sort lexicographically
all the cyclic shifts of T
For all i �= I, the character L[i] is followed in T by F[i]; for any
character ch, the i-th occurrence of ch in F corresponds to the i-th
occurrence of ch in L.
OUTPUT: BWT(T)=caraab and the index I=1, that denotes the
position of the original word T after the lexicographical sorting.
The Burrows-Wheeler Transform is reversible, in the sense that,
given BWT(T) and an index I, it is possible to recover the original
word T.



Burrows-Wheeler Transform in alignment: example

Reversible permutation used originally in compression
Once BWT(T) is built, all else shown here is discarded

Figure: in red the analogy with the suffix array (from Wall lab in
Harvard)



Burrows-Wheeler Transform in alignment: example

Property that makes BWT(T) reversible is LF Mapping
ith occurrence of a character in Last column is same text
occurrence as the ith occurrence in the First column



Burrows-Wheeler Transform in alignment: example

To recreate T from BWT(T), repeatedly apply rule: T = BWT[
LF(i) ] + T; i = LF(i).
Where LF(i) maps row i to row whose first character corresponds
to i”s last per LF Mapping



�Topic: Phylogeny (remember the guide tree)

The reconstruction of the history of speciation could be done by
comparison of DNA and amino acid sequences. A phylogeny is a
tree where the leaves (existing species) are labeled and no internal
node (ancestor) has degree 2 except for the root. Phylogenies may
be rooted or unrooted. Here we use the terms species and taxa in
a synonymous way. A clade is a group of species that includes all
descendants of one common ancestor.

Figure: tree representation: ((a, (b, c)), (d , e)); trees could also be
unrooted



Phylogeny using parsimony

Biological aims: from sequence alignment to phylogeny (a tree) by
minimising the number of changes (mutations). Parsimony means
economy; there are three main algorithms (Fitch,Wagner,Sankoff);
the output trees are rooted (below the difference between rooted,
left, and unrooted, right)



Fitch parsimony model for DNA characters
Fitch downpass algorithm (on the left the pseudo code, right details)

Bottom-up phase: Determine set of possible states for each
internal node; top-down phase: Pick states for each internal node.
If the descendant state sets Sq and Sr overlap, then the state set
of node p will include the states present in the intersection of Sq
and Sr . If the descendant state sets do not overlap, then the state
set of p will include all states that are the union of Sq and Sr .
States that are absent from both descendants will never be present
in the state set of p.

1. Sp ← Sq
�
Sr

2. if Sp = 0 then

3. Sp ← Sq
�
Sr

4. l ← l + 1

5. end if

Initialization: Ri = [ si ] ; Do a
post-order (from leaves to root)
traversal of tree Determine Ri of
internal node i with children j, k:
Ri =�

Rj
�
Rk if Rj

�
Rk �= 0

Rj
�
Rk otherwise



Assume that we have the final
state set Fa of node a, which is
the immediate ancestor of node p
(Sp) that has two children q (Sq)
and r (Sr ).

1. Fp ← Sp
�
Fa

2. if Fp �= Fa then

3. if Sq
�
Sr �= 0 then

4. Fp ← ((Sq
�
Sr )

�
Fa)

�
Sp

5. else

6. Fp ← Sp
�
Fa

7. end if

8. end if

Ri (s) =

�
0 if si = s

∞ otherwise

Ri (s) =
mins� {Rj (s �) + S (s �, s)}+
mins� {Rk (s �) + S (s �, s)}
If the downpass state set of p
includes all of the states in the
final set of a, then each optimal
assignment of final state to a can
be combined with the same state
at p to give zero changes on the
branch between a and p and the
minimal number of changes in
the subtree rooted at p. If the
final set of a includes states that
are not present in the downpass
set of p, then there is a change
on the branch between a and p.



Figure: Fitch

Figure: Parsimony-score = number of union operations



Wagner Algorithm
Wagner downpass algorithm

Assume that the state set of a node p is a set of continuous
elements S = x , x + 1, x + 2, ..., y where min(S) = x and
max(S) = y (we can also call this set an interval). Now define the
operation Si � Sj as producing the set of continuous elements from
max(min(Si ),min(Sj)) to min(max(Si ),max(Sj)).

1. given a node p and its two
daughters q and r

2. Sp ← Sq
�
Sr

3. if Sp = 0 then

4. Sp ← Sq � Sr

5. l ← l + (�Sp� − 1)

6. end if

If Si and Sj overlap, then this
operation simply produces their
intersection, but if they do not
overlap, the result is a minimum
spanning interval connecting the
two sets. For instance,
2, 3, 4 � 6, 7, 8 = 4, 5, 6.



Wagner uppass algorithm

1. Fp ← Sp
�
Fa

2. if Fp �= Fa then

3. if Sq
�
Sr �= 0 then

4. Fp ← ((Sq
�
Sr )

�
Fa)

�
Sp

5. end if

6. end if

let us define the operation
Si

�
Sj as producing the set of

continuous elements from
min(min(Si),min(Sj)) to
max(max(Si),max(Sj)). If the
two intervals overlap, the result is
simply their union, but if they are
disjoint then the operation will
produce an interval including all
the values from the smallest to
the largest. For example,
3, 4

�
6, 7 = 3, 4, 5, 6, 7.



