Artificial Intelligence |

Computer Laboratory, Room FC06
Telephone extension 63725
Email: sbhll@cl.cam.ac.uk

www.cl.cam.ac.ukisbhl11/

Copyright(©) Sean Holden 2002-2013.

1

Introduction: what's Al for?

What is the purpose of Artificial Intelligence (Al)? If yoe'ra or a
then perhaps it’s:

e IO

e TO understana

Philosophers have worked on this for at least) years. They've also wondered
about:

° we do Al? we do Al?

o IS Al ? (Note: I didn’t write here, for a good reason...)

Despite2000 years of work, there’s essentialiy. In the way of results.

Introduction: what's Al for?

Luckily, we were sensible enough not to pursue degrees ilogdgphy—we’re
scientists/engineers, so while we might havaneinterest in such pursuits, our

perspective is different:

e Brains are small (true) and apparently slow (not quite sareteit), but incred-
Ibly good at some tasks—we want to understand a specific férmo o

e It would be nice to be able to intelligent systems.

e It IS also nice tc

This view

Al is entering our lives almost without us being aware of it.

Introduction: now is a fantastic time to investigate Al

In many ways this is a young field, having only really got ungay in 1956 with
the

www f or mal . st anf ord. edu/j nt/ hi st ory/ dart nout h/ dart nout h. ht m

e This means we can actualiyo things. It's as if we were physicists before
anyone thought about atoms, or gravity, or....

e Also, we know what we’re trying to do is > (Unless we think humans
don’t exist. béfore
Perhaps I'm being too hard on them; there was some good gnarkd wanted an algorithm for.
leading to s Ramon Lull’s and other attempts at mechanical calculators. Rene Destart
and the idea of mind as ja m Wilhelm Leibnitz's opposing position of . (The

intermediate position: mind is but) The origin of =Francis Bacon’s) John
Locke: . David Hume: we obtain rules by repeated
exposure: . Further developed by Bertrand Russel and inGhe of Carnap and Hempel.
More recently: the connection between and ? How are actiong ? If to achieve the end you

need to achieve something intermediate, consider how tewthat, and so on. This approach was implemented in
Newell and Simon’s 1957

Is Al possible?

Many philosophers are particularly keen to argue that Airig ? Why is
this? We have:

e Perception (vision, speech processing...)

e Logical reasoning (prolog, expert systems, CYC...)

e Playing games (chess, backgammon, go...)

e Diagnosis of illness (in various contexts...)

e Theorem proving (Robbin’s conjecture...)

e Literature and music (automated writing and compositipn..

e And many more...

What’'s made the difference? In a nutshelk
rand that allows us tb

The simple ability to has led to huge advances in a relatively short
time. don’t believe the critics...

Further reading

Why do people dislike the idea that humanity might notbe
An excellent article on why this view is much more problemahan it might
seem is:

Marvin Minsky. Al Magazine, volume 3
number 4, 1982.

Aside: when something is understood it stops being Al

To have Al, you need a meansiof the intelligence. Computers are (at
present) the only devices in the race. (Althoug' IS looking
Interesting...)

Al has had a major effect on computer science:

e Time sharing

e Interactive interpreters

e Linked lists

e Storage management

e Some fundamental ideas in object-oriented programming

e and so on...

When Al has a success, the ideas in question tesdito

Similarly: do you consider the fact thait to
be a form of Al?

The nature of the pursuit

This is not necessarily a straightforward question.
It depends on who you ask...

We can find many definitions and a rough categorisation candskerdepending
on whether we are interested in:

e The way in which a systemcisor the way in which it

e Whether we want it to do this inla way or a way.

Here, the word has a special meaning: it means

Acting like a human

proposed what is now known as tie

e A human judge is allowed to interact with an Al program via rarteal.

e Thisis the method of interaction.

e If the judge can’t decide whether the interaction is produlog a machine or
another human then the program passes the test.

In the Turing test the Al program may also have a camera attached,
so that objects can be shown to it, and so on.

Acting like a human

The Turing test is informative, and (very!) hard to pass.

e It requires many abilities that seem necessary for Al, sugclearning.
a human child would probably not pass the test.

e Sometimes an Al system needs human-like acting abilities-example
often have to produce explanations—~huoi

See the

www. | oebner. net/ Prizef/| oebner-prize. htmni

10

Thinking like a human

There is always the possibility that a machineing like a human does not actu-
ally . The approach to Al has tried to:

e Deduce #for example by or

e Copy the process by mimicking it within a program.
An early example of this approach is tha produced by

Newell and Simon in 1957. They were concerned with whethaobthe program
reasoned in the same manner that a human did.

Computer Science Psychology-

11

Thinking rationally: the “laws of thought”

The idea that intelligence reducesriti IS a very old one, going at
least as far back as Aristotle as we've already seen.

The general field of made major progress in the 19th and 20th centuries,
allowing it to be applied to Al.

e We can and about many different things.

e The approach to Al.

This is a very appealing ideal

12

Thinking rationally: the “laws of thought”

Unfortunately there are obstacles to any naive applicatfaagic. It is hard to:

e Represeni
e Deal with

e Reason without being tripped up by

These will be recurring themes in this course, and in Al Il.

Logic alone also falls short because:

e Sometimes it’'s necessary to act when there/ogical course of action.

e Sometimes inference ig (reflex actions).

13

Further reading

The project has most certainly earned the
badge of

It is an example of how much harder the logicist approachas ffou might think:

Tohru Moto-oka. ACM
SIGARCH Computer Architecture News, volume 11, number 83319

14

Acting rationally

Basing Al on the idea of means attempting to design systems
that act to given their
Thinking about this in engineering terms, it seems to lead us

towards the usual subfields of Al. What might be needed?
e TOo make N many we need to and
with
¢ \We need to deal with
e \We need to be able to
e \We need

e \We need

And so on, so all the usual Al bases seem to be covered.

15

Acting rationally

The idea of has several advantages:

e The concepts of ! and can be defined precisely making the
field suitable for scientific study.

This is important: if we try to model Al systems on humans, @Rr’teven propose
sensible definition of

In addition, humans are a system that is still changing aagted to a very spe-
cific environment.

does not have these limitations.

16

Acting rationally

also seems to two of the alternative approaches:

e All of the things needed to pass a Turing test seem necessargtional act-
Ing, so this seems preferable to tie approach.

e The logicist approach can clearly formrt of what’s required to act rationally,
S0 this seems preferable to the approach alone.

As a result, we will focus on the idea of designing systemsdlia

17

Other fields that have contributed to Al

Experimental Psychology Mathematics I: logic
Mathematics II: pr ili
Hermann von Helmholtz: visual system. Aristotle's material turned into mathematics by Boole MRS (6 probability
Wilhelm Wundt: introspection. (Experimentally dubious.) Frege: first order logic. Gambling outcomes: Cardano, Fermat, Pascal, Bernoulli, Laplace.

Tarski: relationship between real and logical objects. Bernoulli: degree of belief.

K s 5 Bayes: updating beliefs using evidence.
Watson and Thorndike: Behaviourism SRR EoReEnt @ aligorilim,

Hilbert: limits of algorithms. Modern representation of uncertainty.
Learned a lot about pigeons and rats.
Von Neumann and Morgenstern: combine uncertainty with

Intractability and complexity. - r——
action: decision theory.

Stimulus and response/objective measures.
Godel: incompleteness theorem.

\

Craik: "The Nature of Explanation"

Brain as an information processing device. Neuroscience

Reasoning, beliefs, goals etc. Nasty bumps on the head - we know brains
System has a model of how the world works. Artificial Intelligence and consciousness are related.

~®== Paul Broca: localised regions have different tasks.

Presence of neurons, although even storage of a memory

Linguistics not really understood.
Recently: EEG, MRI etc.
Skinner's "Verbal Behaviour".
Noam Chomsky: behaviourisn can't account for understanding or

production of things not previously heard.

A central AI concept: "Time flies like an arrow. Fruit flies like a banana". Economics

How should I act, in the presence of adversaries, to obtain nice
Cybernetics stuff in the future?

. . . How do I measure the degree of niceness?
250BC: first machine able to modify its own behaviour.

X Probability + Utility = Decision Theory.
James Watt: governor for steam engines.
Small economies: game theory - sometimes it's rational to act (apparently)

Drebbel: thermostat. randomly.

Norbert Weiner and others: control theory as a mathematical subject. Belman: Operations research. Markov decision processes. Future gains

. . . X resulting from a series of actions.
Minimisation of difference between current situation and goal.

. . e . . . Rational action is intractable. Herbert Simon: Satisficing is a better description
Stochastic optimal control: minimisation over time of an objective function. of what humans do.

----Al moves away from linear and continuous scenarios.

18

What's in this course?

This course introduces some of the fundamental areas thag upAl:

e An outline of the background to the subject.

e An introduction to the idea of an

e Solving problems in an intelligent way sy

e Solving problems represented@s problems.
e Playing

o

o using

Strictly speaking, Al | covers what is often referred to'as

. (Although “Old-Fashioned” is a misleading term.)
The nature of the subject changed a great deal when the iamoerbf
became fully appreciated. Al Il covers this more recent mate

19

What'snotin this course?

e The classical Al programming languages!og and
e A great deal of all the areas on the last slide!

e Perception: ! and : (force sensing, know-
iIng where your limbs are, knowing when something is b&oig

e Natural language processing.

e Acting on and in the world: (effectors, locomotion, manipulation),

e Areas such as : ,
and ; for reasons that | will expand upon during the
lectures.

o and much further probabilistic material. (You'll have toitwantil
next year.)

20

Text book

The course is based on the relevant parts of:

,Third Edition (2010). Stuart Russell
and Peter Norvig, Prentice Hall International Editions.

This Is also the main recommended text for Al2.

21

Interesting things on the web

A few interesting web starting points:

The Honda Asimo robotiwr I d. honda. cont AsI MO

Al at Nasa AmeS:ww. nasa. gov/ cent er s/ anes/ r esear ch/ expl ori ngt heuni ver se/ spi ffy. ht m
DARPA Grand Challengeht t p: // ww. dar pagr andchal | enge. coni

2007 DARPA Urban Challengec:s. st anf or d. edu/ gr oup/ r oadr unner

The Cyc project:www. cyc. com

Human-like robots:ww. ai . it . edu/ proj ect s/ humanoi d-r oboti cs- group

Sony I’ObOtSZsupport . sony- eur ope. coni ai bo

NEC “PaPeRo0”:ww. nec. co. j p/ product s/ r obot / en

22

Prerequisites

The prerequisites for the course are: first order logic, salgerithms and data
structures, discrete and continuous mathematics, basiputational complexity.

In the lectures on | will be talking about

This means you will need to be abledld and also handle

If you've forgotten how to do this

23

Prerequisites

1. Let

n
2
flxy,...,x,) = Z ;X
=1
where the:; are constants. Can you computg/ox; wherel < j < n?

2.Letf(xy,...,x,) beafunction. Now assume = ¢;(y,....,1,,) for eachz,
and some collection of functions. Assuming all requirements for differentia-

bility and so on are met, can you write down an expression foiy; where
1 <353 <m?

If the answer to either of these questions is “no” then itisdifor some revision.
(You have about three weeks notice, so I'll assume you knw it

24

And finally. ..

There are some important points to be made regarcling

First, you might well hear the term being used a lot. What does it
mean?

For example: high-quality automatic translation from omeguage to another.

To produce a genuinely good translation\&i from English to Cantonese
IS likely to be Al complete.

25

And finally. ..

More practically, you will often hear me make the claim thag

There are two ways to interpret this:

1. The wrong way: “It's all a waste of tim&.OK, so it's a partly understandable
Interpretation. the fact that the travelling salesman problem is intraetabl
mean there’s no such thing as a satnav. ..

2. The right way: “It's an opportunity to design nice approation algorithms.”
In reality, the algorithms that are are ones that try toftenfind
a but not necessatrily solution, in a amount of time.

In essence, a comment on a course assessment a couple digelats the effect of: “Why do you teach us this stuff if it'$ faitile?”

26

Artificial Intelligence |

An introduction to

Copyright(©) Sean Holden 2002-2013.

27

Agents

There are many different definitions for the teamentwithin Al.

Allow me to introducezVIL ROBOT.

MUST ENSLAVE EARTH!!
DR HOLDEN WILL BE OUR
GLORIOUS LEADER!!!!

O
®

O O Sense
—
'

Act

We will use the following simple definitior:

28

Agents

This definition can be very widely applied: to humans, ropptsces of software,
and so on.

We are taking quite an perspective. We want to rather than
<S0 to be scientific there are some issues to be addressed:

e How can we judge an agent’s performance?

e How can an agent’s affect its design?

e Are there sensible ways in which to think about e of an agent?
Recall that we are interested in devices tinat , where ‘rational’ means
doing the under

Russell and Norvig, chapter 2.

29

Measuring performance

How can we judge an agent’s performance? Any measure ofrpaaiftce is likely
to be

For a chess playing agent, we might use its rating.

For a mail-filtering agent, we might devise a measure of how wve
blocks spam, but allows interesting email to be read.

For a car driving agent the measure needs considerablessiophon:
we need to take account of comfort, journey time, saftty

the choice of a performance measure is itself worthy of chiEfnsideration.

30

Measuring performance

We're usually interested ia
o performance because usually agents areonoi H+—they don't
know the outcome of their actions.

o ltis for you to enter this lecture theatre even if the roof fallsaday.

An agent capable of detecting and protecting itself fromlintaroof might be
more than you, butiot more

o because It tends to lead to better approximations to
what we’'d consider rational behaviour.

e \We probably don’t want our car driving agent to be outstaglgismooth and
safe for most of the time, but have episodesiof

31

Environments

How can an agent’s affect its design? the environment for
a Is vastly different to that for am

. Some common attributes of an environment have a consigardluence on
agent design.

o do percepts tell you you need to know
about the world?

o does the future depend on the
present and your actions?

o IS the agent run in independent episodes.
o can the world change while the agent is deciding what to do?

o an environment is discrete if the sets of allowable per-
cepts and actions are finite.

32

Environments

All of this assumes there is only one agent.

When multiple agents are involved we need to consider:

e \Whether the situation is or

e Whether required?
An example of multiple agents:

news.bbc.co.uk/1/hi/technology/3486335.stm

33

Basic structures for intelligent agents

Are there sensible ways in which to think about e of an agent? Again,
this is likely to be calthough perhaps to a lesser extent.

So far, an agent is based on percepts, actions and goals.
Aircraft piloting agent.

sensor information regarding height, speed, engetesudio and video
inputs, and so on.

manipulation of the aircraft’s controls.
Also, perhaps talking to the passengeis

get to the necessary destination as quickly as possiblemirimal use of
fuel, without crashingptc

34

Programming agents

A basic agent can be thought of as working on a straightfatwaderlying pro-
cess:

o

e Update to take account of them.

e On the basis of what's in the working memory, to perform.

o the working memory to take account of this action.

° the chosen action.

Obviously, this hides a great deal of complexity.

Also, it ignores subtleties such as the fact that a perceghtarrive while an
action is being chosen.

35

Programming agents

We’'ll initially look at two hopelessly limited approachdscause they do suggest
a couple of important points.

Use a table to map percept sequences to
actions. This can quickly be rejected.
e The table will be for any problem of interest. Abouit'"" entries for a
chess player.
e \We don’t usually know how to fill the table.
e Even if we allow table entries to be it will take too long.

e The system would have rm

We can attempt to overcome these problems by allowing agenis

IS an interesting issue though...

36

Autonomy

If an agent’s behaviour depends in some manner onis
via Its percept sequence, we say ihis

e An agent using only built-in knowledge would seem not to becesgsful at Al
In any meaningful sense: its behaviour is predefined by sgyder.

e On the other hand built-in knowledge seems essential, even to humans.

Not all animals are entirely autonomous.

dung beetles.

37

Reflex agents

try pertinent information and
using based on this.

| f acertain IS observed hen perform some
Some points immediately present themselves regardingeflex agents are un-
satisfactory:

e \We can’t always decide what to do based ondhe

e However storinga!! past percepts might be undesirable (for example requiring
too much memory) or just unnecessary.

e Reflex agents don’t maintain a description of the

e ...however this seems necessary for any meaningful Al. $den automating
the task of driving.)

