
Software Design
Models, Tools & Processes
Lecture 4-5: Construction Phase

Cecilia Mascolo

Realization of Use Cases

•  What is the link between the use cases
and the classes in the class diagram(s)?

•  How do we make sure that what is
architected is compliant with our
requirement analysis?

•  Use Case Realization shows how the
classes realize the behaviour expressed in
the use cases.

Interaction diagrams
•  Interaction diagrams record, in detail, how objects

interact to perform a task.
•  Mainly used to show how a system realises a use case

(or a particular scenario in a use case).
•  2 types

–  Collaboration diagrams
–  Sequence diagrams

•  Show almost identical information (i.e. one can often be
generated from the other), so choice depends on aspect
of the interaction needed to focus on

Communication diagrams
•  Communication - the term given to the collection of

objects that interact to perform some task, together with
the links between them

•  Communication diagrams capture dynamic behaviour
(message-oriented)

•  Elements of basic communication diagrams
–  Objects
–  Links
–  Actors
–  Messages

Communication diagram with no
interaction

aMember	
 :	
 BookBorrower	

theLibraryMember	
 :	

LibraryMember	

theCopy	
 :	
 Copy	

theBook	
 :	
 Book	

Collaboration diagram with
interaction

aMember	
 :	
 BookBorrower	

theCopy	
 :	
 Copy	

theBook	
 :	
 Book	

theLibraryMember	
 :	

LibraryMember	

2	
 :borrow	

2.1	
 :borrowed	
 borrow(theCopy)	

1	
 :okToBorrow	

Example
communication diagram

Taken	
 from	
 [Booch	
 1999]	

Exercise

•  The use case diagram is the start of a dynamic model
for the library system; the class diagram is the start of a
static model for the library system - the next step is to
show how the static model realises the use cases in the
dynamic model

•  Create communication diagrams to illustrate how
classes in the model support functionality specified in
the use cases

•  Start by selecting a simple use case &, using UML
syntax, create a communication diagram to realise it

Sequence diagrams
•  Sequence diagrams show object interactions arranged in

a time sequence

•  Sequence diagrams therefore capture dynamic
behaviour (time-oriented)

•  Elements of basic sequence diagrams
–  Objects
–  Links
–  Actors
–  Messages
–  Object life-line
–  Focus of control

Sequence diagram
with interaction

aMember	
 :	
 	

BookBorrower	

theLibraryMember	
 :	

LibraryMember	

theCopy	
 :	
 Copy	
 theBook	
 :	
 Book	

1:	
 okToBorrow	

2:	
 borrow	

2.1:	
 borrowed	

borrow(theCopy)	

Example sequence diagram

Taken	
 from	
 [Booch	
 1999]	

Exercise

•  Take the collaboration diagram you have created for
part of your library system

•  Turn this diagram into a sequence diagram

*** THEN:

•  In turn, take each use case for your library system &
create either a communication diagram or sequence
diagram that realises the use case (aim to practice both
techniques evenly)

Some notation
Interaction
type

Symbol Meaning

Synchronous
or call

The “normal” procedural situation. Sender
relinquishes control until receiver has
handled the message

Return Return from an earlier message (optional).
Unblocks a synchronous send

Flat Message doesn’t expect a reply - control
passes from sender to receiver, so only the
receiver will send the next message

Asynchronous Message doesn’t expect a reply - but
sender stays active & may send further
messages

Loose coupling
•  Coupling: links between parts of a program.
•  If two classes depend closely on details of each

other, they are tightly coupled.
•  We aim for loose coupling.

–  keep parts of design clear & independent
–  may take several design iterations

•  Loose coupling makes it possible to:
–  achieve reusability, modifiability
–  understand one class without reading others;
–  change one class without affecting others.

•  Thus improves maintainability.

Responsibility-driven design
•  Which class should I add a new method to?

– Each class should be responsible for
manipulating its own data.

– The class that owns the data should be
responsible for processing it.

•  Leads to low coupling & “client-server
contracts”
– Consider every object as a server
–  Improves reliability, partitioning, graceful

degradation

Interfaces as specifications

•  Define method signatures for classes to
interact
–  Include parameter and return types.
– Strong separation of required functionality

from the code that implements it (information
hiding).

•  Clients interact independently of the
implementation.
– But clients can choose from alternative

implementations.