Sankoff general parsimony or Sankoff optimisation
Sankoff downpass algorithm

1. for all i do

2. h
(q)
i ← minj(cij + g

(q)
j )

3. h
(r)
i ← minj(cij + g

(r)
j )

4. end for

5. for all i do

6. g
(p)
i ← h

(q)
i + h

(r)
i

7. end for

Sankoff parsimony is based on a
cost matrix C = cij , the elements
of which define the cost cij of
moving from a state i to a state j
along any branch in the tree.
The cost matrix is used to find
the minimum cost of a tree and
the set of optimal states at the
interior nodes of the tree.



Sankoff finding optimal states and uppass algorithm

1. Fp ← 0

2. for all i in Fa do

3. m ← ci1 + g
(p)
1

4. for all j �= 1 do

5. m ← min(cij + g
(p)
j ,m)

6. end for

7. for all j do

8. if cij + g
(p)
j = m then

9. Fp ← Fp
�
j

10. end if

11. end for

12. end for

1. for all j do

2. f
(p)
j ← mini (f

(a)
i −h

(p)
i + cij)

3. end for

Complexity: if we want to
calculate the overall length (cost)
of a tree with m taxa, n
characters, and k states, it is
relatively easy to see that the
Fitch and Wagner algorithms
have complexity O(mnk) and the
Sankoff algorithm is of
complexity O(mnk2).



Sankoff: example of downpass

Figure: If the leaf has the character in question, the score is 0; else,
score is ∞ Each mutation a− > b costs the same in Fitch and Wagner
and differently in Sankoff parsimony algorithm (weighted matrix in A).
An example of a weighted matrix for Sankoff (for proteins) is the Blosum,
presented before in this course



example of uppass

Figure: Example of Sankoff algorithm



Distance methods use a distance (dissimilarity matrix= 1 -
similarity) matrix to construct a tree and are kin to clustering
methods. We can use the same matrix we use for Blast search, for
example the Blosum matrix. The UPGMA outputs a rooted tree
while the neighbour joining outputs an unrooted tree.



Additivity: when a distance matrix turns into a tree

A matrix D is additive if and only if : for every four indices i,j,k,l
the maximum and median of the three pairwise sums are identical:
Dij + Dkl ≤ Dik + Djl = Dil + Djk Suggests how to connect 4
points into a tree to fit D



The additivity property

Top: distance matrix does not turn into a tree; Bottom: the
distance matrix turns into a tree.



UPGMA: Unweighted Pair Group Method with Arithmetic Mean

UPGMA is a clustering algorithm that: computes the distance
between clusters using average pairwise distance assigns a height
to every vertex in the tree, effectively assuming the presence of a
molecular clock and dating every vertex. The algorithm produces
an ultrametric tree : the distance from the root to any leaf is the
same (this corresponds to a constant molecular clock: the same
proportion of mutations in any pathway root to leaf). Input is a
distance matrix of distances between species; the iteration
combines the two closest species until we reach a single cluster.



UPGMA is also hierarchical clustering

1. Initialization: Assign each species to its own cluster Ci

2. Each such cluster is a tree leaf

3. Iteration:

4. Determine i and j so that d(Ci ,Cj) is minimal

5. Define a new cluster Ck = Ci
�
Cj with a corresponding node

at height d(Ci ,Cj)/2

6. Update distances to Ck using weighted average

7. Remove Ci and Cj

8. Termination: stop when just a single cluster remains



Neighbor Joining, NJ

Figure: NJ starts with a star topology (i.e. no neighbors have been
joined) and then uses the smallest distance in the distance matrix to find
the next two pairs to move out of the multifurcation then recalculate the
distance matrix that now contains a tip less.

Figure: The sequences are chosen to give best least-squares estimate of
branch length (joining m and n; i are the other nodes)



1. Identify i,j as neighbour if their distance is the shortest.

2. Combine i,j into a new node u.

3. Update the distance matrix.

4. Distance of u from the rest of the tree is calculated

5. If only 3 nodes are left finish.



Neighbor Joining

1. If N represents the number of leaves at each stage, we
compute S12, S13, S14,, S(N−1,N), which is about N2

computations.

2. We have N stages (we start off with a matrix of N x N, and at
each stage the matrix is reduced by 1), therefore, N x N2 =
N3.

3. Each Sij we compute, requires us to sum over all of the
elements in the matrix once again, N2 computations, so
we’ve reached a complexity of N x N2 X N2 = N5.

in the next slide we will operate so that Stage 1 and 2 remain with
the same complexity O(N3), while Stage 3 is reduced to O(1), and
thus the complexity is O(N3)



Neighbor Joining with complexity of O(N3)

1. Give a matrix of pairwise distances (dij), for each terminal
node i calculate its net divergence ri from all the other species
using the formula ri =

�N
k=1 dji where N is the number of

terminal nodes in the current matrix.
2. Create a rate corrected distance matrix M in which the

elements are defined as Mij = dij − (ri − rj) / (N − 2) only
states i �= j are interesting, even only the minimum needs to
be known.

3. define a new node u whose three branches join nodes i, j and
the rest of the tree.

