
Software Design
Models, Tools & Processes *

Lecture 1: Software Design and
Software Development Process

Cecilia Mascolo

*	
 Thanks	
 to	
 Alan	
 Blackwell	
 and	
 Jim	

Arlow	
 for	
 le7ng	
 me	
 use	
 some	
 of	
 their	

slides.	

	

About Me
•  Reader in Mobile Systems

–  Systems Research Group
•  Research on Mobile, Social and Sensor Systems
•  More specifically, mobility modelling

–  Instrumentation (sensing and mobile sensing)
–  Analysis (social and complex networks)
–  Exploitation (eg, recommender systems)

Software Design

•  Software Design is about modelling software
systems

•  “A system is an organised or complex whole: an
assemblage or combination of things or parts
forming a complex or unitary whole.” (Kast &
Rosenzweig)

•  “A system is a set of interrelated elements” (Ackoff)
Library	
 System	

BooksDB	

UsersDB	

UserInterface	

Everyday Words

 “it is in the system”, “the system failed”,
“rage against the system”, “you can’t buck
the system”, “the system is down”, “the
economic system”, “in-car stereo system”,
“biological system”, “paperwork system”,
“the financial environment”, “closed
system”, “open system”, “dynamic
system”, “in equilibrium”

We	
 use	
 these	
 “system	
 words”	

a	
 lot.	
 What	
 do	
 they	
 mean	

Organisation
•  The predominant mode of organisation is

hierarchical. Systems are composed of sub-
systems, sub-systems are composed of sub-sub-
systems and so on.

•  In very complex cases we talk of “systems of
systems”

Example:	
 Robot	
 and	
 its	
 components	
 	

State

•  The state of a system at a moment in time
is the set of values of relevant properties
which that system has at that time.

•  Any system has an unlimited set of
properties - only some of which are
relevant for any particular set of purposes.

Examples:	
 mass=10g,	
 colour=red	

Environment
•  The environment of a system is the set

of elements (and their relevant
properties) which are NOT part of the
system - but a change in any of which
can produce a change in the state of
the system

System	

Environment	

Boundary	

Environment

•  The choice of the boundary is subjective.
Different people may divide a domain of
discourse into different systems and
environments.

An	
 architect	
 views	
 a	
 house	
 as	
 the	
 system	
 comprised	
 of	

mechanical,	
 electrical,	
 heaOng	
 and	
 water	
 sub-­‐systems.	

The	
 electrical	
 supply	
 system	
 is	
 in	
 the	
 environment.	

The	
 electrician	
 may	
 view	
 the	
 electrical	
 sub-­‐system	

together	
 with	
 the	
 electrical	
 supply	
 system	
 as	
 the	
 system	

with	
 the	
 house	
 as	
 its	
 environment.	

Environment

•  Setting boundaries is very important when
analysing and designing a system. It limits
your investigation and problem solving
“space”.

Example:	
 Imagine	
 you	
 are	
 designing	
 a	
 new	
 electrical	
 car.	

Are	
 the	
 repair	
 shops,	
 refuelling	
 staOons	
 and	
 parts	
 supply	

part	
 of	
 the	
 system	
 you	
 are	
 designing	
 or	
 not?	
 How	
 much	

Do	
 they	
 affect	
 the	
 design	
 of	
 the	
 car?	
 Can	
 you	
 change	

them?	
 How	
 much	
 would	
 changes	
 in	
 them	
 affect	
 your	

design	
 (robustness)?	

Closed and Open

•  Systems can be considered closed or
open.

•  Closed systems do not interact with their
environment.

•  Open systems have a dynamic
relationship with their environment,
receiving inputs, transforming these inputs
and exporting outputs.

Inputs and Outputs

•  A general view of a system

Input(s)	
 Output(s)	

TransformaOon	

Modelling

•  Modelling a system means identifying its
main characteristics, states and behaviour
using a notation

•  You “modelled” the Library System using
Java
– …a very detailed model…

•  There are better techniques to build models

Model
•  A model is a description from which detail

has been removed in a systematic manner
and for a particular purpose.

