Lecture Notes on

Regular Languages
and Finite Automata

for Part 1A of the Computer Science Tripos

Prof. Andrew M. Pitts
Cambridge University Computer Laboratory

© 2012 A. M. Pitts

Contents

Learning Guide

1

Regular Expressions

1.1 Alphabets, strings,andlanguages wuu
1.2 Patternmatching e
1.3 Somequestions aboutlanguages oo
1.4 EXEICISES o o e e e e e e e
Finite State Machines

2.1 Finiteautomata e
2.2 Determinism, non-determinism, apddransitions
2.3 Asubsetconstruction e
2.4 SUMMANY . . . oo e e e e e
25 EXercises. e
Regular Languages, |

3.1 Finite automata from regular expressions
3.2 Decidability of matching e
3.3 EXEICISES o i e
Regular Languages, Il

4.1 Regular expressions from finite automata
42 Anexample
4.3 Complement and intersection of regularlanguages
4.4 EXEICISES v v i i e e e e e e
The Pumping Lemma

5.1 Provingthe PumpingLemma
5.2 Usingthe PumpingLemma i .
5.3 Decidability of language equivalenceo
5.4 EXErCISES o o e e
Grammars

6.1 Context-freegrammars e
6.2 Backus-NaurForm
6.3 Regulargrammars e
6.4 Chomsky and Greiback normalforms
6.5 EXErCISES. e e
Pushdown Automata

7.1 Non-deterministic pushdown automata
7.2 BehaviourofaNPDA
7.3 Language acceptedbyaNPDA e
7.4 Toward computationtheory e

7.5 EXEICISES o e e e e e e

Learning Guide

The notes are designed to accompany eight lectures on régidpiages and finite automata
for Part 1A of the Cambridge University Computer Sciencepds. The aim of this
short course will be to introduce the mathematical fornmaéisof finite state machines,
regular expressions and context-free grammars, and taiexpleir applications to computer
languages. As such, it covers some basic theoretical rahatdrich Every Computer Scientist
Should Know. Direct applications of the course materialusdo the CST Part IB course
on Compiler Construction and the CST Part Il course d¥atural Language Processing
Further and related developments will be found in the CST BacoursesComputation
Theory andSemantics of Programming Languages

This course contains the kind of material that is best lehtheough practice. The books
mentioned below contain a large number of problems of vargegrees of difficulty, and
some contain solutions to selected problems. A few exey@se given at the end of each
section of these notes and relevant past Tripos questiensdicated there. At the end
of the course students should be able to explain how to cobetween the three ways of
representing regular sets of strings introduced in thessuand be able to carry out such
conversions by hand for simple cases. They should also lee@bise the Pumping Lemma
to prove that a given set of strings is not a regular langu@gey should be able to design a
pushdown automaton to accept strings for a given contestgrammar.

Recommended books Textbooks which cover the material in this course also tend t
cover the material you will meet in the CST Part IB courseComputation Theory and
Complexity Theory, and the theory underlying parsing in various courses onpdens.
There is a large number of such books. Three recommendedonésted below.

e J. E. Hopcroft, R. Motwani and J. D. Ullmamntroduction to Automata Theory,
Languages, and Computation, Second Edi{idddison-Wesley, 2001).

e D. C. KozenAutomata and Computabili§Gpringer-Verlag, New York, 1997).

e T. A. Sudkamp,Languages and Maching®\ddison-Wesley Publishing Company,
Inc., 1988).

Note The material in these notes has been drawn from severatehifeources, including
the books mentioned above and previous versions of thisedawy the author and by others.
Any errors are of course all the author’'s own work. A list ofreations will be available
from the course web page (follow links fromww.cl.cam.ac.uk/Teaching/).