4. Define the length of the tree branches from u to i to j as

viu =
dij
2 +(ri−rj)
2(N−2) and vju = dij − viu

5. Define the distance from u to each other terminal node
dku = (dik + djk + dij) /2

6. Remove distance to nodes i and j from the data matrix and
decrease N by 1.

7. If more than two nodes remaining, go back to step 1.
Otherwise the tree is full defined except for the last branch
length which is vij = dij .



The bootstrap algorithm

If there are m sequences, each with n nucleotides, a phylogenetic
tree can be reconstructed using some tree building methods.

1. From each sequence, n nucleotides are randomly chosen with
replacements, giving rise to m rows of n columns each. These
now constitute a new set of sequences.

2. A tree is then reconstructed with these new sequences using
the same tree building method as before.

3. Next the topology of this tree is compared to that of the
original tree. Each interior branch of the original tree that is
different from the bootstrap tree is given a score of 0; all
other interior branches are given the value 1.

4. This procedure of resampling the sites and tree reconstruction
is repeated several hundred times, and the percentage of
times each interior branch is given a value of 1 is noted. This
is known as the bootstrap value. As a general rule, if the
bootstrap value for a given interior branch is 95% or higher,
then the topology at that branch is considered ”correct”.





Topology rearrangement: three methods are often employed

Tree-topology changing operations: (left) nearest neighbor
interchange (NNI), (middle) subtree pruning regrafting (SPR),
(right) tree bisection reconnection (TBR). NNI is a special case of
SPR, which in turn is a special case of TBR. Let n be the number
of taxa in the phylogeny; the number of distinct NNI, SPR, and
TBR operations are O(n), O(n2), and O(n3)



Algorithms for NNI,SPR, TBR

NNI first picks an internal edge (x,y). Let the other two nodes
adjacent to them be n1, n2, and, n3,n4. Pick one of n1 or n2, and
pick one of n3 or n4; say n1 and n3 are picked. Remove edges
(x , n1), (y , n3) from the phylogeny, and add edges (x , n3) and
(y , n1). In other words, we obtain the new phylogeny by swapping
the two clade rooted at n1 and n3.
SPR picks two edges (x,y), and (u,v). The edge (u,v) is bisected
to create edges (u,w) and (w,v). Pick one of the end points for
edge (x,y), say x. The edge (x,y) is first removed from the
phylogeny, and the edge (w,y) added to the phylogeny. This makes
x a degree-2 node, which has to be suppressed: let the two nodes
adjacent to x be a,b; remove edges (x,a) and (x,b), remove node x,
then add edge (a,b). This operation detaches the clade rooted at y
and reattaches it to the edge (u,v).
TBR removes an edge (x,y), then suppresses the two degree-2
nodes x and y. This creates two disconnected subtrees; choose one
edge from each of the two trees. Bisect the two edges by adding
nodes u and v, and add edge (u,v) to reconnect the two subtrees.



Tree consensus: three methods often used

The strict consensus of an input set of phylogenies is the
phylogeny such that its every bipartition is in every input
phylogeny. Algorithm: pick any input phylogeny, mark every edge
whose bipartition is missing in at least one input phylogeny, and
contract it by joining its two endpoints together. A relaxation of
the strict consensus tree is the p-consensus: it is the phylogeny
whose bipartitions are in proportion ≥ pN of all the N input
phylogenies. It can be shown that if p > 0.5 then such a phylogeny
exists and is unique, but this is not necessarily so when p ≤ 0.5.
Strict consensus is simply the case where p = 1. When we require
every bipartition in the consensus to be in > N/2 input trees (i.e.,
p = (N/2 + 1)/N for even N and p = 1/2 for odd N), this is called
the majority consensus. The third type of consensus tree is the
maximum agreement subtree: the goal is to find a largest subset of
input taxa such that the input phylogenies all have the same
topology when we restrict them to this subset.





Examples of trees: a) hiv virus sampled at different times from 6
patients (1-6); b) phylogeny of bears and panda; c) phylogeny of
computer viruses (the FakeAV-DO function f1 was first coded into
an alphabet and aligned using Clustal).



�Topic: Clustering gene expression data



Figure: The color of the spot indicates activation with respect to control
(red) or repression with respect to the control (green) or absence of
regulation (yellow) of a gene, or error in the technological process
(black). The genes can be all the genes of an organism (example the
6000 genes of yeast), or a selection of genes of interest (+ control genes).



Aims: clustering gene expression: visualising and analyzing vast
amounts of biological data as a whole set can be difficult. It is
easier to interpret the data if they are partitioned into clusters
combining similar data points.

Figure: Hierarchical clustering (UPGMA) could be used to investigate
whether the genes belonging to the same cluster share a common
function or are co-regulated by a common protein which binds before the
gene acting as repressor or activator of the gene function. The clusters
are coloured differently in the hierarchical clustering added to the
microarray



Clustering for Gene expression data

Microarrays measure the activity (expression level) of the genes
under varying conditions/time points. Expression level is estimated
by measuring the amount of RNA for that particular gene. A gene
is active if it is being transcribed. More mRNA usually indicates
more gene activity. Microarray data are usually transformed into an
intensity matrix. The analysis allows scientists to make correlations
between different genes (even if they are dissimilar) and to
understand how genes functions might be related. Plot each
datum as a point in N-dimensional space; Make a distance matrix
for the distance between every two gene points in the
N-dimensional space; Genes with a small distance share the same
expression characteristics and might be functionally related or
similar. Clustering reveal groups of functionally related genes.



