
Software Design
Models, Tools & Processes

Lecture 6: Transition Phase
Cecilia Mascolo

UML Component diagram

Component documentation

•  Your own classes should be documented
the same way library classes are.

•  Other people should be able to use your
class without reading the implementation.

•  Make your class a 'library class'!

Elements of documentation

Documentation for a class should include:
•  the class name
•  a comment describing the overall purpose

and characteristics of the class
•  a version number
•  the authors’ names
•  documentation for each constructor and

each method

Elements of documentation
The documentation for each constructor and

method should include:
•  the name of the method
•  the return type
•  the parameter names and types
•  a description of the purpose and function

of the method
•  a description of each parameter
•  a description of the value returned

Javadoc (should know)

•  Part of the Java standard
•  Each class and method can include

special keywords in a comment explaining
the interface to that class

•  During javadoc compilation, the keyword
information gets converted to a consistent
reference format using HTML

•  The documentation for standard Java
libraries is all generated using javadoc

javadoc example
Class comment:

/**
 * The Responder class represents a response
 * generator object. It is used to generate an
 * automatic response.
 *
 * @author Michael Kölling and David J. Barnes
 * @version 1.0 (1.Feb.2002)
 */

javadoc example

Method comment:

/**
 * Read a line of text from standard input (the text
 * terminal), and return it as a set of words.
 *
 * @param prompt A prompt to print to screen.
 * @return A set of Strings, where each String is
 * one of the words typed by the user
 */
public HashSet getInput(String prompt)
{
 ...
}

What is the goal of testing?
•  A) To define the end point of the software

development process as a managed
objective?

•  B) To prove that the programmers have
implemented the specification correctly?

•  C) To demonstrate that the resulting software
product meets defined quality standards?

•  D) To ensure that the software product won’t
fail, with results that might be damaging?

•  E) None of the above?

Testing and quality
•  Wikipedia

–  “Software testing is the process used to assess
the quality of computer software. It is an
empirical technical investigation conducted to
provide stakeholders with information about the
quality of the product or service under test, with
respect to the context in which it is intended to
operate.”

•  Edsger Dijkstra
–  “Program testing can be used to show the

presence of bugs, but never to show their
absence”

Remember design as learning?
•  Design is the process of learning about a

problem and describing a solution
–  at first with many gaps …
–  eventually in sufficient detail to build it.

•  We describe both the problem and the
solution in a series of design models.

•  Testing those models in various ways helps
us gather more knowledge.

•  Source code is simply the most detailed
model used in software development.

Learning through testing
A bug is a system’s way of telling you that you

don’t know something (P. Armour)

•  Testing searches for the presence of bugs.

•  Later: ‘debugging’ searches for the cause of
bugs, once testing has found that a bug
exists.
– The manifestation of a bug as observable

behaviour of the system may well occur at some
‘distance’ from its cause.

Testing principles
•  Look for violations of the interface contract.

– Aim is to find bugs, not to prove that unit works
as expected from its interface contract

– Use positive tests (expected to pass)
in the hope that they won’t pass

– Use negative tests (expected to fail)
in the hope that they don’t fail

•  Try to test boundaries of the contract
–  e.g. zero, one, overflow, search empty collection,

add to a full collection.

Unit testing priorities
•  Concentrate on modules most likely to contain

errors:
–  Particularly complex
–  Novel things you have not done before
–  Areas known to be error-prone

•  Some habits in unit test ordering
–  Start with small modules
–  Try to get input/output modules working early

•  Allows you to work with real test data
–  Add new ones gradually
–  You probably want to test critical modules early

•  For peace of mind, not because you expect errors

How to do it: testing strategies
•  Manual techniques

–  Software inspections and code walkthrough
•  Black box testing

–  Based on specified unit interfaces, not internal
structure, for test case design

•  White box testing
–  Based on knowing the internal structure

•  Stress testing
–  At what point will it fail?

•  ‘Random’ (unexpected) testing
–  Remember the goal: most errors in least time

Pioneers – Michael Fagan

•  Software Inspections
– 1976, IBM

•  Approach to design checking, including
planning, control and checkpoints.

•  Try to find errors in design and code by
systematic walkthrough

•  Work in teams including designer, coder,
tester and moderator.

Software inspections
•  A low-tech approach, relatively underused,

but more powerful than appreciated.
•  Read the source code in execution order,

acting out the role of the computer
– High-level (step) or low-level (step-into) views.

•  An expert tries to find common errors
– Array bound errors
– Off-by-one errors
– File I/O (and threaded network I/O)
– Default values
– Comparisons
– Reference versus copy

Inspection by yourself

•  Get away from the computer and ‘run’ a
program by hand

•  Note the current object state on paper
•  Try to find opportunities for incorrect

behaviour by creating incorrect state.
•  Tabulate values of fields, including invalid

combinations.
•  Identify the state changes that result from

each method call.