This is all the more important as usually percepts don'tytell

38

Keeping track of the environment

It seems reasonable that an agent should maintain:

o A
e Knowledge of how the environmert

e Knowledge of how the agent’s

This requires us to do and

39

Goal-based agents

It seems reasonable that an agent should choose a ratiamgkecof action de-
pending on its

e If an agent has knowledge of how its actions affect the enwrent, then it
has a basis for choosing actions to achieve goals.

e TO Obtain a of actions we need to be ableds and to

This is from a reflex agent.

by changing the goal you can change the entire behaviour.

40

Goal-based agents

We now have a basic design that looks something like this:

Percept
Update
L Update
Description: current environment ~
T

Y

Description: effect of actions

Y

Description: behaviour of environment

Description of Goal

Infer

y
Action/Action sequence

41

Utility-based agents

Introducing goals is still not the end of the story.

There may be sequences of actions that lead to a given goal,samal

A maps a state to a number representing the desirability of tha
state.

e \We can trade-off > for example speed and safety.

e If an agent has several goals and is not certain of achiengghthem, then
It can trade-off likelihood of reaching a goal against theigbility of getting

there.

over time forms a fundamental model for the design
of agents. However we don’t get as far as that until Al 1.

42

Learning agents

It seems reasonable that an agent shaeddn from experience

Percept
e
Update
y Update
Description: current environment ~
T

Y

Description: effect of actions

Y

Description: behaviour of environment

l

c
o
N =
L
D

Feedback—— Learner

Description of Goal

\
Action/Action sequence

43

Learning agents

This requires two additions:
e The learner needs some form fef on the agent’s performance. This
can come in several different forms.
¢ In general, we also need a meangof in order to find
out about the world.

This in turn implies a trade-off: should the agent spend time what it’s
learned so far, or the environment on the basis that it might learn some-
thing really useful?

44

What have we learned? (No pun intended...)

The things that should be taken away from this lecture are:

e The nature of an agent depends oreits and
e We're usually interested ia

e Autonomy requires that an agent in some way behaves

e Thereisa on which agent design can be based.

e Consideration of that structure leads naturally to thedoasas covered in this
course.

Those basic areas are:

4 Oh, and finally, we've learned NOT TO MESS WITEVIL ROBOT... he’s a VERY BAD ROBOT!

45

Artificial Intelligence |

Notes on

Copyright(©) Sean Holden 2002-2013.

46

Problem solving by search

We begin with what is perhaps the simplest collection of Ahtmques: those al-

lowing an existing within an to for a
that
The algorithms can, crudely, be divided into two kinds: and

Not surprisingly, the latter are more effective and so wiedk at those in more
detail.

Russell and Norvig, chapters 3 and 4.

47

Problem solving by search

As with any area of computer science, some degregbe! IS necessary
when designing Al algorithms.

apply to a particularly simple class of problems—we need to

identify:
o : what is the agent’s situation to start with?
o s these are modelled by specifying what state will result on

performing any available action from any known state.

o : we can tell whether or not the state we're in correspondgjimeh

Note that the goal may be described by a property rather thaxglicit state or
set of states, for exampie

48

A simple example!

Start State
3)

1 ‘ 4 2
7 8 6

(A good way of keeping kids quiet...)

Action

Problem solving by search

3 5

4 2 Action
—

8 6

) Further actions

—_— e —>

49

Goal State
1 2 3
4 5) 6
71|18

Problem solving by search

a randomly-selected configuration of the numblets s arranged on
a3 x 3 sqguare grid, with one square empty.

the numbers in ascending order with the bottom right squaugye

left, right, up, down. We can move any square adjacent to the
empty square into the empty square. (It's not always posstothoose from all
four actions.)

| per move.

The 8-puzzle is very simple. However general sliding block pagzire a good
test case. The general problem is NP-complete. ;The version has about)*’
states, and a random instance is in fact quite a challenge.

50

Problem solving by basic search

EVIL ROBOT has found himself in an unfamiliar building:

Evil Robot =~ :

Teleport

He wants theéODIN (Oblivion Device of Indescribable Nastiness)

51

Problem solving by search

EVIL ROBOT is in the top left corner.
EVIL ROBOQOT is in the area containing the ODIN.

left,right,up,down. We can move as long as there’s no wall in
the way. (Again, it's not always possible to choose fromalirfactions.)

1 per move. If you step on a teleport then you move to the other on
with a cost ofl.

52

Problem solving by search

Problems of this kind are very simple, but a surprisinglgéanumber of applica-
tions have appeared:

¢ Route-finding/tour-finding.

e Layout of VLSI systems.

e Navigation systems for robots.

e Sequencing for automatic assembly.

e Searching the internet.

e Design of proteins.

and many others...

Problems of this kind continue to form an active research.are

53

Problem solving by search

It's worth emphasising that a lot of abstraction has takeweehere:

e Can the agent know it's current state in full?

e Can the agent know the outcome of its actions in full?

the state is always known precisely, as is the effect of any
action. There is therefore a single outcome state.

The effects of actions are known, but the state can not
reliably be inferred, or the state is known but not the effextthe actions.

Both single and multiple state problems can be handled ubegge search tech-
nigues. In the latter, we must reason about the set of stsésve could be in:

e In this case we have an initiattof states.
e Each action leads to a furtheetof states.

e The goal is a set of states of which are valid goals.

54

Problem solving by search

In some situations it is necessary to perform sensinge the actions are being
carried out in order to guarantee reaching a goal.

(It's good to keep your eyes open while you cross the road!)

This kind of problem requires and will be dealt with later.

55

Problem solving by search

Sometimes it is actively beneficial to act and see what hagpather than to try
to consider all possibilities in advance in order to obtapedect plan.

Sometimes you haveo knowledge of the effect that your actions have on the
environment.

Babies in particular have this experience.
This means you need to experiment to find out what happens yheact.

This kind of problem requires for a solution. We will not
cover reinforcement learning in this course. (Althougls it Al 11.)

56

Search trees

The basic idea should be familiar from yodnr course, and also from

e \We build atreewith the start state as root node.

e Anodeis by applying actions to it to generate new states.

o A IS a that lead from state to state.

e Theaimisto find a within the tree.

o A IS a path beginning with the initial state and ending in a goaie.

We may also be interested in the as some solutions might be better than
others.

Path cost will be denoted hy

57

Down
7 3 4
8
8 ||[6 /|1 Lef
U
P 2 5
Start State 3
7 3 4 3 4 Left 7
/ Down /
6] |—|7 6 1 8
\
1215 1215 N
7
Left 7 3 4 Down
=
6 1
8
8 2 5

Up 8 5 6|1

Left /

58

Search trees versus search graphs

We need to make an important distinction between and .
For the time being we assume that it'srac as opposed to g that we're
dealing with.

as opposed to

(There is a good reason for this, which we’ll get to in a momeént

In a only can lead to a given state. Injaapha can be reached
via possibly

59

Search trees

Basic approach:

e Test the root to see if it is a goal.

e If not then It by generating all possible successor states according to
the available actions.

e If there is only one outcome state then move to it. Otherwismse one of
the outcomes and expand it.

e The way in which this choice is made defines=a

e Repeat until you find a goal.

The collection of states generated but not yet expandedllsdctne or
and is generally stored as)a

60

The basic tree-search algorithm

In pseudo-code, the algorithm looks like this:

function treeSearch {
fringe = queue containing only the start state;
while() {
I f (enmpty(fringe))
return fail;
node = head(fringe);
I f (goal (node))
return sol uti on(node);
fringe = insert(expand(node), fringe);
}
}

The IS set by using &

The definition of then sets the way in which the tree is searched.

61

The basic tree-search algorithm

' Expanded
O Inthe fringe, but not expande

@ Notyet investigated

62

The basic tree-search algorithm

We can immediately define some familiar tree search alguoath

e New nodes are added to the JeThis is
e New nodes are added to thw eThis is
We will not dwell on these, as they are bati iA practice.

Why is that?

63

The performance of search techniques

How might we judge the performance of a search technique?

We are interested in:

e Whether a solution is found.
e Whether the solution found is a good one in terms of path cost.
e The cost of the search in terms of time and memory.

So
the total cost= path cost+ search cost

If a problem is highly complex it may be worth settling foca
obtained in a

We are also interested In:

does the strategy a solution is found?
does the strategy guarantee thatliketsolution is found?

Once we start to consider these, things get a lot more iriteges

64

Breadth-first search

Why is breadth-first search hopeless?

e The procedure is > 1t is guaranteed to find a solution if one exists.

e The procedure is If the path cost is a non-decreasing function of node-
depth.

e The procedure héas IrAdranch-

Ing factorb requires
bd+l 1

14+b+b2+b 4. b =
b—1

nodes if the shortest path has depth

In practice it is the requirement that is problematic.

65

Depth-first search

With depth-first search: for a given branching factand depth/ the memory
requirement is)(bd).

P

This Is because we need to store and

The time complexity is)("). Despite this, if there are we stand a
chance of finding one quickly, compared with breadth-firarscle.

66

Backtracking search

We can sometimes improve on depth-first search by using

e If each node knows how tg then memory is im-
proved toO(d).
e Even better, if we can work by toa then

the memory requirement is:

— One full state description, plus...
— ... O(d) actions (in order to be able tondoactions).

How does this work?

67

No backtracking

With backtracking

Trying: up, down, |l eft,ri ght: If we have:
3 4 7113 4
7 (16 |||1 8 |6 |1 tLue,
8)) 2)
up)/ we can undo this to obtain
7113 4 7113 4
6 1 6 1 +Lupl
8 2) 8 2)
| eft
up Soun * \ and applydown to get
3 3 4 713 4 3 4
6 71161 6 1 A Lup,
) 8)) 8) 5/ 8 %)
— and so on...

68

up]

down]

Depth-first, depth-limited, and iterative deepening dearc

Depth-first search is clearly dangerous if the tree:is

simply imposes a limit on depth. For example if we're
searching for a route on a map withcities we know that the maximum depth
will be n. However:

e \We still risk finding a suboptimal solution.

e The procedure becomes problematic if we impose a depth thmit is too
small.

Usually we do not know a reasonable depth limit in advance.

repeatedly runs depth-limited search for increasing
depth limits0, 1,2, . ..

69

Iterative deepening search

e Essentially combines the advantages of depth-first anditirdast search.
e It is complete and optimal.

e It has a memory requirement similar to that of depth-firstcea

Importantly, the fact that you're repeating a search preceveral times is less
significant than it might seem.

It's not a good practical method, but it does point us in the dowaatf one...

70

Iterative deepening search

lterative deepening depends on the fact that

¢ In a tree with branching factagrand depth/ the number of nodes is

b(/—H —1
b—1

e A complete iterative deepening search of this tree gereitaie final layer
once, the penultimate layer twice, and so on down to the vdath is gener-
atedd + 1 times. The total number of nodes generated is therefore

folbyd) = (d+ 1) +db+ (d— 1)b* + (d — 2)b> + - - - + 261 + 11

fib,d) =1+b+b*+b +-- + b =

71

Iterative deepening search

Example:

e Forb = 20 andd = 5 we have
f1(b,d) = 3,368,421
fa(b, d) = 3,545, 706
which represents apercent increase with iterative deepening search.

e The overhead gets asbh increases. However the time complexity is still
exponential.

72

Iterative deepening search

Further insight can be gained if we note that

fo(b,d) = f1(b,0) + fi(b, 1) + -+ + fi(b,d)

as we generate the root, then the tree to depémd so on. Thus

bz—H 1
Zf1b@ Z h_ 1

1=0

d
1]
(0 S T +1)
b—1§ b bl[(?ob) (d+1)

Noting that |
bﬁ@wﬁb+ﬁ¢+~-+ﬁ”1§:yﬂ
we have L
fo(b,d) = b_lfl(b d>_b——1

So f»(b, d) is about equal tg (0, d) for largeb.

73

Bidirectional search

In some problems we can simultaneously search:
from the state
from the state
until the searches meet.

This is potentially a very good idea:

e If the search methods have complexity)’) then...
e ...We are converting this to(20"/%) = O(b"/?).

(Here, we are assuming the branching factdrirsboth directions.)

74

Bidirectional search - beware!

e It is not always possible to generate efficienily as well as succes-
sors.

e If we only have the of a goal, not ar , then generating
predecessors can be hard. (For example, consider the ¢arfce)

¢ \We need a way of checking whether or not a node appears irilike

e ... and the figure of)(/"/*) hides the assumption that we canaio
checking for intersection of the frontiers. (This may begole using a hash
table).

e \We need to decide what kind of search to use in each half. Fongbe, would
be sensible? Possibly not...

e ...to guarantee that the searches meet, we need to stdne albdles of at least
one of the searches. Consequently the memory requirementis’).

75

Uniform-cost search

Breadth-first search finds th= solution, but this is not necessarily the
one.

IS a variant. It uses the »(n) as the priority for the
priority queue.

Thus, the paths that are apparently best are explored fingtthee best solution
will always be found if

Vn (Vn' € successofs) . p(n') > p(n))

Although this is still not a good practical algorithm, it dogoint the way forward
to

76

Repeated states

With many problems it is easy to waste time by expanding ndldasshave ap-
peared elsewhere in the tree. For example:

The sliding blocks puzzle for example suffers this way.

77

Repeated states

For example, in a problem such as finding a route in a map, walkef the
operators are > this Is inevitable.

There are three basic ways to avoid this, depending on howrgoe off effec-
tiveness against overhead.

e Never return ta
e Avoid cycles: never proceed o

e Do not expand

IS a standard approach to dealing with the situation. It tse$ast
of these possibilities.

78

Graph search

In pseudocode:

function graphSearch() {
cl osed = {};
fringe = queue containing only the start state;
while () {
I f (enmpty(fringe))
return fail;
node = head(fringe);
| f goal (node)
return sol ution(node);
I f (node not a nenber of closed) {
cl osed = cl osed + node;
fringe = insert(expand(node), fringe); // See note...
}
}
}

If node isincl osed then it must already have been expanded.

79

Graph search

There are several points to note regarding graph search:

1. The contains all the expanded nodes.
2. The closed list can be implemented using a hash table.

3. Both worst case time and space are now proportional toizieeo$ the state
space.

4. depth first and iterative deepening search are no longaarls@ace
as we need to store the closed list.

5. when a repeat is found we are discarding the new possibuéyp e
If it is better than the first one.

e This never happens for uniform-cost or breadth-first searth constant
step costs, so these remain optimal.

e Iterative deepening search needs to check which solutitvetter and if
necessary modify path costs and depths for descendante oépeated
state.

80

Search trees

Everything we've seen so far is an example.of or search—we
only distinguish goal states from non-goal states.

(Uniform cost search is a slight anomaly as it uses the pathasa guide.)
To perform well in practice we need to employ or search.

This involves exploiting knowledge of thi

81

Problem solving by informed search

Basic search methods make limited use of any we
might have.
¢ \We have already seen the conceppaf p(n)

p(n) = cost of path (sequence of actions) from the start state to

e \We can now introduce an nThis is a function that attempts
to measure the

The evaluation function will clearly not be perfect. (If &,ithere is no need to
search.)

simply expands nodes using the ordering given by the evaluat
function.

82

Greedy search

We've already seen used for this purpose.
e This is misguided as path cost is not in genela In any sense
o A yusually denoted () is one that the cost of the

best path from any nodeto a goal.

e If 1 is a goal ther(n) = 0.

Using a heuristic function along with best-first search gius the
algorithm.

83

Example: route-finding

for route finding a reasonable heuristic function is

h(n) = straight line distance from to the nearest goal

nq 1) 1 ng
@ - - - o
h(ng) = V2 |
T . : h(ng) =1
h(ni) = /5 :
® Goal

Accuracy here obviously depends on what the roads are Hdagly

84

Example: route-finding

Greedy search suffers from some problems:

e Its time complexity is)(17).
o Its space-complexity i§) (/7).

e It is not optimal or complete.

greedy searchianbe effective, provided we have a gobd:).