K-Means Clustering: Lloyd Algorithm

1. Arbitrarily assign the k cluster centers

2. while the cluster centers keep changing

3. Assign each data point to the cluster Ci corresponding to the
closest cluster representative (center) (1 ≤ i ≤ k)

4. After the assignment of all data points, compute new cluster
representatives according to the center of gravity of each
cluster, that is, the new cluster representative is

�
v \ |C | for

all v in C for every cluster C



Progressive greedy K-means Algorithm

1. Select an arbitrary partition P into k clusters

2. while forever

3. bestChange← 0

4. for every cluster C

5. for every element i not in C

6. if moving i to cluster C reduces its clustering cost

7. if cost(P) − cost(Pi→C ) > bestChange

8. bestChange ← cost(P) − cost(Pi→C )

9. i
� ← i

10. C
� ← C

11. if bestChange > 0

12. Change partition P by moving i
�
to C

�

13. else

14. return P



Figure: K-means progression from left to right and top to bottom



The quality of cluster could be assessed by ratio of distance to
nearest cluster and cluster diameter. A cluster can be formed even
when there is no similarity between clustered patterns. This occurs
because the algorithm forces k clusters to be created. Linear
relationship with the number of data points; Complexity is O(nKI )
where n = number of points, K = number of clusters, I = number
of iterations.



Markov Clustering algorithm, MCL

We take a random walk on the graph described by the similarity
matrix, but after each step we weaken the links between distant
nodes and strengthen the links between nearby nodes.
Unlike most clustering algorithms, the MCL does not require the
number of expected clusters to be specified beforehand. The basic
idea underlying the algorithm is that dense clusters correspond to
regions with a larger number of paths.
A random walk has a higher probability to stay inside the cluster
than to leave it soon. The crucial point lies in boosting this effect
by an iterative alternation of expansion and inflation steps.
The inflation parameter is responsible for both strengthening and
weakening of current. (Strengthens strong currents, and weakens
already weak currents). The expansion parameter, r, controls the
extent of this strengthening / weakening (In the end, this
influences the granularity of clusters).



MCL Algorithm

1. Input is an un-directed graph, power parameter e (usually
=2), and inflation parameter r (usually =2).

2. Create the associated matrix

3. Normalize the matrix; M
�
pq = Mpq�

i Miq

4. Expand by taking the e-th power of the matrix; for example, if
e = 2 just multiply the matrix by itself.

5. Inflate by taking inflation of the resulting matrix with

parameter r : Mpq = (Mpq)r�
i (Miq)r

6. Repeat steps 4 and 5 until a steady state is reached
(convergence).



MCL Algorithm complexity and entropy analysis

The number of steps to converge is not proven, but
experimentally shown to be 10 to 100 steps, and mostly consist of
sparse matrices after the first few steps. There are several distinct
measures informing on the clustering and its stability such as the
following clustering entropy:
S = −1/L

�
ij(Pij log2Pij + (1−Pij)log2(1−Pij)) where the sum is

over all edges and the entropy is normalized by the total number of
edges. This might be used to detect the best clustering obtained
after a long series of clusterings with different granularity
parameters each time.
The expansion step of MCL has time complexity O(n3). The
inflation has complexity O(n2). However, the matrices are
generally very sparse, or at least the vast majority of the entries are
near zero. Pruning in MCL involves setting near-zero matrix entries
to zero, and can allow sparse matrix operations to improve the
speed of the algorithm vastly.



Figure: progression from left to right and top to bottom



�Topic: Hidden Markov Models in Bioinformatics

HMMs form a useful class of probabilistic graphical models used to
find genes, predict protein structure and classify protein families.
Definition: A hidden Markov model (HMM) has an Alphabet =
b1, b2, , bM , set of states Q = 1, ..., K , and transition
probabilities between any two states
aij = transition prob from state i to state j
ai1 + + aiK = 1, for all states i = 1,K
Start probabilities a0i
a01 + + a0K = 1
Emission probabilities within each state ei (b) = P(xi = b|πi = k)
ei (b1) + + ei (bM) = 1, for all states i = 1,K
A Hidden Markov model is Memoryless: P(πt+1 = k | whatever
happened so far) = P(πt+1 = k |π1,π2, ,πt , x1, x2, , xt) =
P(πt+1 = k |πt) at each time step t, only matters the current
state πt





The dishonest casino

� Known:

� The structure of the model

� The transition probabilities

� Hidden: What the casino did (ex FFFFFLLLLLLLFFFF)

� Observable: The series of die tosses, es 3415256664666153...

� What we must infer:

� When was a fair die used?

� When was a loaded one used?



