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Additional exercises, part II: making decisions, HMMs and Bayes learning
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1 Making decisions

1. Exam question: 2007, paper 8, question 9.

2. Exam question: 2011, paper 8, question 8.

2 HMMs

1. Derive the equation
bT+1:t = SET+1bT+2:t

for the backward message in a hidden Markov model (lecture slide 207).

2. Establish how the priorPr(S0) should be included in the derivation of the Viterbi algorithm. (This
is mentioned on slide 191, but no detail is given.)

3. Exam question: 2005, paper 9, question 8.

4. Exam question: 2008, paper 9, question 5.

5. Exam question: 2010, paper 7, question 4.

3 Bayesian learning

1. Derive theweight decay training algorithm

wMAP = argmin
w

α

2
||w||2 +

β

2

m
∑

i=1

(yi − f(w;xi))
2

given on slide 267.

2. Use the standard Gaussian integral to derive the final equation for Bayesian regression

p(Y |y,x) =
1

√

2πσ2
y

exp

(

−
(y − f(wMAP;x))

2

2σ2
y

)

where

σ2
y =

1

β
+ gTA−1g

given on slide 283.

3. This question asks you to produce a version of the graph on slide 285, but using the Metropolis
algorithm instead of the solution obtained by approximating the integral. Any programming language
is fine, although Matlab is probably the most straightforward.

The data is simple artificial data for a one-input regressionproblem. Use the target function

f(x) =
1

2
+ 0.4 sin 2πx

and generate30 examples clustered aroundx = 0.25 andx = 0.75. Then label these examples

y(x) = f(x) + n

wheren is Gaussian noise of standard deviation0.05. Plot the data as follows:
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Training examples

Let w ∈ R
W be the vector of all the weights in a network. Your supervisedlearner should be based

on a prior density

p(w) =

(

2π

α

)

−W/2

exp
(

−
α

2
||w||2

)

on the weights. A value ofα = 1 is reasonable. The likelihood used should be

p(y|w) =

(

2π

β

)

−m/2

exp

(

−
β

2

m
∑

i=1

(y(xi)− h(w;xi))
2

)

wherem is the number of examples andh(w;x) is the function computed by the neural network with
weightsw. A value ofβ = 1/(0.05)2 is appropriate. Note that we are assuming that hyperparameters
α andβ are known, and the prior and likelihood used are the same as those used in the lectures.

Complete the following steps:

(a) Write a functionsimpleNetwork function implementing a multilayer perceptron with a
single hidden layer, a basic feedforward structure as illustrated in the AI I lectures, and a single
output node. The network should use sigmoid activation functions for the hidden units and a
linear activation function for its output. You should use a network having4 hidden units.

(b) Starting with a weight vector chosen at random, use the Metropolis algorithm to sample the pos-
terior distributionp(w|y). You should generate a sequence of100weight vectorsw1,w2, . . . ,w100.

(c) Plot the functionh(wi;x) computed by the neural network for a few of the weight vectors
obtained.
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Individual functions

(d) Discard the first50 weight vectors generated. Using the remainder, calculate the mean and
variance of the corresponding functions using

mean(x) =
1

50

100
∑

i=51

h(wi;x)
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and a similar expression for the variance. Plot the mean function along with error bars provided
by the variance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2
Mean and variance of individual functions

4. Explain how the Gibbs algorithm might be applied to the Bayesian network developed earlier for the
roof-climber alarm problem.

5. Exam question: 2010, paper 8, question 2.
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