Causes of error situations
•  Incorrect implementation.

– Does not meet the specification.
•  Inappropriate object request.

– E.g., invalid index.
•  Inconsistent or inappropriate object state.

– E.g. arising through class extension.
•  Not always programmer error

– Errors often arise from the environment
(incorrect URL entered, network interruption).

– File processing often error-prone
(missing files, lack of appropriate permissions).

Defensive programming
•  Client-server interaction.

–  Should a server assume that clients are
well-behaved?

–  Or should it assume that clients are
potentially hostile?

•  Significant differences in implementation required.
•  Issues to be addressed

–  How much checking by a server on method calls?
–  How to report errors?
–  How can a client anticipate failure?
–  How should a client deal with failure?

Argument values
•  Arguments represent a major ‘vulnerability’ for a

server object.
–  Constructor arguments initialize state.
–  Method arguments often control behavior.

•  Argument checking is one defensive measure.
•  How to report illegal arguments?

–  To the user? Is there a human user?
Can the user do anything to solve the problem?
If not solvable, what should you suggest they do?

–  To the client object:
return a diagnostic value, or throw an exception.

Example of diagnostic return

public boolean removeDetails(String key)
{
 if(keyInUse(key)) {
 ContactDetails details =
 (ContactDetails) book.get(key);
 book.remove(details.getName());
 book.remove(details.getPhone());
 numberOfEntries--;
 return true;
 }
 else {
 return false;
 }
}

Diagnostic OK

Diagnostic not OK

Client response to diagnostic

•  Test the return value.
– Attempt recovery on error.
– Avoid program failure.

•  Ignore the return value.
– Cannot be prevented.
– Likely to lead to program failure.

•  Exceptions are preferable.

Error response and recovery

•  Clients should take note of error
notifications.
– Check return values.
– Don’t ‘ignore’ exceptions.

•  Include code to attempt recovery.
– Will often require a loop.

Error avoidance

•  Clients can often use server query
methods to avoid errors.
– More robust clients mean servers can be

more trusting.
– Unchecked exceptions can be used.
– Simplifies client logic.

•  May increase client-server coupling.

Construction inside Objects

UML Activity
diagram

UML Activity diagram

•  Like flow charts
–  Activity as action states

•  Flow of control
–  transitions
–  branch points
–  concurrency (fork & join)

•  Illustrate flow of control
–  high level - e.g. workflow
–  low level - e.g. lines of

code

Pioneers – Edsger Dijkstra
•  Structured Programming

–  1968, Eindhoven
•  Why are programmers so bad at understanding

dynamic processes and concurrency?
–  (ALGOL then – but still hard in Java today!)

•  Observed that “go to” made things worse
–  Hard to describe what state a process has reached,

when you don’t know which process is being
executed.

•  Define process as nested set of execution blocks,
with fixed entry and exit points

Top-down design & stepwise refinement

dispatch ambulance

identify region take 999 call send ambulance

allocate vehicle estimate arrival note patient
condition

radio crew

record address
find vehicle

in region

assign vehicle
to call

Bottom-up construction

•  Why?
– Start with what you understand
– Build complex structures from well-understood

parts
– Deal with concrete cases in order to

understand abstractions
•  Study of expert programmers shows that

real software design work combines top-
down and bottom up.

Modularity at code level
•  Is this piece of code (class, method, function,

procedure … “routine” in McConnell) needed?
•  Define what it will do

–  What information will it hide?
–  Inputs
–  Outputs (including side effects)
–  How will it handle errors?

•  Give it a good name
•  How will you test it?
•  Think about efficiency and algorithms
•  Write as comments, then fill in actual code

Modularity in non-OO languages

•  Separate source files in C
–  Inputs, outputs, types and interface functions

defined by declarations in “header files”.
– Private variables and implementation details

defined in the “source file”
•  Modules in ML, Perl, Fortran, …

– Export publicly visible interface details.
– Keep implementation local whenever

possible, in interest of information hiding,
encapsulation, low coupling.

Source code as a design model
•  Objectives:

– Accurately express logical structure of the code
– Consistently express the logical structure
–  Improve readability

•  Good visual layout shows program structure
– Mostly based on white space and alignment
– The compiler ignores white space
– Alignment is the single most obvious feature to

human readers.
•  Like good typography in interaction design:

but the “users” are other programmers!