•  A simplification of reality intended to
promote understanding.

•  Models are the most important
engineering tool, they allow us to
understand and analyse large and
complex problems.

Examples:	
 an	
 architectural	
 plan,	

a	
 chemical	
 plant	
 diagram	

Model

Model

Acrolein	

Plant	

hot	
 water	
 &	
 steam	

gas	
 purge	

liquid	
 purge	

acrolein	
 product	
 propylene	

and	
 air	
 feed	

Model

Reactor	
 Heat	

Interchanger	

AbsorpOon	

Column	

Waste	
 Heat	

Removal	

System	

DisOllaOon	

Column	

propylene	

and	
 air	
 feed	

gas	
 recycle	

reactor	

feed	

acrolein	
 plus	

other	
 gases	

hot	
 water	

steam	

acrolein	
 plus	

remainder	
 of	
 other	

gases	

water	
 recycle	

gas	
 purge	

water	
 recycle	

liquid	
 purge	

acrolein	
 product	

Language

•  Models are built in a language appropriate
to the expression and analysis of
properties of particular interest.

process	

flow	
 (material,	
 energy,	
 informaOon)	

System	
 Block	
 Diagram	

	
 scale	

	
 projecOon	

	
 geometry	

Architectural	
 Plan	

	

Abstraction

•  Abstraction is the process of removing
detail from a model, of making the model
more abstract.

•  Reification is the opposite of abstraction, it
is the process of adding detail to a model,
of making the model more concrete.

Model Building

•  Building a system can be seen as a
process of reification. In other words
moving from a very abstract statement of
what is wanted to a concrete
implementation.

•  In doing this you move through a sequence
of intermediate descriptions which become
more and more concrete.

•  These intermediate descriptions are
models. The process of building a system
can be seen as the process of building a
series of progressively more detailed
models.

Exercise

•  Build a system block diagram model of
central heating system
– First do a high level diagram with a single

block showing inputs and outputs
– Then break down the system into sub-

systems and look at the flows between
them

– Next select one of these sub-systems and
break it down into sub-sub-systems

Some Questions
to Ask Yourself

•  Do you understand how central heating
systems work? Has building the model
helped?

•  If given the model by somebody else
would you understand what a central
heating system was and how it operated?

•  Have you set the “right” boundary?
•  Have you used the block diagram

language correctly?

Modelling

Reason	
 for	
 modelling	

What	
 to	
 model	
 How	
 to	
 model	

to	
 experiment	

to	
 clarify	

to	
 understand	

to	
 analyse	

to	
 evaluate	

structure	

transformaOons	

inputs	
 and	
 outputs	

state	

textual	

graphical	

mathemaOcal	

Design and process

•  Design is a process, not a set of known
facts
– process of learning about a problem
– process of describing a solution
– at first with many gaps …
– eventually in sufficient detail to build the

solution

Older terminology: the “waterfall”

Implementation
& unit testing

Operations &
maintenance

Integration &
system testing

Requirements

Specification

Modern alternative: the “spiral”

Initial plan

Prototype
1

Development
plan

Prototype
2

Requirements

Plan next phases

Evaluate alternatives
and resolve risks

Develop and verify
next level product

Code

Test

Integrate
Implement

Incremental Model

analysis	
 design	
 code	
 test	

deliver	
 1st	

increment	

analysis	
 design	
 code	
 test	

deliver	
 2nd	

increment	

analysis	
 design	
 code	
 test	

concepOon	

architecture	

feedback	

feedback	

structure	

Unified Software
Development Process (USDP)

•  USDP is the development process
associated to UML (Unified Modelling
Language described later)

•  USDP is based on Incremental Process
•  Each iteration is like a mini-project that

delivers a part of the system
–  It is use case driven
– Architecture centric
–  Iterative and incremental

USDP basics

•  Iterative & incremental
–  Iterations & baselines
– Phases & milestones
– Workflows

•  Architecture-centric

•  Use-case driven & risk confronting

Management	

Environment	

Business	
 Modeling	

Implementa5on	

Test	

Analysis	
 &	
 Design	

Preliminary	
 	

IteraOon(s)	

	
 Iter.	