Wouldn't it be nice if we could improve it to make it optimaldeomplete?

85

A* search

Well, we can.
combines the good points of:

e Greedy search—by making use/gf.).
e Uniform-cost search—»by being optimal and complete.

It does this in a very simple manner: it uses path ¢ost and also the heuristic

function/.(n) by forming
f(n) =pn)+ h(n)

where
p(n) = cost of pathto n

and
h(n) = estimated cost of best pattom n

f(n)is the estimated cost of a paltin n.

86

A* search

A* search:

e A best-first search using(n).
e It is both complete and optimal...

e ...provided that: obeys some simple conditions.

an L(n) is one that
of the best path from to a goal. So if)'(72) denotes the
the goal we have
Vn.h(n) < h'(n).

If Is admissible then A* Is optimal.

87

the cost
distance from to

A* tree-search is optimal for admissililén)

To see thatd* search is optimal we reason as follows.
Let Goal,,: be an optimal goal state with

f(Goabpt) = p(Goabpt) = fopt
(because(Goal,y) = 0). Let Goal, be a suboptimal goal state with

f(Goab) = p(Goab) = f2 > fopt
We need to demonstrate that the search can never s&bect

88

A* tree-search is optimal for admissililén)

At some point Goalis in the fringe.

Goal, Can it be selected before?

89

A* tree-search is optimal for admissililén)

Let» be a leaf node in the fringe on an optimal pathtoal,,. So

fopt = p(n) + h(n) = f(n)
because Is admissible.

Now sayGoal, is chosen for expansion n. This means that

f(n) > f2

so we've established that

fopt > fo = p(Goab).
But this means th&toal,, IS not optimal: a contradiction.

90

A* graph search

Of course, we will generally be dealing wit

Unfortunately the proof breaks in this case.

e Graph search can route if that route is not the first one
generated.
e \We could keep atMhis means updating, which is

extra work, not to mention messy, but sufficient to insurenoglity.

e Alternatively, we can impose a further condition om:) which

The required condition is calleu / AS
monotonicity—> admissibility

this is an important property.

91

Monotonicity

Assume’, is admissible. Remember thatn) = p(n) + h(n) so if ' follows »

p(n') = p(n)
and we expect that(»’) < h(n) although this does not have to be the case.

Heref(n)=9andf(n') =7sof(n') < f(n).

92

Monotonicity

e If it is always the case that(n') > f(n) thenhi(n) is called

e /,(n) is monotonic if and only if it obeys the

h(n) < costn — n') + h(n)

If /.(n) IS not monotonic we can make a simple alteration and use

F(n') = max{ f(n), p(n') + h(n')}

This is called the: equation.

93

The pathmax equation

Why does the pathmax equation make sense?

The fact that/(n) = 9 tells us the cost of a path throughis 9 (because
h(n)is admissible).

Butn'is n. Soto say that (»n') = 7 makes no sense.

94

A* graph search is optimal for monotonic heuristics

A* graph search is optimal for monotonic heuristics.

The crucial fact from which optimality follows is that if(») is monotonic then
the values off () along any path are non-decreasing.

Assume we move from to »" using action:. Then
Va . p(n') = p(n) + costn — n’)
and using the triangle inequality
h(n) < costn — n') 4+ h(n) (1)
Thus

(n') + h(n')

(n) + costn — n') + h(n)
(n) + hin)

(n)

where the inequality follows from equation 1.

f(n)

p

1Vl

p
p(n
f

95

A* graph search is optimal for monotonic heuristics

We therefore have the following situation:

You can't deal withn’ until everything with

f(n") < f(n') has been dealt with.

Consequently everything withi(n"”) < fo,: gets explored. Then one or more
things with /,,: get found (not necessarily all goals).

96

A* search is complete

A* search is complete provided:

1. The graph has finite branching factor.

2. There is a finite, positive constansuch that each operator has cost at least

Why is this? The search expands nodes according to incgeasin. So: the
only way it can fail to find a goal is if there are infinitely mangdes with/ () <
f(Goal).

There are two ways this can happen:

1. There is a node with an infinite number of descendants.

2. There is a path with an infinite number of nodes but a finith past.

97

Complexity

e A* search has a further desirable property: iiji$

e This means that no other optimal algorithm that works by troicing paths
from the root can guarantee to examine fewer nodes.

e BUT: despite its good properties we're not done yet...

e ...A* search unfortunately still has exponential time complexitmost cases
unlessi(n) satisfies a very stringent condition that is generally uistet

|h(n) — h'(n)| < O(logh'(n))
where/)/(n) denotes the=al cost fromn to the goal.

e As A* search also stores all the nodes it generates, once agaigaherally

98

IDA™ - iterative deepeningl* search

How might we improve the way in which* search uses memory?

e Iterative deepening search used depth-first search withiadn depth that is
gradually increased.

o does the same thing f

Acti onSequence ida() {
root = root node for problem
float fLimt = f(root);
while() {
(sequence, fLimt) = contour(root,fLimt,enptySequence);
I f (sequence ! = enptySequence)
return sequence;
if (fLimt == infinity)
return enptySequence,

99

IDA™ - iterative deepeningl* search

The functioncont our searches from a given nods; f
It returns either a solution, or the value of f to try.

(ActionSequence, fl oat) contour(Node node, float fLimt, ActionSequence s) {
float nextF = infinity;
if (f(node) > fLimt)
return (enptySequence, f (node));
Acti onSequence s’ = addToSequence(node, s);
I f (goal Test (node))
return (s’ ,fLimt);
for (each successor n’ of node) {
(sequence, newr) = contour(n’,fLimt,s’);
I f (sequence != enptySequence)
return (sequence,fLimt);
next F = m ni munm next F, newF) ;
}

return (enptySequence, nextF);

100

IDA™ - iterative deepeningl* search

This is a little tricky to unravel, so here is an example:

3
7 \ /4 \ / \5
R S T ... $ o d b ...
Initially, the algorithm looks ahead and finds the f cost that is

its current/ cost limit. The new limit is.

101

IDA™ - iterative deepeningl* search

It now does the same again:

3
/7\ 4 / \5
§ o d b ... B N A
Anything with / cost equal to the current limit gets explored, and the
algorithm keeps track of the f cost that is Its current limit.

The new limit isbH.

102

IDA™ - iterative deepeningl* search

And again:

The new limitis7, so at the next iteration the three arrowed nodes will becgrpl

103

IDA™ - iterative deepeningl* search

Properties of IDA:

e It is complete and optimal under the same conditiond’as

e It is often good if we have step costs equal to

e It does not require us to maintain a sorted queue of nodes.
e It Only requires

e The time taken depends on the number of valuean take.

If /, takes enough values to be problematic we can incrédmsea fixede at each
stage, guaranteeing a solution at mogforse than the optimum.

104

Recursive best-first search (RBFS)

Another method by which we can attempt to overcome memomnydtmans is the

try to do a best-first search, but only Use by doing a depth-first
search with a few modifications:

1. We remember thé¢(»’) for the best alternative node we've seen so far on
the way to the node we’re currently considering.
2. 1fnhasf(n) > f(n'):

e \We go back and explore the best alternative...

e ...and as we retrace our steps we replace/tloest of every node we've
seen in the current path withi).

The replacement of values as we retrace our steps provides a means of remem-
bering how good a discarded path might be, so that we cary&asirn to it later.

105

Recursive best-first search (RBFS)

for simplicity a parameter for the path has been omitted.

functi on RBFS(Node n, Float fLimt) {
I f (goaltest(n))

return n;
I f (n has no successors)
return (fail, infinity);

for (each successor n' of n)
f(n) = maximunm(f(n), f(n));
while() {
best = successor of n that has the smallest f(n');
if (f(best) > fLimt)
return (fail, f(best));
next Best = second smallest f(n') value for successors of n;
(result, f') = RBFS(best, mininmum(fLimt, nextBest));
f(best) =1";
If (result !'=fail)
return result;

f (best) is whenRBFS produces a result.

106

Recursive best-first search (RBFS): an example

This function is called usingBFS(start State, 1 nfinity) tobegin the
process.

Function call number:

fLimit; = oo

5
~. nextBest = 5

7 ~ ~
PR BN PR PR
~ s ~N
® ® e @ ® ® o ® '®
/N 7\ /N I /N 7\ /N 7\ /N
VAR AN VAR | VAR AN VAR AN VAR
/ | \ / | \ / | | / | \ / | \ / | \ / | \ / | \
A ro | | A ro A ro A
/ \ / \ / \ / \ / \ / \ / \
/ ! / ! \ / ! \ / ! \ / ! \ / ! \ / ! / ! \ !
/ | / | \ / | \ / | \ / | \ / | \ / | / | \ |

Now perform the recursive function calesult, /') = RBFSbest, 5)
so f(best) takes the returned valyé

107

Recursive best-first search (RBFS): an example

Function call numbet:

3 fLimit, = oo
fLimit, = 5

5
~. nextBest = 5

| |
| |
\ / ! \ / ! \ /
| |
| |
| |

Now perform the recursive function cdliesult, /') = RBFSbest, 5)
so f(best) takes the returned valyé

108

Function call numbek:

Recursive best-first search (RBFS): an example

\ /
e o

/
/
.
@

5 replaced byl (

3 fLimit, = oo

nextBest = 11

9

/N 7\

/N /N /N
/ \ /N o N
/ \ /|\ /I\
/ \ /I\ /I\

\ / \ /
e o B! Ve ¢ o ¢ o

best

fLimit, =5

ity =95

10

5
~. nextBest = 5

Now f(best) > fLimit; so the function call returngail, 10) into (result, /) and

f(best) = 10.

109

Recursive best-first search (RBFS): an example

The while loop for function calbk now repeats:

'
I/
/N
AT
| \
|
|
|

/ \ /
/ \ /

Now f(best) > fLimit, so the function call returngail, 9) into (result, /') and

f(best) = 9.

|
|
|
|
|
|
7\
a
|
|
|
|

3 fLimit, = oo
fLimit, = 5

4 replaced by

5 replaced byi()
9 | best 10

® @

/N /N /N

\ /N /N /N
\ /I\ /I\ /I\

\ / | \ / | \ / | \
\ / | \ 1 1 10 / | \ / !
e ¢ ¢ o e © ()

\ /
e o

110

|
|
|
|
|
|
7\
/N
|
|
|
|

\
e

/
a

5
~. nextBest =5

|
/N
/N
/2
/ \
|
|

\
®

Recursive best-first search (RBFS): an example

The while loop for function call now repeats:

3 fLimit, = oo

4 replaced by

Loy ~hextBest =7

| N

! N

| 5 replaced byl (

I
o ® e 9 10
/N 7\ /N /N 7\ /N 7\ /N
AN /N AN AN /N AN /N AN
| \ | / | \ / | \ / | \ / | \ / | \ / | \
| | | \ / | \ / | \ / | \ / | \ / | \
| | | \ / | \ / | \ / | \ / | \ / | \

/ \ / \ / \ / \ / \ / \ / \ /
¢ ¢ o 6 ¢ 8 6 @ o U1 Vs ¢ ¢ 6 ¢ ¢ 6 ¢ 6 6 © ¢ ¢ o

We do a further function call to expand the new best node, amhs.

111

Recursive best-first search (RBFS)

Some nice properties:

e If /1 Is admissible then RBFS is optimal.
e Memory requirement is)(bd)

e Generally more efficient than IDA
And some less nice ones:

e Time complexity is hard to analyse, but can be exponential.

e Can spend a lot of time:

112

Other methods for getting around the memory problem

To some extent IDAand RBFS throw the baby out with the bathwater.

e They limit memory too harshly, so...

e ...We can try to use

MA™* and SMA" will not be covered in this course...

113

Local search

Sometimes, it's only thgoalthat we're interested in. Theathneeded to get there
IS Irrelevant.

e For example: VLSI layout, factory design, vehicle routiragitomatic pro-
gramming...

¢ \We are now simply searching for a node that is in some sémnse

e This is also known as

This leads to the remarkably simple conceptoof

114

Local search

Instead of trying to find a path from start state to goal, wdaepthe
of the graph, meaning those nodes one edge away from the dmeeatie

We assume that we have a functiom) such that/(»') > f(n) indicates,’ is
preferable to..

115

Then-gqueens problem

You may be familiar with the,

M

Find an arrangement ofqueens on an by » board such that no queen is attack-
ing another.

In the Prolog course you may have been tempted to generateifaions of row
numbers and test for attacks.

Thisis a for largen. (Imaginen ~ 1,000, 000.)

116

Then-gqueens problem

We might however consider the following:

e A state (node) for anm by m board is a sequence of numbers drawn from

the set{1, ..., m}, possibly including repeats.
¢ \We move from one node to another by movinga to alternative
row.

e We definef(n) to be the number of pairs of queens attacking one-another in
the new positioA (Regardless of whether or not the attack is direct.)

2Note that we actually want to f here. This is equivalent to maximizingf, and | will generally use whichever seems more appropriate.

117

Then-gqueens problem

Here,n = {4,3,7.8,6,2,4 1} and thef values for the undecided queen are

///////

shown.

2|

7]
5)

As we can choose which queen to move, each node Iin facithasighbours in
the graph.

118

Hill-climbing search

Is remarkably simple:

Cenerate a start state n.

while () {
Generate the N neighbours {n_1,..., n_N} of n;
I f (max(f(n_i)) <=1f(n)) return n;
n=n.i mximzing f(n_i);

}

In fact, that looks so simple that it's amazing the algoritisrat all useful.

In this version we stop when we get to a node with no betteriegr. We might
alternatively allow By changing the stopping condition:

If (max(f(n.i)) <f(n)) return n;

Why would we consider doing this?

119

Hill-climbing search: the reality

In reality, nature has a number of ways of shapingp complicate the search
process.

f(n) Global maximum

A /

Local maxima

ooooo

\ Shoulder

Plateau

moves allow us to move across and

However, should we ever find la then we’ll return it;: we won't
keep searching to find@

120

Hill-climbing search: the reality

Of course, the fact that we're dealing witlja means we need to think
of something like the preceding figure, but ina ,
and this makes the problem

There is a body of technigues for trying to overcome suchlprob. For example:

o Choose a neighbour at random, perhaps with a prob-
ability depending on its value. For example: le¥ () denote the neighbours
of n. Define

N7(n)={n" € N(n)|f(
N™(n)={n"€ N(n)|f(

)
)

n') = f(n)}
n) < f(n)}.
Then

if n” € N~(n)

, 0
Pr(n’) = { %(f(n’) — f(n)) otherwise

121

Hill-climbing search: the reality

o Generate neighbours at random. Select the first one thattes be
than the current one. (Particularly good if nodes haws)

o Run a proceduré times with a limit on the time allowed for
each run.

generating a start state at random may itself not be stfamgdrd.
o Similar to stochastic hill-climbing, but start with lots of
random variation and
In some cases this s an effective procedure, although the time
taken may be excessive if we want the proof to hold.
o Maintain /- nodes at any given time. At each search step, find
the successors of each, and retain the bdégim all the successors.
this is the same as random restarts.

122

Gradient ascent and related methods

For some problemis—we do not have a search graph, buic

30

-30
0

Typically, we have a functiori(x) : R" — R and we want to find

Xopt = argmax f(x)
X

3For the purposes of this course, the is a notable example.

123

Gradient ascent and related methods

In a single dimension we can clearly try to solve

(@),
dx
to find thestationary pointsand use
d° f(x)
dx?
to find a globalmaximurm In multiple dimensionthe equivalent is to solve
0f(x)
v p— p— O
flx) = =52
where)
0f(X) _ Torx) orx) . 0f(x)
Ox 0xq 019 Oxp,] ’
and the equivalent of the second derivative istlzessiarmatrix
[%) 0% . A7)]
0:1;% 0x10x9 0x10xy
0f°(x) 0f(x) . . 9f(x)
H = 0xo0x ()15 0x90xy
0f*(x) 9f*(x) . 9f(x)
| 0vpdry Oxn0dry oz |

124

Gradient ascent and related methods

However this approach is usually
sionality.