Given a sequence x = x1xN , A parse of x is a sequence of states π
= π1, , πN



Likelihood of a parse



The three main questions on HMMs



Lets not be confused by notation





Decoding main idea



The Viterbi Algorithm



The Viterbi Algorithm



Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state π1 according to prob a0π1

2. Emit letter x1 according to prob eπ1(x1)

3. Go to state π2 according to prob aπ1π2

4. until emitting xn

Figure:



Evaluation



The Forward Algorithm

We will develop algorithms that allow us to compute:



The Forward Algorithm derivation



The Forward Algorithm



Comparison between Viterbi and Forward



Motivation for the Backward Algorithm



The Backward Algorithm derivation



The Backward Algorithm





In order to identify genes and their parts (exons and introns) we
need to know their length distribution (see example in figures
below). Human genes comprise about 3% of the human genome;
Average gene length: ∼ 8, 000 DNA base pairs (bp); Average of
5-6 exons/gene; Average exon length: ∼ 200 bp; Average intron
length: ∼ 2, 000 bp; ∼ 8% genes have a single exon Some exons
can be as small as 1 or 3 bp. Example HUMFMR1S
(http://www.ncbi.nlm.nih.gov/nuccore/1668818) is not atypical:
17 exons 40-60 bp long, comprising 3% of a 67,000 bp gene.





Figure: The model (left) and the output (right) of Genscan prediction of
a genomic region; the result is a segmentation of a genome sequence, i.e.
the colours map the HMM states with the predicted functional genomic
segments



Membrane proteins are important for cell import/export. TMHMM
is a program to predict membrane protein topology (i.e. which
parts are outside, inside and in the membrane) Trained with a
database of experimentally determined transmembrane helices
Prediction method: Posterior decoding, the program computes the
position with respect to the membrane for each amino acid of the
sequence. The figure below describes a 7 helix membrane protein
forming a sort of a cylinder (3d graph) across the cell membrane.



Figure: top: the 3D graph previous figure could be represented as a 2D
graph; bottom, 3 state prediction: each amino acid could be in the
membrane segment (h), outside the cell (o) or inside the cell (i)



Figure: The THMM model: a three state prediction model (h,o,i) could
be then refined adding more states, for example caps, i.e. the boundary
between outside and membrane and inside and membrane. This
refinement improves the prediction of the topology of the protein.



TMHMM http://www.cbs.dtu.dk/services/TMHMM/



Assessing performances: Sensitivity and specificity

1. be predicted to occur: Predicted Positive (PP)

2. be predicted not to occur: Predicted Negative (PN)

3. actually occur: Actual Positive (AP)

4. actually not occur: Actual Negative (AN)

5. True Positive TP = PP
�
AP

6. True Negative TN = PN
�
AN

7. False Negative FN = PN
�
AP

8. False Positive FP = PP
�
AN

9. Sensitivity: probability of correctly predicting a positive
example Sn = TP/(TP + FN)

10. Specificity: probability of correctly predicting a negative
example Sp = TN/(TN + FP) or

11. probability that positive prediction is correct Sp = TP/(TP +
FP)





Gibbs Sampling is an example of a Markov chain Monte Carlo
algorithm, it is an iterative procedure that discards one l-mer after
each iteration and replaces it with a new one. Gibbs Sampling
proceeds slowly and chooses new l-mers at random increasing the
odds that it will converge to the correct solution. It could be used
to identify short strings, motifs, common to all co-regulated genes
which are not co-aligned..

Figure: Several genes are co-regulated (activated or repressed) by same
protein that binds before the gene start (transcription factor)



The Biological problem: given a set of sequences, find the motif
shared by all or most sequences, while its starting position in each
sequence is unknown; Each motif appears exactly once in one
sequence, the motif has fixed length.

1. Randomly choose starting positions s = (s1,...,st) and form
the set of l-mers associated with these starting positions.

2. Randomly choose one of the t sequences

3. Create a profile p from the other t -1 sequences.

4. For each position in the removed sequence, calculate the
probability that the l-mer starting at that position was
generated by p.

5. Choose a new starting position for the removed sequence at
random based on the probabilities calculated in step 4.

6. Repeat steps 2-5 until there is no improvement



Considering a set of unaligned sequences, we choose initial guess
of motifs

Figure: motifs in purple, the rest of the sequences in green; next figures:
theta is the weight matrix i.e. the frequency of each base in the aligned
set of motifs; red the best fitting motif; in y axis the likelihood of each
motif with respect to the current weight matrix.









Properties of Biological Networks

Let assume that there are two related genes, B and D neither is
expressed initially, but E causes B to be expressed and this in turn
causes D to be expressed the addition of CX by itself may not
affect expression of either B or D both CX and E will have elevated
levels of mRNAB and low levels of mRNAD

Figure: We have E only; B is a Primary Target of E; Production of
mRNAB is enhanced by E; D is a Secondary Target of E; Production of
mRNAD is enhanced by B



Figure: E and CX both present; B is a Primary Target; Production of
RNAB is enhanced by E; Production of RNAD is decreased (prevented)



What is a genetic network?

A genetic network is a group of genes in which individual genes can
influence the activity of other genes. What, then, is gene activity?
Gene activity can include many different things. Most definitions
revolve around gene expression, whether a gene is expressed or not,
as RNA or as protein.
What is a genetic perturbation?
it is an experimental manipulation of gene activity by manipulating
either a gene itself or its product. Such perturbations include point
mutations, gene deletions, overexpression, inhibition of translation,
or any other interference with the activity of the product.



