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Realization of Use Cases 

•  What is the link between the use cases 
and the classes in the class diagram(s)? 

•  How do we make sure that what is 
architected is compliant with our 
requirement analysis? 

•  Use Case Realization shows how the 
classes realize the behaviour expressed in 
the use cases. 



Interaction diagrams 
•  Interaction diagrams record, in detail, how objects 

interact to perform a task. 
•  Mainly used to show how a system realises a use case 

(or a particular scenario in a use case). 
•  2 types  

–  Collaboration diagrams 
–  Sequence diagrams 

•  Show almost identical information (i.e. one can often be 
generated from the other), so choice depends on aspect 
of the interaction needed to focus on 



Communication diagrams 
•  Communication - the term given to the collection of 

objects that interact to perform some task, together with 
the links between them 

•  Communication diagrams capture dynamic behaviour 
(message-oriented) 

•  Elements of basic communication diagrams 
–  Objects 
–  Links 
–  Actors 
–  Messages 



Communication diagram with no 
interaction 

aMember	
  :	
  BookBorrower	
  

theLibraryMember	
  :	
  
LibraryMember	
  

theCopy	
  :	
  Copy	
  

theBook	
  :	
  Book	
  



Collaboration diagram with 
interaction 

aMember	
  :	
  BookBorrower	
  

theCopy	
  :	
  Copy	
  

theBook	
  :	
  Book	
  

theLibraryMember	
  :	
  
LibraryMember	
  

2	
  :borrow	
  

2.1	
  :borrowed	
  borrow(theCopy)	
  

1	
  :okToBorrow	
  



Example  
communication diagram 

Taken	
  from	
  [Booch	
  1999]	
  



Exercise  

•  The use case diagram is the start of a dynamic model 
for the library system; the class diagram is the start of a 
static model for the library system - the next step is to 
show how the static model realises the use cases in the 
dynamic model 

•  Create communication diagrams to illustrate how 
classes in the model support functionality specified in 
the use cases 

•  Start by selecting a simple use case &, using UML 
syntax, create a communication diagram to realise it 

 



Sequence diagrams 
•  Sequence diagrams show object interactions arranged in 

a time sequence 

•  Sequence diagrams therefore capture dynamic 
behaviour (time-oriented) 

•  Elements of basic sequence diagrams 
–  Objects 
–  Links 
–  Actors 
–  Messages 
–  Object life-line 
–  Focus of control 



Sequence diagram  
with interaction 

aMember	
  :	
  	
  
BookBorrower	
  

theLibraryMember	
  :	
  
LibraryMember	
  

theCopy	
  :	
  Copy	
   theBook	
  :	
  Book	
  

1:	
  okToBorrow	
  

2:	
  borrow	
  
2.1:	
  borrowed	
  

borrow(theCopy)	
  



Example sequence diagram 

Taken	
  from	
  [Booch	
  1999]	
  



Exercise  

•  Take the collaboration diagram you have created for 
part of your library system 

•  Turn this diagram into a sequence diagram 

*** THEN: 

•  In turn, take each use case for your library system & 
create either a communication diagram or sequence 
diagram that realises the use case (aim to practice both 
techniques evenly) 



Some notation 
Interaction 
type 

Symbol Meaning 

Synchronous 
or call 

The “normal” procedural situation. Sender 
relinquishes control until receiver has 
handled the message 

Return Return from an earlier message (optional). 
Unblocks a synchronous send 

Flat Message doesn’t expect a reply - control 
passes from sender to receiver, so only the 
receiver will send the next message 

Asynchronous Message doesn’t expect a reply - but 
sender stays active & may send further 
messages 



Loose coupling 
•  Coupling: links between parts of a program. 
•  If two classes depend closely on details of each 

other, they are tightly coupled. 
•  We aim for loose coupling. 

–  keep parts of design clear & independent 
–  may take several design iterations 

•  Loose coupling makes it possible to: 
–  achieve reusability, modifiability 
–  understand one class without reading others; 
–  change one class without affecting  others. 