The simplest way around this is to employ

e Start with a randomly chosen point.

e Using a small =, iterate using the equation

X1 = X; + €V f(x).

This can be understood as follows:

e At the current poink; the gradient f(x;) tells us the

of the slope ak;.
e Adding ¢V f(x;) therefore moves uss

This is perhaps more easily seen graphically. ..

125

regardless of dimen-

and

Gradient ascent and related methods

Here we have a simplearabolic surface

2000,

® -2000{ 4

-4000

/
-6000,.
50

With ¢ = 0.1 the procedure is clearly effective at finding the maximum.

Note however thathe steps are smagland in a more realistic problemmight
take some time. ..

126

Gradient ascent and related methods

Simply increasing the step size&ean lead to a different problem:

€e=20

We can easily jJump too far. ..

127

Gradient ascent and related methods

There is a large collection of more sophisticated methodsekample:

o Increase until f and minimise in the resulting interval.
Then choose a new direction to move ine <the
and methods etc.

e UseH to exploit knowledge of the local shape of For example thé
and methods etc.

128

Artificial Intelligence |

Notes on

Copyright(©) Sean Holden 2002-2013.

129

Solving problems by search: playing games

How might an agent act when because
an ?

e This is essentially a more realistic kind of search problesoabise we do not
know the exact outcome of an action.

e This is a common situation when sin chess, draughts, and so on
an opponent to our moves.
e \We don’t know what their response will be, and so the outcohmiomoves
IS not clear.
Game playing has been of interest in Al because it provides @ of a

world in which two agents act t@ each other’s well-being.

130

Playing games: search against an adversary

Despite the fact that games are an idealisation, game pl@gan be an excellent
source of hard problems. For instance with chess:

e The average branching factor is roughiy
e Games can reach) moves per player.
e So a rough calculation gives the search tre€" nodes.

e Even if only different, legal positions are consideredafmut1 (" .
to the uncertainty due to the opponent:

e \We can’'t make a complete search to find the best move...

e ... SO We have to act even though we’re not sure about thehorgttb do.

131

Playing games: search against an adversary

And chess isn’t even very hard:

° IS harder than chess.

e The branching factor is about0.

Until very recently it has resisted all attempts to produg®ad Al player.

See:
senseis.xmp.net/7’MoGo

and others.

132

Playing games: search against an adversary

It seems that games are a step closer to the complexitiesemhi@ the world
around us than are the standard search problems consiaefad s

The study of games has led to some of the most celebratedajpmtis and tech-
niques in Al.

We now look at:

e How game-playing can be modelled s
e The for game-playing.
e Some problems inherent in the use of minimax.

e The concept of

Russell and Norvig chapter 6.

133

Perfect decisions in a two-person game

Say we have two players. Traditionally, they are callén< and for reasons
that will become clear.
o We'll use as an initial example.
e Max moves first.
e The players alternate until the game ends.
e At the end of the game, prizes are awarded. (Or punishmenigadered—
EVIL ROBOT is starting up his favourite chainsaw...)

This is exactly the same game format as chess, Go, draughssoam.

134

Perfect decisions in a two-person game

Games like this can be modelled as search problems as follows

e Thereis an

Max to move

e There is a set of > Here, Max can place a cross in any empty square,
or Min a nought.

e There is a I Here, the game ends when three noughts or three
crosses are in a row, or there are no unused spaces.

e Thereis a or function. This tells us, numerically, what the out-
come of the game is.

This is enough to model the entire game.

135

Perfect decisions in a two-person game

We can to represent a game. From the initial state Max can make
nine possible moves:

Then it's Min’s turn...

136

Perfect decisions in a two-person game

For each of Max’s opening moves Min has eight replies:

And so on...

This can be continued to represeiitpossibilities for the game.

137

Perfect decisions in a two-person game

Z

At the leaves a player has won or there are no spaces. Lea/zaliedusing
the utility function.

+1

><><></\/-
O
X

OO0 X
X10]0

O X|X
X100

138

Perfect decisions in a two-person game

How can Max use this tree to decide on a move? Consider a monghesitree:

A\

Labels on the leaves denote utility.
High values are preferred by Max.
Low values are preferred by Min.

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

If Max is rational he will play to reach a position with tle

But if Min is rational she will play to the utility available to Max.

139

The minimax algorithm

There are two moves: Max then Min. Game theorists would b&ldne move,
or two ply deep.

The allows us to infer the best move that the current player
can make, given the utility function, by working backwardrfr the leaves.

A\

FZOW

4 5 20 20 15 7 4 10 9 5 8 5

As Min plays the last move, shie the utility available to Max.

140

The minimax algorithm

Min takes the final move:

e If Min is in game positionl, her best choice is move So from Max’s point
of view this node has a utility of.

e If Min is in game position’, her best choice is move So from Max’s point
of view this node has a utility of.

e If Min is in game positiorns, her best choice is move So from Max’s point
of view this node has a utility of.

e If Min is in game position!, her best choice is move So from Max’s point
of view this node has a utility of.

141

The minimax algorithm

Moving one further step up the tree:

A\

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5

We can see that Max’s best opening move is mg\as this leads to the node with
highest utility.

142

The minimax algorithm

e Generate the complete tree and label the leaves accordihg tatility func-
tion.

e Working from the leaves of the tree upward, label the nodg®d@ing on
whether Max or Min is to move.

o If IS to move label the current node with the utility of any de-
scendant.

o If IS to move label the current node with the utility of any
descendant.

If the game i ply and at each point there aravailable moves then this process
has (surprise, surprise)(¢”) time complexity and space complexity linear;in
andg.

143

Making imperfect decisions

We need to avoid searching all the way to the end of the ftee.

e \We generate only part of the tree: instead of testing whetheyde is a leaf
we introduce a test telling us when to stop.

e Instead of a utility function we introduce an for the evalu-
ation of positions for an incomplete game.

The evaluation function attempts to measure the expeciéty of the current
game position.

144

Making imperfect decisions

How can this be justified?

e This is a strategy that humans clearly sometimes make use of.
e For example, when using the conceptied In chess.

e The effectiveness of the evaluation functioris

e ... but it must be computable in a reasonable time.

e (In principle it could just be done using minimax.)

The importance of the evaluation function can not be underdt—it is probably
the most important part of the design.

145

The evaluation function

Designing a good evaluation function can be extremely yrick

e Let's say we want to design one for chess by giving each piscenaterial
value: pawn =, knight/bishop =3, rook =5 and so on.

e Define the evaluation of a position to be the difference betwthe material
value of black’s and white’s pieces

evalposition = > valueofp; —) value ofg

black’s piecew; white’s piecesy;

This seems like a reasonable first attempt. Why might it gag®o

146

The evaluation function

Consider what happens at the start of a game:

e Until the first capture the evaluation function giveso in fact we have a
containing many different game positions with equal estaautility.
e For example, all positions where white is one pawn ahead.

e The evaluation function for such a category should perhaymesent the prob-
ability that a position chosen at random from it leads to a win

So in fact this seems highly naive...

147

The evaluation function

Ideally, we should consider

If on the basis of past experience a position BA%0 chance of winning,10%
chance of losing and0% chance of reaching a draw, we might give it an evalua-
tion of

evalposition = (0.5 x 1) + (0.1 x —1) 4+ (0.4 x 0) = 0.4.

Extending this to the evaluation of categories, we shouwdd theight the positions
In the category according to their likelihood of occurring.

Of course, we what any of these likelihoods are...

148

The evaluation function

Using material value can be thought of as giving usca

evalposition = » " w;f;
1=1

where thew; are and the/; represent of the position. In this
example
f; = value of theith piece

w; = number ofith pieces on the board

where black and white pieces are regarded as different and Hre positive for
one and negative for the other.

149

The evaluation function

Evaluation functions of this type are very common in gamgipk

There is no systematic method for their design.

Weights can be chosen by allowing the game to play itself aagu
techniques to adjust the weights to improve performance.

By using more carefully crafted features we can giiié

150

to

a — [pruning

Even with a good evaluation function and cut-off test, tineeticomplexity of the
minimax algorithm makes it impossible to write a good chesgyam without

some further improvement.

e Assuming we have 150 seconds to make each move, for chess we b®
limited to a search of aboutto 4 ply whereas...

e ...even an average human player can mandge.

Luckily, it is possible to prune the search treé and

151

a — [pruning

Returning for a moment to the earlier, simplified example:

A\

4 5 2 20 20 15 6 7 1 4 10 9 5 8

The search is depth-first and left to right.

152

a — [pruning

The search continues as previously for the firltaves.

4 5 2 20 20 15 6 7 1'_-4 10-9 5 8 5

Then we note: if plays moves; then can reach a leaf with utility at most

1.
So: wvaEhis Is
because the search has that can do better by making

opening move.

153

a — [pruning in general

Remember that this searchds [We're only going to use knowledge of
a = m tells us that the
valuglofthis node i$> m. A = Player

value>
=m v = Opponent

The value ofx is updated as
the search progresses.

While searching under this node
we find that the opponent can force
a score ofn.

value> m/

If n < m we can stop. There is a
better choice earlier in the game.

If n < m’ we can stop. The player
Searching here establishes that maximises and will never move here.

the opponent can force a score
of m'.

once you've established thatis sufficiently small, you don’t need to explore
any more of the corresponding node’s children.

154

a — [pruning in general

The situation is exactly analogous if wevap player and opponein the previous
diagram.

The search is depth-first, so we're only ever lookingat path through the tree
We need to keep track of the valuesand; where
a = thehighestutility seen so far on the path fddax

B = thelowestutility seen so far on the path fédin
AssumelViax begins Initial values foro and/s are

o = —00

and
B = +o0.

155

a — (3 pruning in general

So:we start with the function call
player(—oo, +00, root)

The following function implements the procedure suggestgethe previous dia-
gram:

playerc, 5, n){
if (n is at the cut-off poinp return evaluatiofm);
value= —oc;
for(each successor of n){
value= max(value opponenfn, 3, n'));
if (value>) return value;
if(value> «) o = value;

}

return value

}

156

a — (3 pruning in general

The functionopponent is exactly analogous:

opponentx, 3, n){
if (n is at the cut-off poinp return evaluatiofm);
value= +o0;
for(each successar of n){
value= min(value player«, 3,n));
If (value < «) return value;
If(value<) 5 = value;

}

return value

Note:the semantics here is that parameters are passed to fugictionlue

157

a — [pruning in general

Applying this to the earlier example and keeping track ofvakies foro and
you should obtain:

N /N ,
o =2
a:—/oo =, Z :6
. N N

Return2

Returnl

4 5 2 20 20 15 6 7 1

158

How effective isa — 3 pruning?

(Warning: the theoretical results that follow are somewtiahlised.)

A quick inspection should convince you that theler in which moves are ar-
ranged in the tree is critical.

So, it seems sensible to try good moves first:
e If you were to have a perfect move-ordering technique then 5 pruning
would beO(¢"/?) as opposed t@)(¢").
e so the branching factor would effectively be; instead of;.

e \We would therefore expect to be able to search aleaii

However, this is not realistic: if you had such an orderirghteque you'd be able
to play perfect games!

159

How effective isa — 3 pruning?

If moves are arranged at random then- 3 pruning is:

e O((q/logq)’) asymptotically whery > 1000 or...

o ...about)(¢”/") for reasonable values of

In practice simple ordering techniques can get close tod¢lsedase. For example,
If we try captures, then threats, then moves forwetal

Alternatively, we can implement an iterative deepening-agaph and use the order
obtained at one iteration to drive the next.

160

A further optimisation: the transposition table

Finally, note that many games correspondjiaphsrather thari because the
same state can be arrived at in different ways.

e This is essentially the same effect we saw In heuristic searecall
versus
e It can be addressed in a similar way: store a state with itsiaran in a hash
table—qgenerally called @ e-the first time it is seen.
The transposition table is essentially equivalent to dha Introduced as
part of graph search.

This can vastly increase the effectiveness of the searadepspbecause we don't
have to evaluate a single state multiple times.

161

Artificial Intelligence |

Dr Sean Holden

Notes onconstraint satisfaction problems (CSPs)

Copyright(©) Sean Holden 2002-2013.

162

Constraint satisfaction problems (CSPs)

The search scenarios examined so far seem in some waysstansatiy.

e States were represented usingzan and data structure.
e Heuristics were also

e It would be nice to be able tw general search problems intc#&

CSPs the manner in which states and goal tests are represented...

163

Constraint satisfaction problems (CSPs)

By standardising like this we benefit in several ways:

e \We can devise algorithms and heuristics.

e \We can look at general methods for exploring the of the problem.

e Consequently it is possible to introduce technigues far problems.

e \We can try to understand the relationship betweersthe of a problem
and the

another method of interest in Al that allows us to do simifangs involves
transforming to g problem. We'll see an example of
this in Al 11

164

Introduction to constraint satisfaction problems

We now return to the idea of problem solving by search and exarhfrom this
new perspective.

e To introduce the idea of a constraint satisfaction probl@8R) as a general
means of representing and solving problems by search.

e To look at a for solving CSPs.
e To look at some: for solving CSPs.
e To look at

Russell and Norvig, chapter 5.

165

Constraint satisfaction problems

We have:
e A set ofn Vi, Vo, ..., V.
e For each/; a D, specifying the values that can take.
e A set ofmn C1,Cy, ..., C,.

Each constraint’; involves a set of variables and specifiesaén

o A IS an assignment of specific values to some or all of the vimsab
e An assignment is If it violates no constraints.
e An assignment is If it gives a value to every variable.

A IS a consistent and complete assignment.

166

Example

We will use the problem oi as a running example.

7

/_

1 1
Each node corresponds tova . We have three colours and directly con-

nected nodes should have different colours.

167

Example

This translates easily to a CSP formulation:

e The variables are the nodes
V. = noder

e The domain for each variable contains the values black, mddgan

D/:{BR*O}

e The constraints enforce the idea that directly connectel@sonust have dif-
ferent colours. For example, for variablgsand’, the constraints specify

(B,R),(B,C), (R, B),(R,C),(C,B),(C, R)

e Variable % Iis unconstrained.

168

Different kinds of CSP

This is an example of the simplest kind of CSP: itlis with
We will concentrate on these.

We will also concentrate on sthat Is, constraints betweers

e Constraints on single variables-+= s—can be handled by ad-
justing the variable’s domain. For example, if we don’t wanto bered, then
we just remove that possibility from,.

o applying to three or more variables can certainly be
considered, but...

e ...when dealing with finite domains they can always be cdadeto sets of
binary constraints by introducing extza

How does that work?

169

Auxiliary variables

three variables each with domaiw, /2, C'}.
A single constraint

(C,C,0), (R, B,B),(B,R,B),(B,B,R)

New, binary constraints:

Vi
— ™ A=3 Va (A=2,Vi = R),(A=2,V, = B), (A=2,V; = B)
(A=3,V1=B),(A=3,Vo=R),(A=3,V3=B)

The original constraint connects all
three variables.

Introducing auxiliary variable! with domain{1, 2. 3,4} allows us to convert this
to a set of binary constraints.

170

Backtracking search

Consider what happens if we try to solve a CSP using a simphaigue such as

The branching factor isd at the first step, for. variables each withl possible
values.
Step2: (n—1)d)
Step 3: (n —2)d > Number of leaves=nd x (n —1)d x --- x 1
. — n!dil

Stepn: d

only d"" assignments are possible.

/

The order of assignment doesn’t matter, and we should assigme variable at a
time.

171

Backtracking search

Using the graph colouring example:

The search now looks something like this...

1=C

AT
m 0 W
W N P
TR
0@
wnN =
I
Oxow

...and new possibilities appear.

172

Backtracking search

Backtracking search searches depth-first, assigning Besiagable at a time, and
backtracking if no valid assignment is available.

ThHowh
WO D W

6=B

Nothing is available for 7, so
either assign 8 or backtrack

Rather than using problem-specific heuristics to try to meprsearching, we can
now explore heuristics applicable ie CSPs.