Andrew Pitts
Andrew.Pitts@cl.cam.ac.uk

1 Regular Expressions

Doubtless you have used pattern matching in the commardshells of various operating
systems (Slide 1) and in the search facilities of text editéxnother important example of
the same kind is the ‘lexical analysis’ phase in a compilemdpuwhich the text of a program
is divided up into the allowed tokens of the programming laage. The algorithms which
implement such pattern-matching operations make use afidkien of afinite automaton
(which is Greeklish foffinite state machine This course reveals (some of!) the beautiful
theory of finite automata (yes, that is the plural of ‘autoomdtand their use for recognising
when a particular string matches a particular pattern.

Pattern matching

What happens if, at a Unix/Linux shell prompt, you type
1s %

and press return?

Suppose the current directory contains files called regfla.tex,
regfla.aux, regfla.log, regfla.dvi, and (strangely) .aux. What
happens if you type

1s *.aux

and press return?

Slide 1

1.1 Alphabets, strings, and languages

The purpose of Section 1 is to introduce a particular languag patterns, calledegular
expressionsand to formulate some important problems to do with patteatching which
will be solved in the subsequent sections. But first, heremsesnotation and terminology to
do with character strings that we will be using throughoetdburse.

1 REGULAR EXPRESSIONS

Alphabets

An alphabet is specified by giving a finite set, >, whose elements are
called symbols . For us, any set qualifies as a possible alphabet, so long
as it is finite.

Examples:
¥ =40,1,2,3,4,5,6,7,8,9} — 10-element set of decimal digits.
Yo =Aa,b,c,...,x,y, 2} — 26-element set of lower-case characters of the

English language.
Y3 = {5 | S C X1} —2'%element set of all subsets of the alphabet of
decimal digits.

Non-example:
N={0,1,2,3,...} — setof all non-negative whole numbers is not an
alphabet, because it is infinite.

Slide 2

Strings over an alphabet

A string of length 1 (> 0) over an alphabet X is just an ordered n-tuple
of elements of X2, written without punctuation.

Example: if ¥ = {a, b, c}, then a, ab, aac, and bbac are strings over X of
lengths one, two, three and four respectively.

def . _
Y* = setof all strings over X of any finite length.

N.B. there is a unique string of length zero over 3., called the null string
(or empty string) and denoted (no matter which > we are talking
about).

Slide 3

1.1 Alphabets, strings, and languages 3

Concatenation of strings

The concatenation of two strings u, v € X is the string uv obtained by
joining the strings end-to-end.

Examples: If u = ab, v = ra and w = cad, then vu = raab, uu = abab
and wv = cadra.

This generalises to the concatenation of three or more strings.
E.g. uvwuv = abracadabra.

Slide 4

Slides 2 and 3 define the notions ofa@phabet}’, and the seE* of finite stringsover an
alphabet. The length of a stringwill be denoted byength(u). Slide 4 defines the operation
of concatenationof strings. We make no notational distinction between a jrake > and
the corresponding string of length one oY&rso X can be regarded as a subsetlf Note
thatX* is never empty—it always contains thall string, ¢, the unique string of length zero.
Note also that for any, v, w € >*

ue =u=cu and (uw)w =uvw = u(vw)
andlength(uv) = length(u) 4 length(v).
Example 1.1.1. Examples ob>* for different>::

(i) If ¥ ={a}, thenX* contains

£, a,aa, aaa, aaad, . . .

(i) If £ = {a,b}, thenX* contains
g,a,b,aa,ab, ba,bb, aaa, aab, aba, abb, baa, bab, bba, bbb, . . .

(ii) If X = ((theempty set— the unique set with no elements), thEh = {c}, the set just
containing the null string.

4 1 REGULAR EXPRESSIONS

1.2 Pattern matching

Slide 5 defines the patterns, m@gular expressionsover an alphabet that we will use.
Each such regular expression,represents a whole set (possibly an infinite set) of strings
in X* thatmatchr. The precise definition of this matching relation is givenSiide 6. It
might seem odd to include a regular expresgidhat is matched by no strings at all—but it
Is technically convenient to do so. Note that the regularesgiore is in fact equivalent to

(*, in the sense that a stringmatche$)* iff it matchese (iff u = ¢).