Code as a structured model
public int Function_name (int parameter1, int parameter2)

// Function which doesn’t do anything, beyond showing the fact
// that different parts of the function can be distinguished.

 int local_data_A;
 int local_data_B;

 // Initialisation section
 local_data_A = parameter1 + parameter2;
 local_data_B = parameter1 - parameter2;
 local_data_B++;

 // Processing
 while (local_data_A < 40) {
 if ((local_data_B * 2) > local_data_A) then {
 local_data_B = local_data_B – 1;
 } else {
 local_data_B = local_data_B + 1;
 }
 local_data_C = local_data_C + 1;
 }
 return local_data_C;
}

Expressing local control structure
while (local_data_C < 40) {
 form_initial_estimate(local_data_C);
 record_marker(local_data_B – 1);
 refine_estimate(local_data_A);
 local_data_C = local_data_C + 1;
} // end while

if ((local_data_B * 2) > local_data_A) then {
 // drop estimate
 local_data_B = local_data_B – 1;
} else {
 // raise estimate
 local_data_B = local_data_B + 1;
} // end if

Expressing structure within a line

•  Whitespacealwayshelpshumanreaders
–  newtotal=oldtotal+increment/missamount-1;
–  newtotal = oldtotal + increment / missamount - 1;

•  The compiler doesn’t care – take care!
–  x = 1 * y+2 * z;

•  Be conservative when nesting parentheses
–  while ((! error) && readInput())

•  Continuation lines – exploit alignment
–  if ((aLongVariableName && anotherLongOne) |

 (someOtherCondition()))
 {
 …
 }

Naming variables: Form
•  Priority: full and accurate (not just short)

–  Abbreviate for pronunciation (remove vowels)
•  e.g. CmptrScnce (leave first and last letters)

•  Parts of names reflect conventional functions
–  Role in program (e.g. “count”)
–  Type of operations (e.g. “window” or “pointer”)
–  Hungarian naming (not really recommended):

•  e.g. pscrMenu, ichMin
•  Even individual variable names can exploit

typographic structure for clarity
–  xPageStartPosition
–  x_page_start_position

Naming variables: Content
•  Data names describe domain, not computer

–  Describe what, not just how
–  CustomerName better than PrimaryIndex

•  Booleans should have obvious truth values
–  ErrorFound better than Status

•  Indicate which variables are related
–  CustName, CustAddress, CustPhone

•  Identify globals, types & constants
–  C conventions: g_wholeApplet, T_mousePos

•  Even temporary variables have meaning
–  Index, not Foo

Structural roles of variables
•  Classification of what variables do in a routine

–  Don’t confuse with data types (e.g. int, char, float)
•  Almost all variables in simple programs do one of:

–  fixed value
–  stepper
–  most-recent holder
–  most-wanted holder
–  gatherer
–  transformation
–  one-way flag
–  follower
–  temporary
–  organizer

•  Most common (70 % of variables) are fixed value, stepper or
most-recent holder.

 Fixed value
•  Value is never changed after initialization
•  Example: input radius of a circle, then print area

– variable r is a fixed value, gets its value
once, never changes after that.

•  Useful to declare “final” in Java (see variable PI).
public class AreaOfCircle {

 public static void main(String[] args) {

 final float PI = 3.14F;

 float r;

 System.out.print("Enter circle radius: ");

 r = UserInputReader.readFloat();

 System.out.println(“Circle area is " + PI * r * r);

 }

}

Stepper
•  Goes through a succession of values in some

systematic way
–  E.g. counting items, moving through array index

•  Example: loop where multiplier is used as a stepper.
–  outputs multiplication table, stepper goes through values

from one to ten.

public class MultiplicationTable {

 public static void main(String[] args) {
 int multiplier;
 for (multiplier = 1; multiplier <= 10; multiplier++)
 System.out.println(multiplier + " * 3 = "
 + multiplier * 3);
 }

}

 Most-recent holder
•  Most recent member of a group, or simply latest input

value
•  Example: ask the user for input until valid.

–  Variable s is a most-recent holder since it holds the latest
input value.

public class AreaOfSquare {

 public static void main(String[] args) {
 float s = 0f;
 while (s <= 0) {
 System.out.print("Enter side of square: ");
 s = UserInputReader.readFloat();
 }
 System.out.println(“Area of square is " + s * s);
 }

}

 Most-wanted holder
•  The "best" (biggest, smallest, closest) of values seen.
•  Example: find smallest of ten integers.