#1	

Phases	

Process	
 Workflows	

Itera5ons	

Suppor5ng	
 Workflows	

	
 Iter.	

#2	

	
 Iter.	

#n	

	
 Iter.	

#n+1	

	
 Iter.	

#n+2	

	
 Iter.	

#m	

	
 Iter.	

#m+1	

Deployment	

Configura5on	
 Mgmt	

Requirements	

Elabora5on	
 Transi5on	
 Incep5on	
 Construc5on	

Adapted	
 from	
 [Jacobson	
 1999]	

Overall	
 structure	
 of	
 the	
 USDP	
 lifecycle	

Lifecycle phases & milestones

7me	

IncepOon	
 ElaboraOon	
 ConstrucOon	
 TransiOon	

♦ Incep5on	
 	
 Define	
 scope	
 of	
 project	
 &	
 develop	
 business	
 case	

♦ Elabora5on	
 	
 Plan	
 project,	
 specify	
 features	
 &	
 baseline	

architecture	

♦ Construc5on	
 	
 Build	
 product	

♦ Transi5on	
 	
 TransiOon	
 product	
 to	
 its	
 users	

Life-­‐cycle	

objec7ves	
 	

	

Life-­‐cycle	
 	

architecture	
 	

	

Ini7al	
 opera7onal	

capability	
 	

	

Product	
 	

Release	

Adapted	
 from	
 [Booch	
 1999]	

Milestone acceptance criteria
•  Lifecycle objectives - system scope, key requirements,

outline architecture, risk assessment, business case,
feasibility, agreed project objectives with stakeholders

•  Lifecycle architecture - executable architectural
baseline, updated risk assessment, project plan to
support bidding process, business case verified against
plan, continued stakeholder agreement

•  Initial operational capability - product ready for beta
test in user environment

•  Product release - completed beta & acceptance tests,
defects fixed & in the user community

Phases & iterations

Arch	

IteraOon	

...	
 Dev	
 	

IteraOon	

Dev	
 	

IteraOon	

...	
 Trans	

IteraOon	

...	

Release	

	

Release	

	

Release	

	

Release	

	

Release	

	

Release	

	

Release	

	

Release	

	

Prelim	

IteraOon	

...	

IncepOon	
 ElaboraOon	
 ConstrucOon	
 TransiOon	

An	
 iteraOon	
 is	
 a	
 sequence	
 of	
 acOviOes	
 with	
 an	

established	
 plan	
 &	
 evaluaOon	
 criteria,	

resulOng	
 in	
 an	
 executable	
 release	

Adapted	
 from	
 [Booch	
 1999]	

Iterations

•  Iteration is key to USDP

•  Each iteration is like a mini-project
–  Planning; analysis & design; integration & test; release
–  Results in an increment

•  5 core workflows during each iteration
–  Requirements; analysis; design; implementation; test

•  Final product release may follow a sequence of
iterations (which may even overlap!)

Increments

•  Each iteration results in the release of
various artefacts - this is called a baseline

•  Baselines assist with review & approvals
procedures

•  An increment is actually the difference
between 2 successive baselines

P	
 r	
 e	
 l	
 i	
 m	
 i	
 n	
 a	
 r	
 y	

I	
 t	
 e	
 r	
 a	
 t	
 i	
 o	
 n	
 (
 s	
)	

i	
 t	
 e	
 r	
 .	

#	
 1	

i	
 t	
 e	
 r	
 .	

#	
 2	

i	
 t	
 e	
 r	
 .	

#	
 n	

i	
 t	
 e	
 r	
 .	

#	
 n	
 +	
 1	

i	
 t	
 e	
 r	
 .	