173

Backtracking search

Result backTrack(problem {
return bt ([], problem;

}

Result bt (assignnmentList, problem {
I f (assignnmentList is conplete)
return assignnmentLi st;
next Var = get Next Var (assi gnnent Li st, problenm;
for (all v in orderVari abl es(nextVar, assignnentList, problem) {
If (v is consistent with assignnmentlList) {
add "nextVar = v" to assignnentlList;
solution = bt(assignnmentList, problenm;
if (solution is not "fail")
return sol ution;
renove "nextVar = v" from assi gnnentLi st;

}
}

return "fail";

174

Backtracking search: possible heuristics

There are several points we can examine in an attempt tonogemeral CSP-
based heuristics:

¢ In what order should we try ta ?

¢ In what order should we try ta to a variable?
Or being a little more subtle:

e What effect might the values assigned so far have on latemated assign-
ments?

e When forced to backtrack, is it possible to avoid the samarfalater on?

175

Heuristics |: Choosing the order of variable assignmentkvatues

Say we have = 5 and2 = ¢

At this point there inly one possible assignment
for 3, whereas the others have more flexibility.

Assigning such variablesrst is called the
heuristic.

(Alternatively, the or heuristic.)

176

Heuristics |: Choosing the order of variable assignmentkvatues

How do we choose a variable to begin with?

The chooses the variable involved in the most constraints on as
yet unassigned variables.

Y%

£ 8
1

MRV is usually better but the degree heuristic is a good teaker.

177

Heuristics |: Choosing the order of variable assignmentkvatues

Once a variable is chosen,in ?

Choosingl = C'is bad as it removes

g the final possibility for3.

- The heuristic prefers 1=B

The heuristic chooses first the value that leaves the max-
Imum possible freedom in choosing assignments for the Ma&'saneighbours.

178

Heuristics II: forward checking and constraint propagatio

Continuing the previous slide’s progress, now add (.

C is ruled out as an assignment
2 and 3.

Each time we assign a value to a variable, it makes sensedtedkat value from
the collection of

This is called J It works nicely in conjunction with MRV.

179

Heuristics II: forward checking and constraint propagatio

We can visualise this process as follows:

1 2 3 4 5 6 7 8
Start | BRC | BRC | BRC' | BRC | BRC | BRC | BRC' | BRC
2=B| RC | = RC | RC |BRC | BRC | BRC | BRC
3=R| C = = RC | BC | BRC'| BC | BRC
6=B| C = = RC C = C | BRC
5=C| C =B | =R R =C | =8 ! BRC

At the fourth step’ has

However, we could have detected a problem a little eatlier..

180

Heuristics II: forward checking and constraint propagatio

...by looking at step three.

1 2 3 4 5 6 7 8
Start | BRC | BRC | BRC' | BRC | BRC | BRC | BRC' | BRC
2=B| RC | = RC | RC |BRC | BRC | BRC | BRC
3=R| C = = RC | BC | BRC'| BC | BRC
6=B| C = = RC C = C | BRC
5=C| C =B | =R R =C | =8 ! BRC

e At step three; can beC' only and7 can beC' only.
e But) and7 are connected.
e SO we can't progress, but this hasn’t been detected.

e Ideally we want to da

time to do the search, against time to explore constraints.

181

Constraint propagation

Consider a constraint as beirlg | For examplel — 5.

In general, say we have a constraint- ; and currently the domain ofis 1), and
the domain ofj is D;.

i~ Jis if
Vd € D;,3d" € D; such that — j is valid

182

Constraint propagation

In step three of the table), — { 7. C'} and D5 = {C'}.

e) — 4in step three of the table

e |/ — 5 in step three of the table

4 — 5 can be made consistent by deletindrom D,.

Or in other words, regardless of what you assignyou’ll be able to find some-
thing valid to assign tg.

183

Enforcing arc consistency

We can enforce arc consistency each time a variaislassigned.

¢ \We need to maintain a
e Each time we alter a domain, we may have to include furthes iarthe col-
lection.
This is because if — j Is inconsistent resulting in a deletion from we may as
a consequence make some arc> : inconsistent.

Why is this?

184

Enforcing arc consistency

k1 1 — j is not consistent so k1
deleteB from the domain
ko O\ of i. ko

1 — j is now consistent.
i J ' ' J
{R, B} {B} {R} {B}
kK O/ L. . kK U .. .
(R} kx — 1 is consistent but (R} kx — i is no longer consistent
kx = R can only be paired becausé = R can not be paired

with i = B. withi = R.

e . — 7 Inconsistent means removing a value fram
e -id ¢ D, such that there is no valid < D, l € D;.

However some/” < 1D, may only have been pairable with

We need to continue until all consequences are taken care of.

185

The AC-3 algorithm

NewDomai ns AC-3 (problem {
Queue toCheck = all arcs i->j;
whil e (toCheck is not enpty) {
| ->] = next (toCheck);
I f (renovel nconsistencies(D ,D0)) {
for (each k that is a neighbour of i)
add k->i to toCheck;

}
}
}

Bool renovel nconsi stencies (domai nl, domai n2) {
Bool result = false;
for (each d in donmainl) {
If (no d in domin2 valid with d) {
renmove d from domai nl;
result = true;

}
}

return result;

186

Enforcing arc consistency

e A binary CSP with. variables can have(»”) directional constraints — ;.

e Any i — j can be considered at mostimes wherel — max; |D,| because
only d things can be removed from,.

e Checking any single arc for consistency can be done(irv).

So the complexity i$)(n*d?).
this setup includes 3SAT.

we can’t check for consistency in polynomial time, which gesfts
this doesn’t guarantee to find all inconsistencies.

187

A more powerful form of consistency

We can define a stronger notion of consistency as follows:

o any/ — 1 variables and any consistent assignment to these.

o We can find a consistent assignment to atltyvariable.

This is known as:

k requires the we bé-consistent/: — [-consistenetcas far
down asl-consistent.

If we can demonstrate strongconsistency (where as usualis the number of
variables) then an assignment can be found(ind).

Unfortunately, demonstrating strongconsistency will be

188

Backjumping

The basic backtracking algorithm backtracks toriine :1This
Is known as olt is not always the best policy:

-, 7?7

Say we've assigned = B, 3 = R, 5 = (and4 = B and now we want to
assign something to. This isn’t possible so we backtrack, however re-assigning
4 clearly doesn’t help.

189

Backjumping

With some careful bookkeeping it is often possiblgito
without sacrificing the ability to find a solution.

We need some definitions:

e When we set a variablg to some valuel < 1D, we refer to this as the

A,‘ = <‘/; <— d)
o A I = {A Ay oo AL IS a set of assign-
ments to the first: variables...
e ... Where means that no constraints are violated.
Henceforth we shall assume that variables are assigned order\/ . V5, ...,V

when formally presenting algorithms.

190

Gaschnig’s algorithm

works as follows. Say we have a partial instantiation

e When choosing a value fadr,,; we need to check that any candidate value
d e D, I1s consistent with',.

e When testing potential values far we will generally discard one or more
possibilities, because they conflict with some member. of

e \We keep track of the At for which this has happened.

Finally, if novalue forl/.., is consistent with';, then we backtrack to’.

If there are no possible values left to try forthen we backtrack

191

Gaschnig’s algorithm

Backtrack to 5

If there’s no value left to try for then backtrack tG and so on.

192

Graph-based backjumping

This allows us to jump back multiple levels
Can we do better than chronological backtracking ?

Some more definitions:

e \We assume an ordering. V5., V. for the variables.

/ /

e Given!” = {1} V5. ... V. } wherek < n the of V/,.,, are the mem-

)

bers ofl”’ connected td/,..; by a constraint.

e The P(V) of V.., is its most recent ancestor.

The ancestors for each variable can be accumulated as m&sitgrare made.
backtracks to the of V..

Gaschnig’s algorithm uses whereas graph-based backjumping
uses

193

Graph-based backjumping

{1,3,5}
e {1,3,4,8}
{4}
4¢ {5} {5}
50 {3} 5 {?/ {3}
3?{1}3 {1} 3¢ {1} {1}

1 1 1

At this point, backjump to the for 7, which isb.

194

Backjumping and forward checking

If we use 7 say we're assigning to;. ; by makingV/.., = d:

e Forward checking removes from the 1, of V; connected to/,. | by a
constraint.
e \When doing graph-based backjumping, we’'d also add to the ancestors of
V.
In fact, use of forward checking can make some forms of bawkjng

there are in fact many ways of combining with
, and we will not explore them in further detail here.

195

Backjumping and forward checking

-, 7?7

Ancestors

1-{}

2-{1,3, 4)
4 3-{1)
4-1{}
5 - {3}
6-{}
7-{1,3
8-}
1
1 2 3 4 5 6 7 8
Start | BRC' | BRC | BRC | BRC | BRC | BRC | BRC | BRC
1=B| = RC RC | BRC | BRC | BRC | RC | BRC
3=R| =B C =R | BRC | BC | BRC C BRC
b=C| = C = BR | = BR ! BRC
4 =B| = C = BR | = BR ! BRC

Forward checking finds the problems

196

Graph-based backjumping

We're not quite done yet though. What happens wiiar

P

Vi il ?7?

Vs

Vs

Vi Vi
Vi Vi
Vi v
" Vi

Backjumping froml~ to 1, is fine. However we shouldn’t then just backjump to
/5, because changing; could fix the problem at~.

197

Graph-based backjumping

To describe an algorithm in this case is a little involved.

Leaf dead-end variablg; 2 277

Ve
Vs
Vi Vi

Leaf dead-end

Is.
V3 V3
Va Va
Vi Vi

Given an instantiation, andV/.. |, if there is no consisteni < 1, we call/, a
and‘/}{‘—}—] a

198

Graph-based backjumping

Also
Leaf dead-end variablg; ik 2?7
Vi
Vs
Internal dead-end)
Vi Is. 1 ??? Internal dead-end variablé
Leaf dead-end
Is.

Vs V3

Vs Va

Vi Vi

If V. was backtracked to from a later leaf dead-end and there aneon® values
to try for V; then we refer to it as an and call/, | an

199

Graph-based backjumping

To keep track of exactly where to jump to we also need the dieins:

e The of a variable!” begins when the search algorithm visits it and ends
when it backtracks through it to an earlier variable.

e The of a variablel’ is the set of all variables visiting during its
session.

e In particular, the current session for anycontains!’.
e The 21V for a variablel” are:

1. R(V) is initialized to{V } whenV is first visited.
2. If V' is a leaf dead-end variable thenl”) = {1/ }.
3. If IV was backtracked to from a dead-endthen (V') = R(V) U R(V7).

And we’re not done yet...

200

Graph-based backjumping

Session ofz = {V7}.
R(Vz) = {17} m
Session start
Session ol = {V,, V5, Vg, VZ}.
Session start R(Vy) = {Vy, V2}

As expected, the relevant dead-endslifoare{V/,} and{V~}.

201

Graph-based backjumping

One more bunch of definitions before the pain stops. 'Sayg a dead-end:

e The mid(V,) of I/, are defined as

md<v,1>{v1,v2,...,vkl}m< L ancestorm)

VeR(V}.)

e The for V), is the most recent” < ind(1/,).

Note that these definitions depend Gn/}.).

graph-based backjumpirig

202

Graph-based backjumping

Backjump fromV;
to Vi.

Session oV, = {V,, V5, Vs, V7}.
Nothing left to try! R(Vy) = {V4, V&}

ind(V3) = {V2, Vs}

As expected, we back jump 1o instead of,. Hooray!

203

Conflict-directed backjumping

Gaschnig’s algorithm and graph-based backjumping carbe to produce

We will not explore conflict-directed backjumping in thisuree.

For considerable further detail on algorithms for CSPs see:

204

Varieties of CSP

We have only looked &t CSPs with sThese are the simplest.
We could also consider:

1. Discrete CSPs withi
e We need a cFor example
Vs < Vig+5
e Algorithms are available for integer variables and lineamnstraints.
e Thereis for integer variables and nonlinear constraints.

2. Continuous domains—using linear constraints definimyer regions we have
J This is solvable in polynomial time in.

3. We can introduce i addition to ,
and in some cases a

205

Artificial Intelligence |

Dr Sean Holden

Notes orknowledge representation and reasoning using first-ordgicl (FOL)

Copyright(©) Sean Holden 2002-2013.

206

Knowledge representation and reasoning using FOL

We now look at how an agent mighs knowledge about its environment
using first order logic (FOL), anci with this knowledge to achieve its goals.
e To show how FOL can be usedits about an environment in

the form of both and

e To show how this knowledge can be usedlto
about the environment usinga

e To introduce the and demonstrate its application in a simple
environment as a means by which an agent can work out whatnexto

207

Interesting reading

Russell and Norvig, chapters 7 to 10.

Knowledge representation based on logic is a vast subjeotamt be covered In
full in the lectures.

In particular:

e Techniques for representirig

e Techniques for moving beyond the idea cfia
e Reasoning systems basedari

e Reasoning systems using

Happy reading :-)

208

Knowledge representation and reasoning

Earlier in the course we looked at what am=ntshould be able to do.

It seems that all of us—and all intelligent agents—shouleltg
to help us interact successfully with the world.

Any intelligent agent should:

e Possess about the and about
e Use some form of to Its knowledge as
arrive.
e Use some form of to to perform in order to

achieve

209

Knowledge representation and reasoning

This raises some important guestions:

e How do we describe the current state of the world?

e How do we infer from our percepts, knowledge of unseen pditseoworld?
e How does the world change as time passes?

e How does the world stay the same as time passes?{(dine)

e How do we know the effects of our actions? (Tine and

)

We’ll now look at one way of answering some of these questions

210

Logic for knowledge representation

FOL (arguably?) seems to provide a good way in which to regmethe required
kinds of knowledge:

o Itis <-anything you can program can be expressed.

o ltis

o ltis

e It can be adapted to

e It has an calthough a semidecidable one.

In addition is has a well-definetl and

211

Logic for knowledge representation

It's quite easy to talk about things like: using FOL. For exam-
ple, we can easily write axioms like

VS VS' . (Vo . (zreS&rxes)=5=5
But how would we go about representing the propositioniihat
?

More importantly, how could this be represented within aavittamework for
reasoning about the world?

It's time to introduce my friend]

212

Wumpus world

As a simple test scenario for a knowledge-based agent wanaikle use of the

D
QO

Evil Robot

The Wumpus World is a 4 by 4 grid-based cave.

EVIL ROBOT wants to enter the cave, find some gold, and get out again un-
scathed.

213

Wumpus world

The rules of

e Unfortunately the cave contains a number of pits, whHisHL ROBOT can
fall into. Eventually his batteries will fail, and that'sdlend of him.
e The cave also contains the Wumpus, who is armed with stateecfit

e The Wumpus itself knows where the pits are and never falsone.

214

Wumpus world

EVIL ROBOT can move around the cave at will and can perceive the follgwin

¢ In a position adjacent to the Wumpus, a stench is percein&timpuses are

famed for their 1)
e INn a position adjacent to a pit, ‘@ IS perceived.
¢ In the position where the gold is, a ' Is perceived.
e On trying to move into a wall, a IS perceived.
e On killing the Wumpus & IS perceived.

In addition,EVIL ROBOT has a single arrow, with which to try to kill the Wum-
pus.

“Adjacent” in the following doesiot include diagonals.

215

Wumpus world

So we have:
stench, breeze,glitter, bunp,scream
forward,turnlLeft,turnRi ght,grab,rel ease,shoot,cli nb.

Of course, our aim now is0t just to design an agent that can perform well in a
single cave layout.

We want to design an agent that can perform well of the layout
of the cave.

216

Some nomenclature

The choice of knowledge representation language tendstbtéetwo important
commitments:

o twhat does the world consist of?

o 1iwhat are the allowable states of knowledge?
Propositional logic is useful for introducing some fundauad ideas, but its on-

tological commitment—that the world consists of facts—stimes makes it too
limited for further use.