–  Variable smallest is a most-wanted holder since it is given
the most recent value if it is smaller than the smallest one so
far.

–  (i is a stepper and number is a most-recent holder.)
public class SearchSmallest {
 public static void main(String[] args) {
 int i, smallest, number;
 System.out.print("Enter the 1. number: ");
 smallest = UserInputReader.readInt();

 for (i = 2; i <= 10; i++) {
 System.out.print("Enter the " + i + ". number: ");
 number = UserInputReader.readInt();
 if (number < smallest) smallest = number;
 }

 System.out.println("The smallest was " + smallest);
 }

}

Verifying variables by role
•  Many student program errors result from

using the same variable in more than one
role.
–  Identify role of each variable during design

•  There are opportunities to check correct
operation according to constraints on role
– Check stepper within range
– Check most-wanted meets selection criterion
– De-allocate temporary value
– Use compiler to guarantee final fixed value

•  Either do runtime safety checks (noting
efficiency tradeoff), or use language
features.

Type-checking as modeling tool

•  Refine types to reflect meaning, not just to
satisfy the compiler (C++ example below)

•  Valid (to compiler), but incorrect, code:
–  float totalHeight, myHeight, yourHeight;
–  float totalWeight, myWeight, yourWeight;
–  totalHeight = myHeight + yourHeight + myWeight;

•  Type-safe version:
–  type t_height, t_weight: float;
–  t_height totalHeight, myHeight, yourHeight;
–  t_weight totalWeight, myWeight, yourWeight;
–  totalHeight = myHeight + yourHeight + myWeight;

Compile error!

Construction of Data Lifecycles

UML State machine diagram

•  Object lifecycle
–  data as state machine

•  Harel statecharts
–  nested states
–  concurrent substates

•  Explicit initial/final
–  valuable in C++

•  Note inversion of
activity diagram

What are state machine diagrams?

•  Also known as statecharts or state diagrams

•  Show how an object’s reaction to a message depends
on its state

•  Enables us to model an object’s decision about what to
do when it receives a message

•  Used to record dependencies between the state of an
object & its reaction to messages - objects of the same
class may therefore receive the same message, but
respond differently

Mostly	
 used	
 to	
 model	
 the	
 	

dynamic	
 behaviour	
 of	
 classes	

UML State Machine diagram

Elements of state machine
diagrams

•  States
•  Events
•  Transitions
•  Start & stop markers

onLoan	
 onShelf	

return()	

borrow()	

:copy	

A	
 class	
 has	
 only	
 1	
 	

state	
 machine	

lost()	

Thinking about states & transitions
•  State transition matrix - a matrix with all possible states

labelled on rows & all possible events labelled on columns;
cells identify next states; responses or can be catalogued in a
separate column

STATE	

EVENT	

OUTPUT	

idle	
 dial	
 tone	

busy	

ringing	

connected	

on	
 	

hook	

off	
 	

hook	

dial	

busy	

dial	

idle	

called	

party	

off	

hook	

dial	

tone	
 idle	

busy	

idle	

ringing	

con-­‐	

nected	

dial	

tone	

quiet	

busy	

tone	

con-­‐	

nected	

rin-­‐	

ging	

•  How many distinct states does a CD player have?

•  What events occur to transition between each of these
states? Remember to consider self transitions

•  Sketch a simple statediagram for this CD player
•  Add markers for initial & final states

Exercise

Actions & events
•  Event - something done to an object (e.g. being sent a

message) - object is the recipient
•  Action - something the object does (e.g.

sends a message) - object is the instigator

onLoan	
 onShelf	

return()/book.returned(self)	

borrow()/book.borrowed(self)	

onLoan	
 onShelf	

return()/book.returned(self)	

borrow()/book.borrowed(self)	
 entry/book.borrowed(self)	
 entry/book.returned(self)	

onLoan	
 onShelf	

return()/book.returned(self)	

borrow()/book.borrowed(self)	
 exit/book.returned(self)	
 exit/book.borrowed(self)	

event	
 ac,on	

Guards

•  The same event in the same state may or
may not cause a change of state,
depending on the object’s attributes