Network reconstruction: direct and indirect effects

Network reconstruction: direct and indirect effects.
When manipulating a gene and finding that this manipulation
affects the activity of other genes, the question often arises as to
whether this is caused by a direct or indirect interaction?
An algorithm to reconstruct a genetic network from perturbation
data should be able to distinguish direct from indirect regulatory
effects.
Consider a series of experiments in which the activity of every
single gene in an organism is manipulated. (for instance,
non-essential genes can be deleted, and for essential genes one
might construct conditional mutants.) The effect on mRNA
expression of all other genes is measured separately for each
mutant.



� How to reconstruct a large genetic network from n gene
perturbations in fewer than n2 steps?

� Motivation: perturb a gene network one gene at a time and
use the effected genes in order to discriminate direct vs.
indirect gene-gene relationships

� Perturbations: gene knockouts, over-expression, etc.

� Method: For each gene gi , compare the control experiment
to perturbed experiment and identify the differentially
expressed genes Use the most parsimonious graph that yields
the graph as its reachable graph

� Reference A. Wagner Bioinformatics 17, 1193-1197, 2001



The nodes of the graph correspond to genes, and two genes are
connected by a directed edge if one gene influences the activity of
the other.

Figure: (a) gene network; (b) adjacency list; (c) accessibility list; Goal:
(c) -¿ (a)



Figure: The figure illustrates three graphs (Figs. B,C,D) with the same
accessibility list Acc (Fig. A). There is one graph (Fig. D) that has Acc
as its accessibility list and is simpler than all other graphs, in the sense
that it has fewer edges. Lets call Gpars the most parsimonious network
compatible with Acc.



Figure A shows a graph representation of a hypothetical genetic
network of 21 genes. Figure B shows an alternative representation
of the network shown in A. For each gene i, it simply shows which
genes activity state the gene influences directly. In graph theory, a
list like that shown in Fig. B is called the adjacency list of the
graph. We will denote it as Adj(G), and will refer to Adj(i) as the
set of nodes (genes) adjacent to (directly influenced by) node i.
One might also call it the list of nearest neighbors in the gene
network, or the list of direct regulatory interactions.
When perturbing each gene in the network shown in Figure A, one
would get the list of influences on the activities of other genes
shown in Figure C.
Starting from a graph representation of the network in Figure A,
one arrives at the list of direct and indirect causal interactions in
Figure C by following all paths leaving a gene. That is, one follows
all arrows emanating from the gene until one can go no further.



The adjacency list completely defines the structure of a gene network

In graph theory, the list Acc(G) is called the accessibility list of the
graph G, because it shows all nodes (genes) that can be accessed
(influenced in their activity state) from a given gene by following
paths of direct interactions.
In the context of a genetic network one might also call it the list of
perturbation effects or the list of regulatory effects.
Acc(i) is the set of nodes that can be reached from node i by
following all paths of directed edges leaving i. Acc(G) then simply
consists of the accessibility list for all nodes i



The adjacency matrix of a graph G, A(G ) = (aij) is an n by n
square matrix, where n is the number of nodes (genes) in the
graph. An element aij of this matrix is equal to one if and only if a
directed edge exists from node i to node j. All other elements of
the adjacency matrix are zero.
The accessibility matrix P(G ) = pij is also an n by n square
matrix. An element pij is equal to one if and only if a path
following directed edges exists from node i to node j . otherwise pij

equals zero.
Adjacency and accessibility matrices are the matrix equivalents of
adjacency and accessibility lists.
Lets first consider only graphs without cycles, where cycles are
paths starting at a node and leading back to the same node.
Graphs without cycles are called acyclic graphs.
Later generalize to graphs with cycles.
An acyclic directed graph defines its accessibility list, but the
converse is not true.
In general, if Acc is the accessibility list of a graph, there is more
than one graph G with the same accessibility list



Figure: A shortcut is an edge connecting two nodes, i and j that are also
connected via a longer path of edges. The shortcut e is a shortcut range
k+1. That is, when eliminating e, I and j are still connected by a path of
length k+1.



Wagner Algorithm



Theorem 1 (step 1)

� Let Acc be the accessibility list of an acyclic digraph. Then
there exists exactly one graph Gpars that has Acc as its
accessibility list and that has fewer edges than any other
graph G with Acc as its accessibility list.

� This means that for any list of perturbation effects there
exists exactly one genetic network G with fewer edges than
any other network with the same list of perturbation effects.

� Definition: An accessibility list Acc and a digraph G are
compatible if G has Acc as its accessibility list. Acc is the
accessibility list induced by G.

� Definition: Consider two nodes i and j of a digraph that are
connected by an edge e. The range r of the edge e is the
length of the shortest path between i and j in the absence of
e. If there is no other path connecting i and j, then r: = ∞.



Theorem 2 (step1)

Let Acc(G) be the accessibility list of an acyclic directed graph,
Gpars its most parsimonious graph, and V(Gpars ) the set of all
nodes of Gpars . Then the following equation (1):
∀i ∈ V (Gpars) . . .Adj (i) = Acc (i) \ ∪j∈Acc(i)Acc (j)
In words, for each node i the adjacency list Adj(i) of the most
parsimonious genetic network is equal to the accessibility list Acc(i)
after removal of all nodes that are accessible from any node in
Acc(i).