FOL has a different ontological commitment—the world cetsDf ,
and

217

Logic for knowledge representation

The fundamental aim is to constructa KB containing &
about the world—expressed in FOL—such that
from it.
Our central aim is to generate sentences thaitrars if KB

This process is based on concepts familiar from your intcbamhy logic courses:

e Entailment:XB = o means that th&s entailsa.

e Proof: KB -; o means that is derived from theB using:. If 7 Is then
we have g

® IS If it can generate only entailed.

® IS iIf it can find a proof foranyentailedq.

218

Example: Prolog

You have by now learned a little about programmingy’in

concat ([],L,L).
concat ([H T],L,[H L2]) :- concat(T,L,L2).

IS a program to concatenate two lists. The query
concat([1, 2,3],[4, 5], X).
results in

X=1[1, 2, 3, 4, 5].

What'’s happening here? Well, Prolog is jusiha

219

. For example:

SO...

Example: Prolog

... we are In fact doing inference fronxa:

e The Prolog programme itself is th&s. It expresses some

e The query is expressed in such a way asdo

How does this relate to full FOL? First of all the list notattie nothing but
. It can be removed: we define a constant catiegit y and a function
calledcons.

Now| 1, 2, 3] justmeanscons(1, cons(2, cons(3, enpty)))) which
Is atermin FOL.

220

Prolog and FOL

The program when expressed in FOL, says

Vx.concat (enpty,z,x) A
Vh,t,l1,ly.concat (¢,1;,ly) = concat (cons(h,t),l;,cons(h,ls))

The rule is simple—given a Prolog program:

e Universally quantify all the unbound variables in each loféhe progranand

e ... form the conjunction of the results

If the universally quantified lines aré,, /.., ..., L, then the Prolog programme
corresponds to thgB
KB=IL1 ALy N---NL,

Now, what does the query mean?

221

Prolog and FOL

When you give the query

concat([1, 2,3],[4, 5], X).

to Prolog it responds by the following statement
KB — dx.concat (|1,2,3],[4,5], z)

It tries to prove that thé&B vand variables in the query are
existentially quantified.

When a proof is found, it supplies\a x that

222

Prolog and FOL

Prolog differs from FOL in that, amongst other things:

e It restricts you to using

e Its inference procedure is notia

e It does not deal withi correctly.
However
If you want to experiment, you can obtéiii from

http://ww. cs. unm edu/ ~nccune/ nace4/

We’'ll see a brief example now, and a more extensive exampte o§e later, time
permitting...

223

Prolog and FOL

Expressed in Prover9, the above Prolog program and quekyilaothis:

set (prolog _style variabl es).

% This is the translated Prolog programfor |ist concatenation.
% Prover9 has its own syntactic sugar for |ists.

fornmul as(assunptions).
concat ([], L, L).
concat (T, L, L2) -> concat([H T], L, [HL2]).
end of |ist.
% This is the query.
fornul as(goal s).

exists X concat([1, 2, 3], [4, 5], X.
end of |ist.

It iIs assumed thai

224

Prolog and FOL

You can try to infer a proof using

prover9 -f file.in
and the result is (in addition to a lot of other information):

concat (T,L,L2) -> concat([H T],L,[H L2]) # | abel (non_clause). [assunption].
(exists X concat([1,2,3],[4,5],X)) # | abel (non_clause) # | abel (goal). [goal].
concat ([],A A). [assunption].

-concat (A, B,C) | concat([D:A],B,[D:C]). [clausify(1l)].
-concat([1,2,3],[4,5],A . [deny(2)].

concat ([A],B,[A:B]). [ur(4,a,3,a)].

-concat([2,3],[4,5],A). [resolve(5,a,4,b)].

concat ([A,B],C [AB:(C). [ur(4,a,6,a)].

$F. [resolve(8,a,7,a)].

O oo ~NOUILr WN -

This shows that a proof is found but doesn’t explicitly giveadue for X—we’ll
see how to extract that later...

225

The fundamental idea

Sothe IS: build akB that encodebk lthe
and so on.

TheKB is a conjunction of pieces of knowledge, such that:

e A query regarding what our agent should o

JactionList .Goal (... actionList ...)

e Proving that
KB—=— dactionList .Goal (... actionList ...)

Instantiatesact | onlLi st to an that will achieve a goal
represented by théoal predicate.

We sometimes use the notationk andtell to refer to and
KB.

226

Using FOL in Al: the triumphant return of the Wumpus

We want to be able te about the past and aboui

D
QO

Evil Robot

e \We include In the logical language used by oii.

e We include INn our KB that relate to situations.

This gives rise tc

227

Situation calculus

In

e The world consists of sequences:=uf
e Over time, an agent moves from one situation to another.

e Situations are changed as a resultof

In Wumpus World the actions aréor war d, shoot ,gr ab,cl i nb,r el ease,
turnRi ght ,turnLeft.

o A Is added to items that can change over time. For example
At(location s)
ltems that can change over time are calleé

e A situation argument is not needed for things that don’'t geanThese are
sometimes referred to as or

228

Representing change as a result of actions

Situation calculus uses a function
resulfacti on, s)

to denote thenewsituation arising as a result of performing the specifietbaah
the specified situation.

resultgrab, sy) = s;
resul{turnlLeft, s;) = so
resultshoot, s9) = s3
resul{forward, s3) = sy

229

Axioms |: possibility axioms

The first kind of axiom we need in @ specifies

We introduce a predicate
Possgacti on,s)

denoting that an action can be performed in situation
We then need a for each action. For example:
At(l, s) A Available(gol d, [, s) = Pos$grab, s)

Remember that

230

Axioms |l; effect axioms

Given that an action results in a new situation, we can inicec
specify the properties of the new situation.

For example, to keep track of whethey|L ROBOT has the gold we nees
to describe the effect of picking it up:

Posggrab, s) = Havegol d, resul{grab, s))
Effect axioms describe the way in which the world
We would probably also include
—Havggol d, sg)
In the KB, wheres Is the

. we are describing In the from
In a

231

to

Axioms llI; frame axioms

We needrame axiomdo describehe way in which the world stays the same
Example:
Havgo, s) A

—(a =release Ao =¢gol d) A —(a = shoot Ao =arrow)
—> Havgo, resulta, s))

describes the effect ofaving something and not discarding it
In a more general setting such an axiom might well look difér For example
—Haveo, s) A

(a # grab(o) VvV —(Availablgo,s) A Portabléo)))
—> —Have(o, resulta, s))

describes the effect ofot having something and not picking it.up

232

The frame problem

The has historically been a major issue.

>ra large number of frame axioms are required to
represent the many things in the world which will not changéehe result of an
action.

We will see how to solve this in a moment.

nwhen reasoning about a sequence of situations, all the
unchanged properties still need to be carried through alstaps.

This can be alleviated using that allow us to reason efficiently
when actions change only a small part of the world. Therelaeadher remedies,
which we will not cover.

233

Successor-state axioms

Effect axioms and frame axioms can be combined mtocessor-state axioms

One is needed for each predicate that can change over time.

Action a Is possible—-
(true in new situation<—=
(you did something to make it true
it was already true and you didn't make it false

For example

Possa, s) —
(Haveo, resulta, s)) <= ((a = grab A Available(o,s) V
(Haveo,s) A —(a =release A o=gold) A
—(a = shoot A o=arrow))))

234

Knowing where you are

If s, 1s the initial situation we know that
At((1,1), so)

| am that we've added axioms allowing us to deal with the numbeos
5 and pairs of such numbers:

We need to keep track of what way we’re facing. Say north south is?, east is

| and west is.
facing(sg) = 0

We need to know how motion affects location

forwardResult(z, y),north) = (z,y + 1)
forwardResult(z, y),east) = (z + 1,y)

and
At(l, s) = goForwards) = forwardResult, facing s))

235

Knowing where you are

The concept of adjacency is very important in the Wumpusavorl
Adjacently, ;) < dd forwardResultl,, d) = [,
We also know that the cave 4dby 4 and surrounded by walls
WallHerg(z,y)) <— (x=0Vy=0Vae=5Vy=>5)

It is only possible to change location by moving, and thisyambrks if you're not
facing a wall. So...

...we need a successor-state axiom:;
Possa, s) —
At(l, resulta, s)) <= (I = goForwards)

N\ a = forward

A —WallHerg))
V (At(l,s) A a # forward)

236

Knowing where you are

It is only possible to change orientation by turning. Agaue need a successor-
state axiom
Possa, s) =
facingresulta, s)) = d <
(a = turnRight A d = modfacings) + 1,4))
V (a = turnLeft A d = modfacing(s) — 1,4))
V (facing(s) = d A a # turnRight A a # turnLeft)

and so on...

237

The qualification and ramification problems

nwe are in general never completely certain what conditions
are required for an action to be effective.

Consider for example turning the key to start your car.
This will lead to problems if important conditions are oradtfrom axioms.

nactions tend to have implicit consequences that are large |
number.

For example, if | pick up a sandwich in a dodgy sandwich shopilllalso be
picking up all the bugs that live in it. | don’t want to modelgtexplicitly.

238

Solving the ramification problem

The ramification problem can be solvedioydifying successor-state axioms

For example:

Poss$a, s) =
(At(o,, resulta, s)) <—

(a=go(l',1) A
lo=robot Vv Hagrobot ,o,s)])V
(At(o,l,s) A

=31 ca=go(l,I")y N LA A
{o =robot v Hagrobot o, s)}]))

describes the fact that anythiagy/|IL ROBOT is carrying moves around with him.

239

Deducing properties of the world: causal rules

If you know where you are, then you can think abplistcesrather than just

relate properties shared by a single state of the world.
There are two kinds: and
s some properties of the world will produce percepts.
WumpusAtl,) A Adjacent!l;,) = StenchAtl,)

PitAt(l;) A Adjacentl, l;) = BreezeAtl,)
Systems reasoning with such rules are knowmas reasoning systems.

240

Deducing properties of the world: diagnostic rules

s Infer properties of the world from percepts.
For example:
At(l, s) N\ Breezés) —> BreezeAt!)
At(l,s) N St ench(s) = St enchAt (I)
These may not be very strong.

The difference between model-based and diagnostic reagsoan be important.

For example, medical diagnosis can be done based on symgtobased on a
model of disease.

241

General axioms for situations and objects

: In FOL, if we have two constantsobot andgol d then an interpretation
IS free to assign them to be the same thing.

This is not something we want to allow.

state that each pair of distinct items in our model of the

world must be different
robot #gold

robot #£ arrow
robot = wunpus

wunpus =~ gol d

242

General axioms for situations and objects

state that actions must share this property, so for each pair

go(l,l") #grab
go(l,1') # drop(o)

of actions

dr op(o) # shoot
and in addition we need to define equality for actions, so &heaction

go(l,I"Y =go(l",l") <= I=1"NI=1"
drop(o) =drop(¢d) < o=0

243

General axioms for situations and objects

The situations are SO
so # resulta, s)
and situations are SO
resulta, s) =resul{d’, s') <= a=d ANs=¢
Strictly speaking we should be usingra version of FOL.

In such a system variables can be divided mio.swhich are implicitly separate
from one another.

244

The start state

Finally, we’re going to need to specifyhat’s true in the start state

For example
At(r obot , [1,1], s¢)

At(\NurerS7 [37 4]7 SU)
Hagr obot ,ar r ow, s)

and so on.

245

Seqguences of situations

We know that the functiomesulttells us about the situation resulting from per-
forming an action in an earlier situation.

How can this help us findequences of actions to get things d2ne
Define
Sequencl], s,s') = s = s
Sequencgal, s, s') = Possa, s) A s’ = resulfa, s)
Sequencg: :: as, s,s') = 3t . Sequencgal, s,t) A Sequencgs, t, s')

To obtain asequence of actions that achiev&eal s) we can use the query

dJa ds . Sequencg, sg, s) A Goal s)

246

Knowledge representation and reasoning

It should be clear that generating sequences of actionsfbyemce in FOL is
highly non-trivial.

Ideally we'd like to maintain an language while It enough to
be able to do inference

e To give a brief introduction tc and for knowledge
representation.

e TO see how can be applied as a reasoning method.
e To look at the use of for knowledge representation, along witin
and for reasoning.

CcAlison Cawsey. Prentice
Hall, 1998.

247

Frames and semantic networks

Frames and semantic networks represent knowledge in thredbr

and :
e The and relationships are emphasised.
e We form in which IS supported and provides the
main

As a result inference is quite limited.
We also need to be extremely careful absuit

The only major difference between the two ideasas

248

Example of a semantic network

Person
subclass

Musician

subclass subclass volume
Ear problem
volum , ..\ has
./ Rock musician Classical musiciar

hair_length | hair_length

instance

Jake Mayhe
as

instancg

i has
Violet Scroot

Oboe

249

Frames

Frames once again support inheritance throughsthzlass relationship

Rock musician .
Musician

subclass: Musician
has: ear problems
hairlength: long

volume: loud

subclass: Person
has: instrument

has, hai r| engt h, vol une etcareslots
| ong, | oud, 1 nstrunent etcareslot values

These are a direct predecessonbdfect-oriented programming languages

250

Defaults

Both approaches to knowledge representation are ableagio@te

ROER TSR Dementia Evilperson
subclass: Musician subclass: Rock musician]
has: ear problems hairlength: short
* hairlength: long image: gothic
* volume: loud
Starred slots are associated with subclasses and instances; dut

251

Multiple inheritance

Both approaches can incorporate ~at a cost:

Rock musician Classical musician

instance instance

Cornelius Cleverchap

e What ishai r | engt h for Cor nel | us if we're trying to use inheritance to
establish it?

e This can be overcome initially by specifying which classnkarited from
when there’s a conflict.

e But the problem is still not entirely solved—what if we waatgrefer inheri-
tance of some things from one class, but inheritance of stinem a different
one?

252

Other issues

¢ Slots and slot values can themselves be frames. For exampient i a may
have an instrument slot with the valiaé ect ri ¢ har p, which itself may
have properties described in a frame.

e Slots can have .<For example, we might specify thab st r unent
can have multiple values, that each value can only be amiostfl nst r unent
that each value has a slot calledned by and so on.

e Slots may contain arbitrary pieces of program. This is kn@asn
The fragment might be executed to return the slot’s value, o
update the values in other sl@s:.

253

Rule-based systems

A rule-based system requires three things:

1. A setof . These denote specific pieces of knowledge about the
world.
They should be interpreted similarly to logical implicatio
Such rules denote or under given circum-
stances.

2. A collection of denoting what the system regards as currently true about
the world.

3. An interpreter able to apply the current rules in the lighthe current facts.

254

Forward chaining

The first of two basic kinds of interpretér

Thisis a process. It is appropriate if we know the but not
the required conclusion.

Example: XCON—used for configuring VAX computers.

In addition:
e \We maintain a ytypically of what has been inferred so far.
e Rules are often swhere the right-hand side specifies an

action such as adding or removing something from working orgnprinting
a messagetc

e In some cases actions might be entire program fragments.

255

Forward chaining

The basic algorithm is:

1. Find all the rules that can fire, based on the current wgrkniemory.
2. Select a rule to fire. This requiresa

3. Carry out the action specified, possibly updating the vimgrknemory.

Repeat this process until either or a appears in the work-
INng memory.

256

Example

Condition—action rules

dry_mouth —> ADD thirsty

thirsty —> ADD get_drink

get_drink AND no_work —> ADD go_bar
working —> ADD no_work

no_work —> DELETE working

Working memory Interpreter

dry_mouth
working

257

Example

Progress is as follows:

1. The rule
dry nouth = ADD thirsty

fires adding hi r st y to working memory.

2. The rule
t hirsty = ADD get _dri nk

fires addingyet dri nk to working memory.

3. Therule
wor ki ng = ADD no_wor k

fires addingho wor k to working memory.

4. The rule
get _dri nk AND no_.wor k =- ADD go_bar

fires, and we establish that it’s time to go to the bar.

258

Conflict resolution

Clearly in any more realistic system we expect to have to daal a scenario
where :

e Which rule we choose can clearly affect the outcome.

e \We might also want to attempt to avoid inferring an abundarfagseless in-
formation.