•  Conditional notation is used if the exact
value of an object’s attributes determines
change of state

not	
 borrowable	
 borrowable	

returned()	

borrowed()[last	
 copy]	

returned()	

borrowed()[not	
 last	
 copy]	

:book	

•  Take the simple state diagram for your CD player

•  Add useful guard conditions to some of the transitions

•  List some entry & exit actions for at least one of the
states

Exercise

Substates
•  States themselves can also contain internal behaviour -

this can be represented as a statediagram

•  Substate is a state nested inside another state

•  Sequential composite/compound state - state containing
a single state machine (disjoint)

•  Concurrent composite/compound state - state containing
2+ state machines that execute concurrently (orthogonal)

A	
 simple	
 state	
 is	
 one	
 that	
 has	
 no	
 substructure	

Sequential substates

Idle	
 	

Maintenance	
 	

ValidaTng	
 	
 	

SelecTng	
 	
 	
 Processing	
 	
 	

maintain	

cancel	

cardInserted	

[conTnue]	

[not	
 conTnue]	

AcTve	
 	

entry	
 /	
 readCard	

exit	
 /	
 ejectCard	

Example	
 ©	
 [Booch	
 et	
 al.	
 1999]	
 p.299	

PrinTng	
 	
 	

Maintaining valid system state
•  Pioneers (e.g. Turing) talked of proving

program correctness using mathematics
•  In practice, the best we can do is confirm that

the state of the system is consistent
– State of an object valid before and after operation
– Parameters and local variables valid at start and

end of routine
– Guard values define state on entering & leaving

control blocks (loops and conditionals)
–  Invariants define conditions to be maintained

throughout operations, routines, loops.

Pioneers – Tony Hoare

•  Assertions and proof
– 1969, Queen’s University Belfast

•  Program element behaviour can be
defined
– by a post-condition that will result …
– … given a known pre-condition.

•  If prior and next states accurately defined:
–  Individual elements can be composed
– Program correctness is potentially provable

Formal models: Z notation

•  Definitions of the BirthdayBook state space:
–  known is a set of NAMEs
–  birthday is a partial map from NAMEs to DATEs

•  Invariants:
–  known must be the domain of birthday

Formal models: Z notation

•  An operation to change state
–  AddBirthday modifies the state of BirthdayBook
–  Inputs are a new name and date
–  Precondition is that name must not be previously known
–  Result of the operation, birthday’ is defined to be a new and

enlarged domain of the birthday map function

Formal models: Z notation

•  An operation to inspect state of BirthdayBook
–  This schema does not change the state of BirthdayBook
–  It has an output value (a set of people to send cards to)
–  The output set is defined to be those people whose birthday

is equal to the input value today.

Advantages of formal models
•  Requirements can be analysed at a fine level

of detail.
•  They are declarative (specify what the code

should do, not how), so can be used to check
specifications from an alternative perspective.

•  As a mathematical notation, offer the promise
of tools to do automated checking, or even
proofs of correctness (“verification”).

•  They have been applied in some real
development projects.

Disadvantages of formal models
•  Notations that have lots of Greek letters and other weird

symbols look scary to non-specialists.
–  Not a good choice for communicating with clients, users, rank-and-

file programmers and testers.
•  Level of detail (and thinking effort) is similar to that of code, so

managers get impatient.
–  If we are working so hard,

why aren’t we just writing the code?
•  Tools are available, but not hugely popular.

–  Applications so far in research / defence / safety critical
•  Pragmatic compromise from UML developers

–  “Object Constraint Language” (OCL).
–  Formal specification of some aspects of the design, so that

preconditions, invariants etc. can be added to models.

Language support for assertions
•  Eiffel (pioneering OO language)

–  supported pre- and post-conditions on every method.
•  C++ and Java support “assert” keyword

–  Programmer defines a statement that must evaluate
to boolean true value at runtime.

–  If assertion evaluates false, exception is raised
•  Some languages have debug-only versions,

turned off when system considered correct.
–  Dubious trade-off of efficiency for safety.

•  Variable roles could provide rigorous basis for fine-
granularity assertions in future.

Summary

•  We have illustrated how dynamics of
objects can be designed through
sequence and collaboration diagrams.

•  We have used activity and state machine
diagrams to describe object behaviour.

•  We have described technique to improve
code and state readability and errors
avoidance.