Example

Figure: Adj(1) = Acc(1) –
(Acc(2) + Acc(3) + Acc(4) + Acc(5) + Acc(6)) = (2, 3, 4, 5, 6) -
(3 ∪ (5, 6) ∪ 6) = (2, 4)



Proof: I will first prove that every node in Adj(i) is also contained
in the set defined by the right hand side of (1).
Let x be a node in Adj(i). This node is also in Acc(i). Now take,
without loss of generality any node j ∈ Acc(i). Could x be in
Acc(j)? If x could be in Acc(j) then we could construct a path from
i to j to x. But because x is also in Adj(i), there is also an edge
from i to x. This is a contradiction to Gpars being shortcut-free.
Thus, for no j ∈ Acc(i) can x be in Acc(j). x is therefore also not
an element of the union of all Acc(j) shown on the right-hand side
of (1). Thus, subtracting this union from Acc(i) will not lead to
the difference operator in (1) eliminating x from Acc(i). Thus x is
contained in the set defined by the right-hand side of (1).



Next to prove: Every node in the set of the right-hand side of (1)
is also in Adj(i).
Let x be a node in the set of the right-hand side of (1). Because x
is in the right hand side of (1), x must a fortiori also be in Acc(i).
That is, x is accessible from i. But x can not be accessible from
any j that is accessible from i.
For if it were, then x would also be in the union of all Acc(j). Then
taking the complement of Acc(i) and this union would eliminate x
from the set in the right hand side of (1). In sum, x is accessible
from i but not from any j accessible from i. Thus x must be
adjacent to i.
The algorithm itself will use the following corollary to Theorem 2.



Corollary 2: Let i, j, and k be any three pairwise different nodes of
an acyclic directed shortcut-free graph G. If j is accessible from i,
then no node k accessible from j is adjacent to i.
Proof: Let j be a node accessible from node i. Assume that there
is a node k accessible from j, such that k is adjacent to i. That is, j
∈ Acc(i), k ∈ Acc(j) and k ∈ Adj(i). That k is accessible from j
implies that there is a path of length at least one from j to k. For
the same reason, there exists a path of length at least one
connecting i to j. In sum, there must exist a path of length at least
two from i to k. However, by assumption, there also exists a
directed edge from i to k. Thus, the graph G can not be short-cut
free.



Step 2: How about graphs with cycles?

Two different cycles have the same accessibility list
Perturbations of any gene in the cycle influences the activity of all
other genes in the same cycle
Cant decide a unique graph if cycle happens
Not an algorithmic but an experimental limitation



Figure: Basic idea: Shrink each cycles (strongly connected components)
into one node and apply the algorithm of step 1. A graph after shrinking
all the cycles into nodes is called a condensation graph



How good is this algorithm?

1. Unable to resolve cycled graphs

2. Require more data than conventional methods using gene
expression correlations.

3. There are many networks consistent with the given
accessibility list. The algorithm construct the most
parsimonious one.

4. The same problem was proposed around 1980 which is called
transitive reduction.

5. The transitive reduction of a directed graph G is the directed
graph G’ with the smallest number of edges such for every
path between vertices in G, G’ has a path between those
vertices.

6. An O(V) algorithm for computing transitive reduction of a
planar acyclic digraph was proposed by Sukhamay Kundu. (V
is the number of nodes in G)



Complexity

� Measures of algorithmic complexity are influenced by the
average number of entries in a nodes accessibility list. Let
k < n − 1 be that number.

� For all practical purposes, there will be many fewer entries
than that, not only because accessibility lists with nearly n
entries are not accessibility lists of acyclic digraphs, but also
because most real-world graphs are sparse.

� During execution, each node accessible from a node j induces
one recursive call of PRUNEACC, after which the node
accessed from j is declared as visited.

� Thus, each entry of the accessibility list of a node is explored
no more than once.

� However, line 15 of the algorithm loops over all nodes k
adjacent to j. If a = |Adj(j)|, on average, then overall
computational complexity becomes O(nka).



Comments on the code



















�Topic: Gillespie algorithm

Consider a system of N molecular species S1, , SN interacting
through M elemental chemical reactions R1, ,RM .
We assume that the system is confined to a constant volume W
and is well stirred and at a constant temperature. Under these
assumptions, the state of the system can be represented by the
populations of the species involved.
We denote these populations by X (t)X1(t), ,XN(t), where Xi(t) is
the number of molecules of species Si in the system at time t. The
well stirred condition is crucial. For each reaction Rj , a propensity
function aj , such that aj(x)dt the probability, given X (t) = x ,
that one Rj reaction will occur in time interval [t, t + dt). State
change vector vj , whose ith component is defined by vj ,i the
change in the number of Si molecules produced by one Rj reaction.



The most important method to simulate a network of biochemical
reactions is Gillespies stochastic simulation algorithm (SSA)

1. The Gillespie algorithm is widely used to simulate the behavior
of a system of chemical reactions in a well stirred container

2. The key aspects of the algorithm is the drawing of two
random numbers at each time step, one to determine after
how much time the next reaction will take place, the second
one to choose which one of the reactions will occur.

3. Each execution of the Gillespie algorithm will produce a
calculation of the evolution of the system. However, any one
execution is only a probabilistic simulation, and the chances of
being the same as a particular reaction is vanishingly small.