•  Thus improves maintainability. 



Responsibility-driven design 
•  Which class should I add a new method to? 

– Each class should be responsible for 
manipulating its own data. 

– The class that owns the data should be 
responsible for processing it. 

•  Leads to low coupling & “client-server 
contracts” 
– Consider every object as a server 
–  Improves reliability, partitioning, graceful 

degradation 



Interfaces as specifications 

•  Define method signatures for classes to 
interact 
–  Include parameter and return types. 
– Strong separation of required functionality 

from the code that implements it (information 
hiding). 

•  Clients interact independently of the 
implementation. 
– But clients can choose from alternative 

implementations. 



Causes of error situations 
•  Incorrect implementation. 

– Does not meet the specification. 
•  Inappropriate object request. 

– E.g., invalid index. 
•  Inconsistent or inappropriate object state. 

– E.g. arising through class extension. 
•  Not always programmer error 

– Errors often arise from the environment 
(incorrect URL entered, network interruption). 

– File processing often error-prone  
(missing files, lack of appropriate permissions). 



Defensive programming 
•  Client-server interaction. 

–  Should a server assume that clients are  
well-behaved? 

–  Or should it assume that clients are  
potentially hostile? 

•  Significant differences in implementation required. 
•  Issues to be addressed 

–  How much checking by a server on method calls? 
–  How to report errors? 
–  How can a client anticipate failure? 
–  How should a client deal with failure? 



Argument values 
•  Arguments represent a major ‘vulnerability’ for a 

server object. 
–  Constructor arguments initialize state. 
–  Method arguments often control behavior. 

•  Argument checking is one defensive measure. 
•  How to report illegal arguments? 

–  To the user? Is there a human user?  
Can the user do anything to solve the problem?  
If not solvable, what should you suggest they do? 

–  To the client object: 
return a diagnostic value, or throw an exception. 



Example of diagnostic return 

public boolean removeDetails(String key) 
{ 
    if(keyInUse(key)) { 
        ContactDetails details = 
                       (ContactDetails) book.get(key); 
        book.remove(details.getName()); 
        book.remove(details.getPhone()); 
        numberOfEntries--; 
        return true; 
    } 
    else { 
        return false; 
    } 
}  

Diagnostic OK 

Diagnostic not OK 



Client response to diagnostic 

•  Test the return value. 
– Attempt recovery on error. 
– Avoid program failure. 

•  Ignore the return value. 
– Cannot be prevented. 
– Likely to lead to program failure. 

•  Exceptions are preferable. 



Error response and recovery 

•  Clients should take note of error 
notifications. 
– Check return values. 
– Don’t ‘ignore’ exceptions. 

•  Include code to attempt recovery. 
– Will often require a loop. 



Error avoidance 

•  Clients can often use server query 
methods to avoid errors. 
– More robust clients mean servers can be 

more trusting. 
– Unchecked exceptions can be used. 
– Simplifies client logic. 

•  May increase client-server coupling. 



Construction inside Objects 



UML Activity 
diagram 



UML Activity diagram 

•  Like flow charts 
–  Activity as action states 

•  Flow of control 
–  transitions 
–  branch points 
–  concurrency (fork & join) 

•  Illustrate flow of control 
–  high level - e.g. workflow 
–  low level - e.g. lines of 

code 



Pioneers – Edsger Dijkstra 
•  Structured Programming 

–  1968, Eindhoven 
•  Why are programmers so bad at understanding 

dynamic processes and concurrency? 
–  (ALGOL then – but still hard in Java today!) 

•  Observed that “go to” made things worse 
–  Hard to describe what state a process has reached, 

when you don’t know which process is being 
executed. 