We therefore need a meansrof

259

Conflict resolution

Common are:

e Prefer rules involving more recently added facts.

e Prefer rules that are cFor example
pati ent _coughi ng = ADD | ung_pr obl em
IS more general than
pat i ent _coughi ng AND pat i ent _snoker —- ADD | ung_cancer .

This allows us to define exceptions to general rules.
¢ Allow the designer of the rules to specify priorities.

e Fire all rules ~~this essentially involves following all chains of
Inference at once.

260

Reason maintenance

Some systems will allow information to be removed from thekantg memory if
It is no longer

For example, we might find that

pati ent _coughi ng

and
pati ent _snoker

are in working memory, and hence fire
pati ent _coughi ng AND pat i ent _snoker —> ADD | ung_cancer

but later infer something that causest | ent coughi ng to be from
working memory.

The justification for ung cancer has been removed, and so it should perhaps
be removed also.

261

Pattern matching

In general rules may be expressed in a slightly more flextdnim finvolving
which can work in conjunction with

For example the rule
coughs(X) AND snoker (X) = ADD | ung cancer (X)
contains the variablég’.
If the working memory containsoughs (neddy) andsnoker (neddy) then
X = neddy

provides a match and
| ung_cancer (neddy)

Is added to the working memory.

262

Backward chaining

The second basic kind of interpreter begins witiva! and finds a rule that would
achieve lIt.

It then works > trying to achieve the resulting earlier goals in the suc-
cession of inferences.

Example: MYCIN—medical diagnosis with a small number of dibions.

This is a process. If you want to or you have some
Idea of a likely conclusion it can be more efficient than fomvahaining.

263

Working memory

dry_nout h
wor ki ng

Example

Goal

go_bar

get dri nk
no_wor k

thirsty
no_wor k

dry_nout h
no_wor k

wor ki ng

To establistgo_bar we have to
establisiget _dr i nk andno_wor k.
These are the new goals.

Try first to establislget _dr i nk. This
can be done by establishindpi r st y.

t hi r st y can be established by establishing
dr y_nout h. This is in the working memory
so we're done.

Finally, we can establisho_wor k by

establishingwr ki ng. This is in the working
memory so the process has finished.

264

Example with backtracking

If at some point more than one rule has the required concaiubien we cari

Example: backtracks, and incorporates pattern matching. It orders a
tempts according to the order in which rules appear in thgnaro.

Example: having added

up.early = ADD tired

and
tired AND | azy = ADD go_bar

to the rules, andp ear | y to the working memory:

265

Working memory

Example with backtracking

Goal

dry_nout h
wor ki ng
up_early

go_bar

tired
| azy

upearly
| azy

| azy

Attempt to establisigo_bar

by establishing i r ed and
l azy.

get drink
no_wor k

This can be done by establishing

Y

up_early andl azy.
up_ear | y is in the working memory

thirsty
no_wor k

so we're done.

We can not establisigazy

Y

and so we backtrack and try a

dry_nout h
no_wor k

different approach.

wor ki ng

266

Process proceeds as before

Artificial Intelligence |

Notes on

Copyright(©) Sean Holden 2002-2013.

267

Problem solving is different to planning

In we:
o ~and a state representation contains that’s relevant
about the environment.
o 1€y describing a new state obtained from a current state.
o 1all we know is how to test a state either to see if it's a goal,

or using a heuristic.

o 1r’but we only consides

Search algorithms are good for solving problems that fitfiaimework. However
for more complex problems they may fail completely...

268

Problem solving is different to planning

Representing a problem such ag: is hopeless:

e There are at each step.

e A heuristic can only help you rank states. In particular ieslmot help you
useless actions.

e \We are forced to start at the initial state, but you have tokveort
s—that is, go to town and buy them, get online and find a web kde t
sells piesetc—

Knowledge representation and reasoning might not helgeidthough we end
up with a sequence of actions—a plan—there is so much fleyibiat complex-
ity might well become an issue.

269

Introduction to planning

We now look at how an agent migni enabling it to achieve a goal.

e To look at how we might update our concept<of
to apply more specifically to planning tasks.

e To look in detail at the basic

) Russell and Norvig, chapter 11.

270

Planning algorithms work differently

¢ Planning algorithms uses geoften based on FOL or
a subset— to represent states, goals, and actions.

e States and goals are described by sentences, as might lwteskfdmut. ..

e ...actions are described by stating theiz and their

So if you know the goal includes (maybe among other things)
Havegpi e)

and actionBuy(x) has an effectiave) then you know that a plam
Buy(pi e)

might be reasonable.

271

Planning algorithms work differently

e Planners can add actionszt
, hot just at the end of a sequence starting at the start state.

e This makes sense: | may determine tHave car Keys) is a good state to be
in without worrying about what happens before or after figdimem.

e By making an important decision like requirifitave car Keys) early on we
may reduce branching and backtracking.

e State descriptions are not completeteveg car Keys) describes a
s—and this adds flexibility.

1 you have the potential to search b@il and within the same
problem.

272

Planning algorithms work differently

It is assumed that most elements of the environmentals

e A goalincluding several requirements can be attacked wdiliide-and-conquer
approach.

e Each individual requirement can be fulfilled using a subplan

e ...and the subplans then combined.

This works provided there is not significant interactionviestn the subplans.

Remember: thé

273

Running example: gorilla-based mischief

We will use the following simple example problem, which asdxhon a similar
one due to Russell and Norvig.

The intrepid little scamps in thée
wish to attach an to the spire of & £To do this
they need to leave home and obtain:

o 1 these can be purchased from all good joke shops.
° ravailable from a hardware store.
° . also available from a hardware store.

They need to return home after they've finished their shappin

How do they go about planning their ?

274

The STRIPS language

STRIPS:"Stanford Research Institute Problem Solv(d970).

States areconjunctionsof ground literals They must not includéinction sym-

bols .
At(honme) A —Haveggori | | a)

A ~Havgr ope)
A —~HavgKki t)
Goals areconjunctionof literals where variables are assumedstentially guan-
tified.
At(z) A Sellgz,goril | a)
A planner finds a sequence of actions that when performed srtakegoal true.
We are no longer employing a full theorem-prover.

275

The STRIPS language

STRIPS represents actions using ; For example
At(z), Path{z, y)
Go(y)
At(y), -At(x)

Op(Action: Galy), Pre: Atz) A Pathx, y), Effect: At(y) A -At(z))
All variables are implicitly universally quantified. An ofaor has:

e AN nwhat the action does.

o A) what must be true before the operator can be usedorA

e AN t what is true after the operator has been usedcoA

276

The space of plans

We now make a change in perspective—we searcticin

e Start with an

o to obtain new plans. Incomplete plans are calied .
add constraints to a partial plan. All other operators are
called

e Continue until we obtain a plan that solves the problem.

Operations on plans can be:

[
[
o that places a step in front of another.

e and so on...

277

Representing a plan: partial order planners

When putting on your shoes and socks:

o It whether you deal with your left or right foot first.

o It that you place a sock an a shoe, for any given foot.
It makes sense in constructing a plam to make any to which side
IS done first

ndo not commit to any specific choices until you
have to. This can be applied both to ordering and to instamiaf variables. A
allows plans to specify that some steps must come before
others but others have no ordering. lIA of such a plan imposes a
specific sequence on the actions therein.

278

Representing a plan: partial order planners

A plan consists of:

1. Aset{5, 5, ..., S, | of > Each of these is one of the available

/ /

2. A set of sAn ordering constraint; < S5; denotes the fact
that stepS; must happen before steép. 5, < 5, < 5, and so on has the
obvious meaning.S;, < 5, doesnot mean thatS; must precede

Sj-
3. A set of variable bindings = = whereu Is a variable and is either a variable
or a constant.

4. A set of or S, -+ 5,. This denotes the fact
that the purpose of; is to achieve the preconditionfor 5.

A causal link is paired with an equivalent ordering constraint.

279

Representing a plan: partial order planners

The has:

e Two steps, calle®tartandFinish,
e a single ordering constraifttart< Finish,
e NO

e NO
In addition to this:

e The stepStarthas no preconditions, and its effect is the start state fer th
problem.

e The step-inishhas no effect, and its precondition is the goal.

e NeitherStartor Finishhas an associated action.

We now need to consider what constitutesoa

280

Solutions to planning problems

A solution to a planning problem is any and partially ordered
plan.

> each precondition of each stepris by another step in the solu-
tion.

A preconditionc for S is achieved by a step' if:

1. The precondition is an effect of the step
S" < S andc € EffectyS’)

and...

2. ... there is step that cancel the precondition. That is, nd
exists where:

e The existing ordering constraints allow to occur S’ but S.
e —c € Effecty5”).

281

Solutions to planning problems

il no contradictions exist in the binding constraints or ia groposed
ordering. That is:

1. For binding constraints, we never have- X andv = Y for distinct constants
X andY'.

2. For the ordering, we never have< 5’ andsS’ < S.
Returning to the roof-climber’s shopping expedition, hisrthe basic approach:

e Begin with only theSt ar t andFi ni sh steps in the plan.
e At each stage add a new step.

e Always add a new step such thatca

e Backtrack when necessary.

282

An example of partial-order planning

Here Is the

Start

At (Home) ASel I s(JS, Q|ASells(HS, R ASells(HS, FA

At (Honme) AHave(G A Have(R) A Have(FA)

Fi ni sh

Thin arrows denote ordering.

283

An example of partial-order planning

There are
At (z) At (z),Sel | s(z,vy)
Go(y) Buy ()
At (y), —At (z) Have(y)

A planner might begin, for example, by addingay(G) action in order to achieve
theHave G) precondition of~inish.

: the following order of events is by no means the only onelalgha to a
planner.

It has been chosen for illustrative purposes.

284

An example of partial-order planning

Incorporating the suggested step into the plan:

Start

At (Hone),Sel I s(JS, G ,Sel | s(HS, R), Sel | s(HS, FA)
At (z),%el | s(z,Q)

Buy(G

At (Hore) ,Have(QG ,Have(R),Have(FA)

Fi ni sh

Thick arrows denote causal links. They always have a thmnatnderneath.

Here the newsuy step achieves theave G) precondition of=inish

285

An example of partial-order planning

The planner can now introduce a second causal link fegiartito achieve the
Sellgx, G) precondition ofBuy(G).

Start

At (Homre) ,Sel | s(JS, §\Sel | s(HS, R),Sel | s(HS, FA)

At (JS),Sel1s(JS, G

Buy (G

At (Homre) ,Have(G ,Have(R),Have(FA)

Fi ni sh

286

An example of partial-order planning

The planner’s next obvious move is to introduc&astep to achieve that(JS)
precondition ofBuy(G).

St art

At (z) At (Hone) ,Sel | s(JS, ®,Sel I s(HS, R),Sel | s(HS, FA)

Go(JS)

At (JS),Sel1s(JS, G

Buy (G

'

At (Homre) ,Have(G ,Have(R),Have(FA)

Fi ni sh

And we continue...

287

An example of partial-order planning

Initially the planner can continue quite easily in this mann

e Add a causal link fronttartto Go(JS) to achieve the\t () precondition.

e Add the ste@Buy(R) with an associated causal link to thewvg R) precondi-
tion of Finish

e Add a causal link fronttartto Buy(R) to achieve thésellgHS, R) precondi-
tion.

But then things get more interesting...

288

An example of partial-order planning

At (Hone) At (Hone) ,Sel | s(JS\G , Sel S, R), Sel | s(HS, FA)

Go(JS)

T AL (JS), Sel 15(JS, G At (HS) ,Sel I's(HS, R)

Buy (G ‘ Buy(R)

At (Hone) ,Have(G, Have? R) ,Have(FA)

Fi ni sh

At this point it starts to get tricky...
The At(HS) precondition inBuy(R) is not achieved.

289

An example of partial-order planning

Start |

At (x)
At (Hone) At (Homre) , Sel | s(JS, HS, R) , Sel | s(HS, FA) i
Go(HS)
Go(J9)
—-At (z)

TR At (JS), Sel I S(JS, G Sel | s(HS, R), At (HS)

Buy(G ‘ Buy(R)

At (Hone) ,Have(G ,Have(R) ,Have(FA)

Fi ni sh

TheAt(HS) precondition is easy to achievé!
Startto Go(HS) @0o(JS).

290

An example of partial-order planning

A step that might invalidate (sometimes the ward IS employed) a previ-
ously achieved precondition is called!

Amotio —C
C

—C
c c \F:romotion

Threat

N N e

A planner can try to fix a threat by introducing an orderingstoaint.

291

An example of partial-order planning

The planner could backtrack and try to achieve Aler) precondition using the
existingGo(JS) step.

At (JS)

At (Horre) ,Sel I s(JS, ¢ , Se HS, R), Sel | s(HS, FA)

Go(HS)

Go(JS) /ﬁAt(JS)

ToAL(J9) Sel 1s(JS, G Sel | s(HS, R) , At (HS)

! Buy(R)

At (Homre) ,Have(G ,Have(R) ,Have(FA)

Fi ni sh

This involves a threat, but one that can be fixed using pramoti

292

The algorithm

Simplifying slightly to the case where there are

Say we have a partially completed plan and a set of the pre&ommslthat have
yet to be achieved.

e Select a precondition that has not yet been achieved and is associated with
an actionp.

e At each stage

e To expand a plan, we can try to achieve by using an action that's
already in the plan or by adding a new action to the plan. Imegitase, call
the actionA.

We then try to construct consistent plans wherachieves.

293

The algorithm

This works as follows:

e Foreach possible way of achievipg

— Add Start< A, A < Finish, A < B and the causal link. -+ 1 to the plan.

— If the resulting plan is consistent we're done, otherwjseecrate all possi-
ble ways of removing inconsistencley promotion or demotion and=ep
any resulting consistent plans

At this stage:

e If you haveno further preconditions that haven't been achiethenany plan
obtained is valid

294

The algorithm

But how do we try tc ?

When you attempt to achieveusing A:

e Find all the existing causal link¢’ -~ 3’ that are by A.

e For each of those you can try adding< A’ or 3’ < A to the plan.

e Find all existing actions’ in the plan that clobber thezwcausal linkA = 5.
e For each of those you can try adding< A or B < (' to the plan.

e Generate im this way and retain any consistent
plans that result.

295

Possible threats

What about dealing witin ?

If at any stage an effectAt(x) appears, is it a threat tot(J S)?

Such an occurrence is calleoma and we can deal with it by introduc-
Ing sin this caser 4 JS.

e Each partially complete plan now has a setf inequality constraints associ-
ated with it.

e An inequality constraint has the form+# X whereuv is a variable and{ is a
variable or a constant.

e Whenever we try to make a substitution we chédo make sure we won'’t
Introduce a conflict.

If we Introduce a conflict then we discard the partially complgikth as
Inconsistent.

296

Artificial Intelligence |

Dr Sean Holden

Notes ommachine learning using neural networks

Copyright(©) Sean Holden 2002-2013.

297

Did you heed the DIRE WARNING?

lesuggested making sure you can answer the fol-
lowing two gquestions:

1. Let

mn
2
1=1
where the:; are constants. Compute /0x; wherel < j < n?
As

]B<[L’l7 c ooy fIf,;)

2 2 2
]E(:El’ o e ey x,;) — aflxl + ©c e + CLJZU] + ct T + a/nxn

only one term in the sum depends .on so all the other terms differentiate to
give) and
of

0

= 20T

298

Did you heed the DIRE WARNING?

2. Letf(x,...,x,) beafunction. Now assume = ¢,(y,...,1,,) for eachz;
and some collection of functions. Assuming all requirements for differentia-
bility and so on are met, can you write down an expression foily; where

1 <j73<m?
this is just the for partial differentiation

299

Supervised learning with neural networks

We now look at how an agent mighiarn to solve a general problem by seeing

e To present an outline cf as part of Al.

e To introduce much of the notation and terminology used.

e To introduce the classical

e To introduce and the for
training them.

) Russell and Norvig chapter 20.