4. Therefore to garner any useful information from the
algorithm, it should be run many times in order to calculate a
stochastic mean and variance that tells us about the
behaviour of the system.

5. the complexity of the Gillespie algorithm is O(M) where M is
the number of reactions.



Gillespie Algorithm

1. Initialise: set the initial molecule copy numbers, set time
t = 0.

2. Calculate the propensity function ai for each reaction, and the
total propensity according to equation a0 (x) ≡

�M
j=1 aj (x) , i

= 1,...,M.

3. Generate two uniformly distributed random numbers r1 and r2

from the range (0, 1).

4. Compute the time τ to the next reaction using equation

τ = 1
a0(x)

ln

�
1
r1

�
.

5. Decide which reaction Rµ occurs at the new time using

equation r2 >
�µ−1

k=1 ak . . . and . . . r2 <
1
a0

�µ−1
k=1 ak .

6. Update the state vector v by adding the update vector :
v(t + τ) = v(t) + (ν)µ

7. Set t = t + τ . Return to step 2 until t reaches some specified
limit tMAX .



In each step, the SSA starts from a current state x(t) = x and
asks two questions: When will the next reaction occur? We
denote this time interval by t . When the next reaction occurs,
which reaction will it be? We denote the chosen reaction by the
index j. To answer the above questions, one needs to study the
joint probability density function p (τ, j | x , t) that is the
probability, given X (t) = x , that the next reaction will occur in the
infinitesimal time interval [t + τ, t + τ + dt]. The theoretical
foundation of SSA is given by p (τ, j | x , t) = aj (x) exp (−a0 (x) τ),

where a0 (x) ≡
�M

j=1 aj (x) It implies that the time t to the next
occurring reaction is an exponentially distributed random variable
with mean 1/a0 (x) , and that the index j of that reaction is the
integer random variable with point probability aj (x) /a0 (x). The τ

is τ = 1
a0(x)

ln

�
1
r1

�

The system state is then updated according to X (t + τ) = x + νj
and this process is repeated until the simulation final time or until
some other terminating condition is reached.



Interesting websites for practicals

Tutorials for Molecular Biology (accessible to computer science
students) http://www.thomas-schlitt.net/Bioproject.html;
http://www.biostat.wisc.edu/ craven/hunter.pdf
Data Repository: http://www.ncbi.nlm.nih.gov/ ; Human Genome
Browser Gateway http://genome.ucsc.edu/ www.ensembl.org ;
http://www.ebi.ac.uk
Progressive alignment:
http://www.ebi.ac.uk/Tools/msa/clustalw2/;
ftp://ftp.ebi.ac.uk/pub/software/.
Phylogenetic software repository:
http://evolution.genetics.washington.edu/phylip/software.html
HMM: http://www.cbs.dtu.dk/services/TMHMM/;
http://genes.mit.edu/GENSCAN.html
Various libraries to help with Bio data BioJava www.biojava.org ;
BioPerl www.bioperl.org ; BioPython www.biopython.org ;
BioCorba www.biocorba.org ; C++
www.ncbi.nlm.nih.gov/IEB/ToolBox/



Examples of Exam Questions

� Align the two strings: ACGCTG and CATGT, with match
score =1 and mismatch, gap penalty equal -1

� Describe with one example the difference between Hamming
and Edit distances

� Discuss the complexity of an algorithm to reconstruct a
genetic network from microarray perturbation data

� Discuss the properties of the Markov clustering algorithm and
the difference with respect to the k-means and hierarchical
clustering algorithms



Examples of Answers Align the two strings: ACGCTG and
CATGT, with match score =1 and mismatch, gap penalty equal -1

Describe with one example the difference between Hamming and
Edit distances TGCATAT → ATCCGAT in 4 steps; TGCATAT
(insert A at front); ATGCATAT (delete 6th T); ATGCATA
(substitute G for 5th A); ATGCGTA (substitute C for 3rd G);
ATCCGAT (Done).



Examples of Answers
Discuss the complexity of an algorithm to reconstruct a genetic
network from microarray perturbation data
Reconstruction: O(nka) where n is the number of genes, k is the
average number of entries in the accession list; a is the average
number of entries in adjacency list. Large scale experimental gene
perturbations in the yeast Saccharomyces cerevisiae (n=6300)
suggests that k < 50, a < 1, and thus that nka << n2.



Discuss the properties of the Markov clustering algorithm and the
difference with respect to the k-means and hierarchical clustering
algorithms
MCL algorithm: We take a random walk on the graph described by
the similarity matrix and after each step we weaken the links
between distant nodes and strengthen the links between nearby
nodes.
The k-means algorithm is composed of the following steps: 1)
Place K points into the space represented by the objects that are
being clustered. These points represent initial group centroids. 2)
Assign each object to the group that has the closest centroid. 3)
When all objects have been assigned, recalculate the positions of
the K centroids. 4) Repeat Steps 2 and 3 until the centroids no
longer move. This produces a separation of the objects into groups
from which the metric to be minimized can be calculated.
Hierarchical clustering: Start with each point its own cluster. At
each iteration, merge the two clusters; with the smallest distance.
Eventually all points will be linked into a single cluster. The
sequence of mergers can be represented with a rooted tree.
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