•  Define process as nested set of execution blocks, 
with fixed entry and exit points 



Top-down design & stepwise refinement 

dispatch ambulance 

identify region take 999 call send ambulance 

allocate vehicle estimate arrival note patient 
condition 

radio crew 

record address 
find vehicle 

in region 

assign vehicle 
to call 



Bottom-up construction 

•  Why? 
– Start with what you understand 
– Build complex structures from well-understood 

parts 
– Deal with concrete cases in order to 

understand abstractions 
•  Study of expert programmers shows that 

real software design work combines top-
down and bottom up. 



Modularity at code level 
•  Is this piece of code (class, method, function, 

procedure … “routine” in McConnell) needed? 
•  Define what it will do 

–  What information will it hide? 
–  Inputs 
–  Outputs (including side effects) 
–  How will it handle errors? 

•  Give it a good name 
•  How will you test it? 
•  Think about efficiency and algorithms 
•  Write as comments, then fill in actual code 



Modularity in non-OO languages 

•  Separate source files in C 
–  Inputs, outputs, types and interface functions 

defined by declarations in “header files”. 
– Private variables and implementation details 

defined in the “source file” 
•  Modules in ML, Perl, Fortran, … 

– Export publicly visible interface details. 
– Keep implementation local whenever 

possible, in interest of information hiding, 
encapsulation, low coupling. 



Source code as a design model 
•  Objectives: 

– Accurately express logical structure of the code 
– Consistently express the logical structure 
–  Improve readability 

•  Good visual layout shows program structure 
– Mostly based on white space and alignment 
– The compiler ignores white space 
– Alignment is the single most obvious feature to 

human readers. 
•  Like good typography in interaction design: 

but the “users” are other programmers! 



Code as a structured model 
public int Function_name (int parameter1, int parameter2) 
 
// Function which doesn’t do anything, beyond showing the fact 
// that different parts of the function can be distinguished. 
 
    int local_data_A; 
    int local_data_B; 
 
    // Initialisation section 
    local_data_A = parameter1 + parameter2; 
    local_data_B = parameter1 - parameter2; 
    local_data_B++; 
 
    // Processing 
    while (local_data_A < 40) { 
        if ( (local_data_B * 2) > local_data_A ) then { 
            local_data_B = local_data_B – 1; 
        } else { 
            local_data_B = local_data_B + 1; 
        } 
        local_data_C = local_data_C + 1; 
    } 
    return local_data_C; 
} 



Expressing local control structure 
while (local_data_C < 40) { 
    form_initial_estimate(local_data_C); 
    record_marker(local_data_B – 1); 
    refine_estimate(local_data_A); 
    local_data_C = local_data_C + 1; 
} // end while 
 
 
if ( (local_data_B * 2) > local_data_A ) then { 
    // drop estimate 
    local_data_B = local_data_B – 1; 
} else { 
    // raise estimate 
    local_data_B = local_data_B + 1; 
} // end if 
 



Expressing structure within a line 

•  Whitespacealwayshelpshumanreaders 
–  newtotal=oldtotal+increment/missamount-1; 
–  newtotal = oldtotal + increment / missamount - 1; 

•  The compiler doesn’t care – take care! 
–  x = 1  *  y+2  *  z; 

•  Be conservative when nesting parentheses 
–  while ( (! error) && readInput() )  

•  Continuation lines – exploit alignment 
–  if ( ( aLongVariableName && anotherLongOne ) | 

     ( someOtherCondition() ) ) 
   { 
    … 
   } 



Naming variables: Form 
•  Priority: full and accurate (not just short) 

–  Abbreviate for pronunciation (remove vowels) 
•  e.g. CmptrScnce (leave first and last letters) 

•  Parts of names reflect conventional functions 
–  Role in program (e.g. “count”) 
–  Type of operations (e.g. “window” or “pointer”) 
–  Hungarian naming (not really recommended):  

•  e.g. pscrMenu, ichMin 
•  Even individual variable names can exploit 

typographic structure for clarity 
–  xPageStartPosition 
–  x_page_start_position 