300

An example

A common source of problems in Al is

Imagine that we want to automate the diagnosis atarbarrassing Diseageall
it V) by constructing a machine:

Measurementtaken from the
patient: heart rate, blood pressure, —— Machine
presence of green spatc.

1 if the patient suffers fronD
0 otherwise

Could we do this by that examines the measurements
and outputs a diagnosis?

Experience suggests that this is unlikely.

301

An example, continued...

An alternative approach: each collection of measuremesmsbe written as a
vector,

XT:<371 Lo - xn)
where,
r1 = heart rate
ro = blood pressure
x3 = 1 if the patient has green spots
0 otherwise
and so on
(: I's a common convention that vectors are by default. This

IS why the above is written asia)

302

An example, continued...

A vector of this kind contains all the measurements for alsimpatient and is
called a or

The measurements a#é or

Attributes or features generally appear as one of three lbgses:

[X; - [f]fmin7 ,/L'max} Where/me, Tmax S R
° . X € {0, 1} orux, ¢ {—1,—|—1}.
o : r, can take one of a finite number of values, say- { X,,.... X }.

303

An example, continued...

Now imagine that we have a large collection of patient his®(in total) and
for each of these we know whether or not the patient suffenad).

e The:th patient history gives us an instance

e This can be paired with a single bits-er I—denoting whether or not th¢h
patient suffers from>). The resulting pair is called an or a

e Collecting all the examples together we obtainza
s = ((x1,0), (x2,1), ..., (Xm,0))

304

An example, continued...

In supervised machine learning we aim to desiga which takes
s and produces & 4.

§ —————1 Learning Algorithm — 7

Intuitively, a hypothesis is something that lets us diagnazvpatients.
Thisis . we want to diagnose patients thiat

The ability to do this successfully is called

305

An example, continued...

In fact, a hypothesis is justia that maps to
Classifier
Attribute vector =—————————s—] h(x) > [abel
As /i is a It assigns a label tanyx and

What we mean by & here depends on whether we’re doirlg

306

Supervised learning: classification

In we're assigning: to one of a sefw;.....w.} of ¢

For example, ifc contains measurements taken from a patient then there beght
three classes:

wy = patient has disease
wy = patient doesn’t have disease
w3 = don’t ask me buddy, I'm just a computer!

The case above also fits into this framework, and we’ll often spse to
the case of two classes, denotedand(’.

307

Supervised learning: regression

In we're assigning: to a h(x) € R.

For example, ifc contains measurements taken regarding today’s weathewthe
might have

h(x) = estimate of amount of rainfall expected tomorrow

For the two-class classification problem we will also refea situation somewhat

between the two, where
h(x) = Prixisin C)

and so we would typically assignto classC' if /1(x) > 1/2.

308

Summary

We don’t want to design explicitly.

So we use &

, Classifier
Attribute vector =——— h(x) — | abel
X
‘ h = L(s)
Learner
L

|

Training sequence
S

L to infer it on the basis of a sequencef

309

Neural networks

There is generally a sét of hypotheses from which is allowed to select
L(s)=heH
 is called the

The learner can output a hypothesis explicitly or—as in teeonf a
—It can output a vector

w! = (wl Wy *++ Wy)

of which in turn specify’

wherew = [(s).

310

Types of learning

The form of machine learning described is calieui

This introduction will concentrate on this kind of learnidg particular, the liter-
ature also discusses:

1.
2. Learning using and
3.

Some of this further material will be covered in Al 2.

311

Some further examples

o
e Deciding
e Detecting
e Deciding whether ta
e Deciding whether a

o] extracting interesting but hidden knowledge from exgtiarge
databases. For example, databases contaimning or

e Deciding whether

o) (See Pomerleau, 1989, in which a car is driven for 90
miles at 70 miles per hour, on a public road with other carseame but with
no assistance from humans.)

312

This is very similar to curve fitting

This process is in fact very similar to

Think of the process as follows:

e Nature picks am’ € H but doesn’t reveal it to us.

e Nature then shows us a training sequenadere eack:; is labelled as/(x;)+
¢, wheree, I1s noise of some kind.

Our job is to try to infer what!' is $

This is easy to visualise in one dimensiors

313

Curve fitting

= If H 1s the set of all polynomials of degreédhen nature might pick

1 . 3. 1
W(x) =2 — 222+ 91 — =
(z) 3 2 - 2
/
0.5} /
0.4+ /
0.3 T N /
0.2 / ~ /
0.1 /
/ |
0.5 1 1.5 2 2.5 3
/

The line is dashed to emphasise the fact that

314

Curve fitting

We can now use’ to obtain a training sequeneen the manner suggested..

/
0.5/ o
0.3 TV ~ /
0.2 ./° ™ v./
0.1 ./ .
/ ‘
0.5 1 1.5 2 2:5 3
/
Here we have,
s' = ((x1,91), (T2, 92), - -+ (T, Ym))

where each:; andy, is a real number.

315

Curve fitting

We’'ll use a L that operates in a reasonable-looking way: it
picks an/, € H minimising the following quantity,

b= Z(h@) —yi)°

In other words

m

h = L(s) = argmin Z(h(!IJ,ﬁ) — i)’

heH i1
Why is this sensible?

1. Each term in the sum isif /.(x;) is Y.

2. Each term as the difference betweeén.;) andy, increases.
3. We add the terms for all examples.

316

Curve fitting

If we pick /» using this method then we get:

The chosen is close to the targét, even though it was chosen

It is not quite identical to the target concepit.

However if we were given a new point and asked to guess the valuex’) then
guessing:(x’) might be expected to do quite well.

317

Curve fitting

1 we don’t know H J What if the one we choose
doesn’t match? We can maker 7 ‘bigger’ by defining it as

H = {h : his apolynomial of degree at mos}

If we use the same learning algorithm then we get:

0.6
0.4

0.2}

-0.2¢

The result in this case is similar to the previous ohes again quite close to’,
but not quite identical.

318

Curve fitting

Repeating the process with,
H = {h : his apolynomial of degree at mos}

gives the following:

In effect, we have madeur 7 too ‘small’. It does not in fact contain any hypoth-
esis similar ta"'.

319

Curve fitting

So we have to makk huge, right? WRONG!!With
H = {h : his apolynomial of degree at magi}

we get:

0.8}

0.6/ a

BEWARE!IThis is known asverfitting

320

Curve fitting

An experiment to gain some further insigbsing

1 1 1 1 3 1
Wip) = —pl0 _ — 8 — 64 2.3 2.2 0.

() e il T +3:E % 2w -5
as the unknown underlying function.

We can look at hovihe degree of the polynomial the training algorithm can emtp
affects the generalisation ability of the resultihg

We use the same training algorithm, and we train using
H = {h : his a polynomial of degree at mos}

for values ofd ranging from1 to 30

321

Curve fitting

e Each time we obtain an of a given degree—call it ,—we assess its quality
100 X' and calculating

)
100

> (W(x) = ha(x)))?

1=1

1

d) — —
1(4) = 155

e As the values)(d) are found using inputs that are not necessarily included in
the training sequendeé

e To smooth out the effects of the random selection of exampeeszpeat this
process (0 times and average the valugs/).

322

Curve fitting

Here is the result:

Log of average q
30

257

207 .

15}

10}

5|

Clearly: we need to choose sensibly if we want to obtain

323

The perceptron

The example just given illustrates much of what we want to ¢towever in
practice we deal with

The simplest form of hypothesis used is the | also known as
the 1 Here

T
h(w:x) =0 (w() + g w;x;) = 0 (W + w11 + WoTs + - - - + Wy,
i=1

So: we have a modified by the o

The perceptron’s influence continues to be felt in the reardtongoing develop-
ment of

324

The perceptron activation function |

There are three standard forms for the activation function:

1. . for we often use
o(z) =z
2.) for we often use

(> B Cl If 2 >0
O\ = (5 otherwise.

3. cfor we often use
1
PrixisinCy) = — .
xisinCy) = o(z) = 1o
The IS Important but the algorithms involved are somewhat ciifé

to those we’ll be seeing. We won'’t consider it further.

The plays a major role in what follows.

325

The sigmoid/logistic function

The logistic function o(z) = L

TFexp(s)

091
0.8}
0.7}
061
2 0.5}
04r
031
0.2}

0.1r

-10

10

Logistic o(z) applied to the output of a linear function

<SS
SSSESSS

e
it i
S 0
= 0.6
2 04
S
I
NN
A
0 LS N
w0 ;tw%ggég%l 10
0 305959599:% 4 “‘

326

Gradient descent

A method for works as follows. Assume we're dealing
with a and usingr(z) = =.

We define a measure efror for a given collection of weights. For example
B(w) =Y (y; — h(w:x;))?
=1
Modifying our notation slightly so that
XT:<1 Ty To -+ Ty)

wl = (Wy Wy Wy -+ Wy)

lets us write

m

E(w) = Z(yz - WTXz>2

1=1

327

Gradient descent

We want to E(w).
One way to approach this is to start with a randemand update it as follows:
OE(w)
Wit = Wiy — 1)
ow w

where

OE(w) (aE<w> OE(w) 9B(w))T
OwW o Jwy w1 Owy,

andy is some small positive number.
The vector
OE(w)
ow
tells us the Fifw).

328

Gradient descent

With .
E(w) = Z(% - WTXJQ
i=1
we have
OE(w) B 0 - To \2
aw] — aw] (;(% — W X7>)

wherex(IS the jth element ofx;.

329

Gradient descent

The method therefore gives the algorithm

Wil = Wi+ 21 Z (yi — Wi %) x;
i—1

Some things to note:

e In this case”(w) is and has a and
so this works well.
o In some form is a very common approach to this kind of
problem.
e \We can perform a similar calculation far and for
F(w).

e Such calculations lead t®

330

Perceptrons aren’t very powerful: the parity problem

There are many problems a perceptron can’t solve.

Network output

© o o o
N o o »
1 1 1 1

[N
1 -

We need a network that computes

331

The multilayer perceptron

Each In the network is itself a perceptron:

Z(]:l

“n

o w; connect nodes together.

e ¢, Is the weighted sum cx for node;.
e 0 Isthe

e The ISz, = ola,).

332

The multilayer perceptron

We’'ll continue to use the notation

T
z' =(1 20 29 -+ 2z)

T
w = (wy wy wy -+ wy)

So that
n n
Ww;z; = Wy + E W; z;
i=0 i=1
—wlz

333

The multilayer perceptron

In the general case we havea

Feature vectox Nodei

Outputy = h(w;x)

IS a perceptron. IS assumed.

w,_,; connects nodeto nodej. w, for node; is denotedu,_. ;.

334

Backpropagation

As usual we have:

e Instancesc’ = (1y,....1,).

e A training sequence — ((xy,v1), ..., (X, Um))-

We also define a measure of training error
E(w) = measure of the error of the network sn
wherew is the vector of

Our aim is to find a set of weights that F(w) using

335

Backpropagation: the general case

The IS therefore to calculate
OE(w)
ow
To do that we need to calculate the individual quantities
OE(w)
Ow;_,
for Wi ;

Often F/(w) is the sum of separate components, one for each example in

m

E(w)=) E,w)

p=1

iIn which case B
OE(W) <= O0E,(w)

Oow Oow

p=1
We can therefore consider examples individually.

336

Backpropagation: the general case

Place example at the input and calculate; and -, for all nodesincluding the
outputy. This isforward propagation

We have
OE,(w) OE,(w) Oa;

8lej 8@(7 8ij

wherea; = >, wi ;2.

Here the sum is ovetll the nodes connected to nogeAs

8@7- 3 Z
B Wg—jzk | = Zi
aij awH,j .

we can write -
5ij
where we've defined
5 OFE,(w)
j =

aCL]‘

337

Backpropagation: the general case

So we now need to calculate the valuesdor.

Whenj is the e—that is, the one producing the output- /.(w; x,,) of
the network—this Is easy as — y and

5; = OE,(w)

| da,
N aEp(“’) Yy
-y O
- aEp(“’)
=5y

o'(a;)

using the fact thay = o(a;).

338

Backpropagation: the general case

for a givenl as the error is generally
just a measure of the distance betweeand the label in the training sequence.

when
Ey(w) = (y —y,)°

OE,(W)
2 Y — 1Yy

we have

2(h(w; Xp) — yp)

339

Backpropagation: the general case

Whenj is we need something different:

k1

A,
o

ks

N

We're interested In

Altering «; can affect Bi, ko, . kg
E,(w).

340

Backpropagation: the general case

Cbkl

=
L

We have
OE,(w) OE,(w)Oay, Oay,
5,' — P f— p ' — 5_‘
' ke{ky,ka,....kq} ' ke{ky,ko,....kq} '
wherel, k. ..., k, are the nodes to which nodesends a connection.

341

Backpropagation: the general case

k1
akl E
U

ks

o

Because we know how to compute we can
computing furthep values.
We will 5,

Hence the ternn

342

Backpropagation: the general case

CLkl

ffs]a]

day, 0 |
da; — Oa; (Z wf%0<af>> = w; 0 (a))

bi= Y, Gwiad'(a)=0'(a) Y Gwi

ke{ky.ko,....kq} ke{ky.ko,....kq}

and

343

Backpropagation: the general case

summaryto calculatea%’% for the pth pattern:

1. Forward propagation apply =, and calculate outputstcfor all the nodes in
the network

2. Backpropagation 1for theoutputnode

OE,(w) OE,(w)
(9157;%]- = 20; = z0'(a;) éy
wherey = h(w;x,).
3. Backpropagation 2For other nodes
OFE,(w)
@UIJ)HJ' — 27:0/(%) zk: 5k:wj%k:

where the), were calculated at an earlier step.

344

Backpropagation: a specific example

Hidden nodes receive
inputs from all features

Output node receives

1 inputs from all hidden
nodes
T2
—— y = h(w;x)
Tn

For the outputo () = a. For the hidden nodes(a) = .

345

Backpropagation: a specific example

For the outputs (o) = a soo'(a) = 1.

For the hidden nodes: |

Tl exp(—a)

o(a)
SO
o'(a) = o(a) [l = o(a)]
We’ll continue using the same definition for the error

m

E(w) = Z(yp — h(w; X[}))Q

p=1

Ey(w) = (y, — h(w; Xp)>2

346

Backpropagation: a specific example

For the output the equation is
OE,(w)

awz‘—>output

OE,(w)

/
— Zz'éoutput: <i0 <aoutput>a—

wherey = h(w;x,). So as

OE,(w) o 0 y
=2(y — yp>
= 2[h(W; %) — yp]

OE,(w)

0wi—>output

= 22;(h(w;x,) — yp)

347

Backpropagation: a specific example

For the hidden nodeghe equation is

OE,(w
W) _ 20'(a))) drwjo
k

QWi

Howeverthere is only one outplso
OE,(w)

afLUi—{j N Zia(aj) [1 - O(CL]->] 50UtDUﬂUj—>output

and we know that
doutput = 2 [(W; X)) — y)
SO

OE,(w)
QWi

= 2x;2j(1 — z;) [[(W; X) — Y] Wjoutput

= 2z;0(a;) [1 — o(a;)] [M(W; %)) — yp] Wi output

348

Putting it all together

We can then use the derivatives in one of two basic ways:

1 (as described previously)

OE(W) <= 0E,(w)
ow ow
p=1
then
OFE(w)
Wir1l — W — 1)
ow |,
1lusing just one pattern at once
OF,(w
Wit1 = Wiy — 1) p()
ow w

selecting patterns

349

Example: the parity problem revisited

As an example we show the result of training a network with:

e TWO Inputs.

e One output.

e One hidden layer containingunits.
e 1) = (0.01.

e All other details as above.

The problem is the parity problem. There arenoisy examples.

The sequential approach is used, with(repetitions through the entire training
sequence.

350

Example: the parity problem revisited

Before training

2 2
15 15
1 £
05 g 05
0 * 0
05 -05
=) 0 1 2 =

351

After training

Network output

Example: the parity problem revisited

After training

Before training

1
T e H

05{ ** =
o

g 5

ol : E
z

352

Example: the parity problem revisited

Error during training
lO T T T T T T T T T

0 100 200 300 400 500 600 700 800 900 1000

353