#	
 n	
 +	
 2	

i	
 t	
 e	
 r	
 .	

#	
 m	

i	
 t	
 e	
 r	
 .	

#	
 m	
 +	
 1	

I	
 n	
 c	
 e	
 p	
 t	
 i	
 o	
 n	
 E	
 l	
 a	
 b	
 o	
 r	
 a	
 t	
 i	
 o	
 n	
 C	
 o	
 n	
 s	
 t	
 r	
 u	
 c	
 t	
 i	
 o	
 n	
 T	
 r	
 a	
 n	
 s	
 i	
 t	
 i	
 o	
 n	
 C	
 o	
 r	
 e	
 	
 	
 W	
 o	
 r	
 k	
 f	
 l	
 o	
 w	
 s	

A	
 n	
 	
 	
 i	
 t	
 e	
 r	
 a	
 t	
 i	
 o	
 n	
 	
 	
 i	
 n	
 	
 	
 t	
 h	
 e	

e	
 l	
 a	
 b	
 o	
 r	
 a	
 t	
 i	
 o	
 n	
 	
 	
 p	
 h	
 a	
 s	
 e	

Requirements	

Design	

Implementa5on	

Test	

Analysis	

Phases,	
 iteraOons	
 &	
 workflows	

Phases	

Itera5ons	
 Adopted	
 from	
 [Jacobson	
 1999]	

Learning by building models
•  The software design process involves gaining

knowledge about a problem, and about its
technical solution.

•  We describe both the problem and the
solution in a series of design models.

•  Testing, manipulating and transforming those
models helps us gather more knowledge.

•  One of the most detailed models is written in
a programming language.
– Getting a working program is almost a side-effect

of describing it!

Outline for the rest of the course
•  Roughly follows stages of the (UML-related)

Rational Unified Process
–  Inception

•  structured description of what system must do
–  Elaboration

•  defining classes, data and system structure
–  Construction

•  object interaction, behaviour and state
–  Transition

•  testing and optimisation
•  Plus allowance for iteration

–  at every stage, and through all stages

Unified Modeling Language
•  Use Case diagrams - interactions with / interfaces to

the system.
•  Class diagrams - type structure of the system.
•  Collaboration diagrams - interaction between

instances
•  Sequence diagrams - temporal structure of interaction
•  Activity diagrams - ordering of operations
•  Statechart diagrams - behaviour of individual objects
•  Component and Deployment diagrams - system

organisation

Books

 UML Distilled: A brief guide to the standard object modeling language
Martin Fowler, Addison-Wesley 2003 (3rd edition)

Some concepts from here:
UML 2 and the Unified Process: Practical Object-Oriented Analysis
and Design. Jim Arlow, Ila Neustadt. Addison-Wesley. 2005.

Exam questions
•  This syllabus appeared under this name for

the first time in 2006
– See relevant questions 2006-2009

•  But syllabus was previously introduced as:
– Software Engineering II 2005, Paper 2, Q8

•  Some components had previously been
taught elsewhere in the Tripos:
– Programming in Java 2004, Paper 1, Q10
– Software Engineering and Design 2003 Paper 10,

Q12 and 2004 Paper 11, Q11
– Additional Topics 2000, Paper 7, Q13

Supervision exercises
•  Use design briefs from Part 1b Group Design

Projects
–  http://www.cl.cam.ac.uk/teaching/

group-projects/design-briefs.html
•  Choose a specific project to work on
•  Carry out initial design phases, up to the point

where you could start writing source code
–  Supervision 1: Inception phase + early elaboration
–  Supervision 2: Iterate and refine elaboration phase

Summary
•  Systems provides a framework of concepts for thinking

and talking about complex technical and social
phenomena.

•  Software is an important part of many large and complex
real-world systems.

•  Modelling requires disciplined simplification and the
careful application of a modelling language.

•  It is not enough to think about what you want to model
you need to think about how you are going to use that
model.

•  Development Processes help structuring the activity of
building software systems.