Naming variables: Content 
•  Data names describe domain, not computer 

–  Describe what, not just how 
–  CustomerName better than PrimaryIndex 

•  Booleans should have obvious truth values 
–  ErrorFound better than Status 

•  Indicate which variables are related 
–  CustName, CustAddress, CustPhone 

•  Identify globals, types & constants 
–  C conventions: g_wholeApplet, T_mousePos 

•  Even temporary variables have meaning 
–  Index, not Foo 



Structural roles of variables 
•  Classification of what variables do in a routine 

–  Don’t confuse with data types (e.g. int, char, float) 
•  Almost all variables in simple programs do one of: 

–  fixed value  
–  stepper  
–  most-recent holder  
–  most-wanted holder  
–  gatherer  
–  transformation  
–  one-way flag  
–  follower  
–  temporary  
–  organizer  

•  Most common (70 % of variables) are fixed value, stepper or 
most-recent holder. 



 Fixed value 
•  Value is never changed after initialization 
•  Example: input radius of a circle, then print area 

– variable r is a fixed value, gets its value 
once, never changes after that. 

•  Useful to declare “final” in Java (see variable PI). 
public class AreaOfCircle {  

 

 public static void main(String[] args) {  

  final float PI = 3.14F;  

  float r;  

  System.out.print("Enter circle radius: ");  

  r = UserInputReader.readFloat();  

  System.out.println(“Circle area is " + PI * r * r);  

 }  

} 



Stepper 
•  Goes through a succession of values in some 

systematic way 
–  E.g. counting items, moving through array index 

•  Example: loop where multiplier is used as a stepper. 
–  outputs multiplication table, stepper goes through values 

from one to ten.  

public class MultiplicationTable { 
 
 public static void main(String[] args) { 
  int multiplier; 
  for (multiplier = 1; multiplier <= 10; multiplier++) 
   System.out.println(multiplier + " * 3 = "  
    + multiplier * 3); 
 } 

} 



  Most-recent holder 
•  Most recent member of a group, or simply latest input 

value 
•  Example: ask the user for input until valid. 

–  Variable s is a most-recent holder since it holds the latest 
input value.  

public class AreaOfSquare { 
 
 public static void main(String[] args) { 
  float s = 0f; 
  while (s <= 0) { 
   System.out.print("Enter side of square: "); 
   s = UserInputReader.readFloat(); 
  } 
  System.out.println(“Area of square is " + s * s); 
 } 

} 



  Most-wanted holder 
•  The "best" (biggest, smallest, closest) of values seen. 
•  Example: find smallest of ten integers. 

–  Variable smallest is a most-wanted holder since it is given 
the most recent value if it is smaller than the smallest one so 
far.  

–  (i is a stepper and number is a most-recent holder.)  
public class SearchSmallest { 
 public static void main(String[] args) { 
  int i, smallest, number; 
  System.out.print("Enter the 1. number: "); 
  smallest = UserInputReader.readInt(); 

  for (i = 2; i <= 10; i++) { 
   System.out.print("Enter the " + i + ". number: "); 
   number = UserInputReader.readInt(); 
   if (number < smallest) smallest = number; 
  } 

  System.out.println("The smallest was " + smallest); 
 } 

} 



Verifying variables by role 
•  Many student program errors result from 

using the same variable in more than one 
role. 
–  Identify role of each variable during design 

•  There are opportunities to check correct 
operation according to constraints on role 
– Check stepper within range 
– Check most-wanted meets selection criterion 
– De-allocate temporary value 
– Use compiler to guarantee final fixed value 

•  Either do runtime safety checks (noting 
efficiency tradeoff), or use language 
features. 



Type-checking as modeling tool 

•  Refine types to reflect meaning, not just to 
satisfy the compiler (C++ example below) 

•  Valid (to compiler), but incorrect, code: 
–  float totalHeight, myHeight, yourHeight; 
–  float totalWeight, myWeight, yourWeight; 
–  totalHeight = myHeight + yourHeight + myWeight; 

•  Type-safe version: 
–  type t_height, t_weight: float; 
–  t_height totalHeight, myHeight, yourHeight; 
–  t_weight totalWeight, myWeight, yourWeight; 
–  totalHeight = myHeight + yourHeight + myWeight; 

Compile error! 