Black box testing
•  Based on interface specifications for whole

system or individual modules
•  Analyse input ranges to determine test cases
•  Boundary values

– Upper and lower bounds for each value
–  Invalid inputs outside each bound

•  Equivalence classes
–  Identify data ranges and combinations that are
‘known’ to be equivalent

– Ensure each equivalence class is sampled, but
not over-represented in test case data

White box testing
•  Design test cases by looking at internal

structure, including all possible bug sources
–  Test each independent path at least once
–  Prepare test case data to force paths
–  Focus on error-prone situations (e.g. empty list)
–  The goal is to find as many errors as you can

•  Control structure tests:
–  conditions – take each possible branch
–  data flow – confirm path through parameters
–  loops – executed zero, one, many times
–  exceptions – ensure that they occur

Stress testing
•  The aim of stress testing is to find out

at what point the system will fail
– You really do want to know what that point is.
– You have to keep going until the system fails.
–  If it hasn’t failed, you haven’t done stress testing.

•  Consider both volume and speed
•  Note difference from performance testing,

which aims to confirm that the system will
perform as specified.
– Used as a contractual demonstration
–  It’s not an efficient way of finding errors

Random testing
•  There are far more combinations of state and data

than can be tested exhaustively
•  Systematic test case design helps explore the

range of possible system behaviour
–  But remember the goal is to make the system fail, not

to identify the many ways it works correctly.
•  Experienced testers have an instinct for the kinds

of things that make a system fail
–  Usually by thinking about the system in ways the

programmer did not expect.
–  Sometimes, just doing things at random can be an

effective strategy for this.

Regression testing
•  ‘Regression’ is when you go backwards, or

things get worse
– Regression in software usually results from re-

introducing faults that were previously fixed.
– Each bug fix has around 20% probability of

reintroducing some other old problem.
– Refactoring can reintroduce design faults

•  So regression testing is designed to ensure
that a new version gives the same answers
as the old version did

Regression testing
•  Use a large database of test cases
•  Include all bugs reported by customers:

–  customers are much more upset by failure of an
already familiar feature than of a new one

–  reliability of software is relative to a set of inputs,
so better test inputs that users actually generate!

•  Regression testing is boring and unpopular
–  test automation tools reduce mundane repetition
–  perhaps biggest single advance in tools for

software engineering of packaged software

Test automation
•  Thorough testing (especially regression

testing) is time consuming and repetitive.
•  Write special classes to test interfaces of

other classes automatically
–  “test rig” or “test harness”
–  “test stubs” substitute for unwritten code, or

simulate real-time / complex data
•  Use standard tools to exercise external API,

commands, or UI (e.g. mouse replay)
–  In commercial contexts, often driven from build

and configuration tools.

Unit testing
•  Each unit of an application may be tested.

– Method, class, interface, package
•  Can (should) be done during development.

– Finding and fixing early lowers development costs
(e.g. programmer time).

– Build up a test suite of necessary harnesses,
stubs and data files

•  JUnit is often used to manage and run tests
–  you will use this to check your practical exercises
– www.junit.org

Other system tests

•  Security testing
– automated probes, or
– a favour from your Russian friends

•  Efficiency testing
–  test expected increase with data size
– use code profilers to find hot spots

•  Usability testing
– essential to product success
– will be covered in further detail in Part II

Testing efficiency: optimisation
•  Worst error is using wrong algorithm

–  e.g. lab graduate reduced 48 hours to 2 minutes
– Try different size data sets – does execution time

vary as N, 2N, N2, N3, N4, kN ...?

•  If this is the best algorithm, and you know it
scales in a way appropriate to your data, but
still goes too slow for some reason, ask:
– How often will this program / feature be run?
– Hardware gets faster quickly
– Optimisation may be a waste of your time

Testing efficiency: optimisation
•  When optimisation is required

– First: check out compiler optimisation flags
– For some parts of extreme applications

•  Use code profiler to find hotspots/bottlenecks
•  Most likely cause: overuse of some library/OS function

– When pushing hardware envelope
•  Cache or pre-calculate critical data
•  Recode a function in C or assembler
•  Use special fast math tricks & bit-twiddling
•  Unroll loops (but compilers should do this)

•  But if this is an interactive system …
– … how fast will the user be?

User interface efficiency
•  Usability testing can measure speed of use

– How long did Fred take to order a book from
Amazon?

– How many errors did he make?
•  But every observation is different.

– Fred might be faster (or slower) next time
–  Jane might be consistently faster

•  So we compare averages:
–  over a number of trials
–  over a range of people (experimental subjects)

•  Results usually have a normal distribution

Summary

•  We have described the main principles of
testing and many different approaches to
testing.