Construction of Data Lifecycles 



UML State machine diagram 

•  Object lifecycle 
–  data as state machine 

•  Harel statecharts 
–  nested states 
–  concurrent substates 

•  Explicit initial/final 
–  valuable in C++ 

•  Note inversion of 
activity diagram 



What are state machine diagrams? 

•  Also known as statecharts or state diagrams 

•  Show how an object’s reaction to a message depends 
on its state 

•  Enables us to model an object’s decision about what to 
do when it receives a message 

•  Used to record dependencies between the state of an 
object & its reaction to messages - objects of the same 
class may therefore receive the same message, but 
respond differently 

Mostly	
  used	
  to	
  model	
  the	
  	
  
dynamic	
  behaviour	
  of	
  classes	
  



UML State Machine diagram 



Elements of state machine 
diagrams 

•  States 
•  Events 
•  Transitions 
•  Start & stop markers 

onLoan	
   onShelf	
  

return()	
  

borrow()	
  

:copy	
  

A	
  class	
  has	
  only	
  1	
  	
  
state	
  machine	
  

lost()	
  



Thinking about states & transitions 
•  State transition matrix - a matrix with all possible states 

labelled on rows & all possible events labelled on columns; 
cells identify next states; responses or can be catalogued in a 
separate column 

STATE	
  

EVENT	
  
OUTPUT	
  

idle	
  dial	
  tone	
  

busy	
  

ringing	
  

connected	
  

on	
  	
  
hook	
  

off	
  	
  
hook	
  

dial	
  
busy	
  

dial	
  
idle	
  

called	
  
party	
  
off	
  
hook	
  

dial	
  
tone	
  idle	
  

busy	
  

idle	
  

ringing	
  

con-­‐	
  
nected	
  

dial	
  
tone	
  

quiet	
  

busy	
  
tone	
  

con-­‐	
  
nected	
  

rin-­‐	
  
ging	
  



•  How many distinct states does a CD player have? 

•  What events occur to transition between each of these 
states? Remember to consider self transitions 

•  Sketch a simple statediagram for this CD player 
•  Add markers for initial & final states 

Exercise  



Actions & events  
•  Event - something done to an object (e.g. being sent a 

message) - object is the recipient 
•  Action - something the object does (e.g.  

sends a message) - object is the instigator  

onLoan	
   onShelf	
  
return()/book.returned(self)	
  

borrow()/book.borrowed(self)	
  

onLoan	
   onShelf	
  
return()/book.returned(self)	
  

borrow()/book.borrowed(self)	
  entry/book.borrowed(self)	
   entry/book.returned(self)	
  

onLoan	
   onShelf	
  
return()/book.returned(self)	
  

borrow()/book.borrowed(self)	
  exit/book.returned(self)	
   exit/book.borrowed(self)	
  

event	
   ac,on	
  



Guards 

•  The same event in the same state may or 
may not cause a change of state, 
depending on the object’s attributes 

•  Conditional notation is used if the exact 
value of an object’s attributes determines 
change of state  

not	
  borrowable	
   borrowable	
  

returned()	
  

borrowed()[last	
  copy]	
  

returned()	
  

borrowed()[not	
  last	
  copy]	
  
:book	
  



•  Take the simple state diagram for your CD player 

•  Add useful guard conditions to some of the transitions 

•  List some entry & exit actions for at least one of the 
states 

Exercise  



Substates 
•  States themselves can also contain internal behaviour - 

this can be represented as a statediagram 

•  Substate is a state nested inside another state 

•  Sequential composite/compound state - state containing 
a single state machine (disjoint) 

•  Concurrent composite/compound state - state containing 
2+ state machines that execute concurrently (orthogonal) 

A	
  simple	
  state	
  is	
  one	
  that	
  has	
  no	
  substructure	
  



Sequential substates 

Idle	
  	
  

Maintenance	
  	
  

ValidaTng	
  	
  	
  

SelecTng	
  	
  	
   Processing	
  	
  	
  
maintain	
  

cancel	
  

cardInserted	
  

[conTnue]	
  

[not	
  conTnue]	
  

AcTve	
  	
  

entry	
  /	
  readCard	
  
exit	
  /	
  ejectCard	
  

Example	
  ©	
  [Booch	
  et	
  al.	
  1999]	
  p.299	
  

PrinTng	
  	
  	
  



Maintaining valid system state 
•  Pioneers (e.g. Turing) talked of proving 

program correctness using mathematics 
•  In practice, the best we can do is confirm that 

the state of the system is consistent 
– State of an object valid before and after operation 
– Parameters and local variables valid at start and 

end of routine 
– Guard values define state on entering & leaving 

control blocks (loops and conditionals) 
–  Invariants define conditions to be maintained 

throughout operations, routines, loops.  



Pioneers – Tony Hoare 

•  Assertions and proof 
– 1969, Queen’s University Belfast 

•  Program element behaviour can be 
defined 
– by a post-condition that will result … 
– … given a known pre-condition.  

•  If prior and next states accurately defined: 
–  Individual elements can be composed 
– Program correctness is potentially provable 



Formal models: Z notation 

•  Definitions of the BirthdayBook state space: 
–  known is a set of NAMEs 
–  birthday is a partial map from NAMEs to DATEs 

•  Invariants: 
–  known must be the domain of birthday 



Formal models: Z notation 

•  An operation to change state 
–  AddBirthday modifies the state of BirthdayBook 
–  Inputs are a new name and date 
–  Precondition is that name must not be previously known 
–  Result of the operation, birthday’ is defined to be a new and 

enlarged domain of the birthday map function 



Formal models: Z notation 

•  An operation to inspect state of BirthdayBook 
–  This schema does not change the state of BirthdayBook 
–  It has an output value (a set of people to send cards to) 
–  The output set is defined to be those people whose birthday 

is equal to the input value today. 



Advantages of formal models 
•  Requirements can be analysed at a fine level 

of detail. 
•  They are declarative (specify what the code 

should do, not how), so can be used to check 
specifications from an alternative perspective. 

•  As a mathematical notation, offer the promise 
of tools to do automated checking, or even 
proofs of correctness (“verification”). 

•  They have been applied in some real 
development projects. 



Disadvantages of formal models 
•  Notations that have lots of Greek letters and other weird 

symbols look scary to non-specialists. 
–  Not a good choice for communicating with clients, users, rank-and-

file programmers and testers. 
•  Level of detail (and thinking effort) is similar to that of code, so 

managers get impatient. 
–  If we are working so hard, 

why aren’t we just writing the code? 
•  Tools are available, but not hugely popular. 

–  Applications so far in research / defence / safety critical 
•  Pragmatic compromise from UML developers 

–  “Object Constraint Language” (OCL). 
–  Formal specification of some aspects of the design, so that 

preconditions, invariants etc. can be added to models. 



Language support for assertions 
•  Eiffel (pioneering OO language)  

–  supported pre- and post-conditions on every method. 
•  C++ and Java support “assert” keyword 

–  Programmer defines a statement that must evaluate 
to boolean true value at runtime. 

–  If assertion evaluates false, exception is raised 
•  Some languages have debug-only versions, 

turned off when system considered correct. 
–  Dubious trade-off of efficiency for safety. 

•  Variable roles could provide rigorous basis for fine-
granularity assertions in future. 



Summary 

•  We have illustrated how dynamics of 
objects can be designed through 
sequence and collaboration diagrams. 

•  We have used activity and state machine 
diagrams to describe object behaviour. 

•  We have described technique to improve 
code and state readability and errors 
avoidance. 