Regular expressions over an alphabet]

each symbol a € 3 is a regular expression

€ is a regular expression

() is a regular expression

e if and s are regular expressions, then so is (7|s)
e if r and s are regular expressions, then so is s
e if is a regular expression, then so is (7)*

Every regular expression is built up inductively, by finitely many
applications of the above rules.

(N.B. we assume &, (), (,), |, and * are not symbols in X.)

Slide 5

Remark 1.2.1(Binding precedence in regular expressiong)the definition on Slide 5 we
assume implicitly that the alphabBtdoes not contain the six symbols

e 0 () [~

Then, concretely speaking, the regular expressions®verm a certain set of strings over
the alphabet obtained by adding these six symbols.toHowever it makes things more
readable if we adopt a slightly more abstract syntax, drogpps many brackets as possible
and using the convention that

—* binds more tightly thanr- —, binds more tightly than-|—.

So, for exampley|st* meangr|s(t)*), not(r|s)(t)*, or ((r|st))*, etc.

1.2 Pattern matching 5

Matching strings to regular expressions

u matchesa € Y iffu = a

u matches e iffu = ¢

e no string matches ()

u matches r|s iff u matches either r or s

U matches rs iff it can be expressed as the concatenation of two
strings, v = vw, with v matching 7 and w matching s

u matches r* iff either 4 = &, or « matches r, or u can be

expressed as the concatenation of two or more strings, each of which
matches r

Slide 6

The definition of « matches*’ on Slide 6 is equivalent to saying

for somen > 0, u can be expressed as a concatenation strings,u =
uius . . . Uy, Where eachy; matches .

The caser = 0 just means that = ¢ (soe always matches*); and the case = 1 just means
thatu matches- (so any string matching also matches*). For example, i2 = {a, b, c}
andr = ab, then the strings matching are

e, ab, abab, ababab, etc

Note that we didn’t include a regular expression for thedccurring in the UNIX
examples on Slide 1. Howeveawnce we know which alphabet we are referring o =
{a1,as,...,a,} say, we can get the effect efusing the regular expression

(a1|a2\ . |CLn)*

which is indeed matched by any stringiri (because |as| . . . |a,, is matched by any symbol
in).

6 1 REGULAR EXPRESSIONS

Examples of matching, with 3 = {0, 1}

e 0|1 is matched by each symbol in 3

e 1(0|1)* is matched by any string in * that starts with a ‘1’

e ((0]1)(0]1))* is matched by any string of even length in X*

e (0[1)*(0|1)* is matched by any string in 3*

e (¢|0)(g]1)|11 is matched by just the strings €, 0, 1, 01, and 11

e ()1]0 is just matched by 0

Slide 7

Notation 1.2.2. The notation- + s is quite often used for what we write as.

The notationr™, for n > 0, is an abbreviation for the regular expression obtained by
concatenating. copies ofr. Thus:

Thusu matches* iff ©w matches™ for somen > 0.

We user™ as an abbreviation farr*. Thusu matches iff it can be expressed as the
concatenation obne or morestrings, each one matching

1.3 Some questions about languages

Slide 8 defines the notion offarmal languageover an alphabet. We take a very extensional
view of language: a formal language is completely deterthibg the ‘words in the
dictionary’, rather than by any grammatical rules. Slideigeg some important questions
about languages, regular expressions, and the matchetgrebetween strings and regular
expressions.

1.3 Some questions about languages

Languages

A (formal) language L over an alphabet Y is just a set of strings in 2*.
Thus any subset L. C >2* determines a language over ..
The language determined by a regular expression r over X is

L(r) o {u € ¥* | u matches r}.

Two regular expressions 1 and s (over the same alphabet) are
equivalent iff L(r) and L(s) are equal sets (i.e. have exactly the same
members).

Slide 8

Some questions

(a) Is there an algorithm which, given a string « and a regular expression
T (over the same alphabet), computes whether or not © matches r?

(b) In formulating the definition of regular expressions, have we missed
out some practically useful notions of pattern?

(c) Is there an algorithm which, given two regular expressions 7 and s
(over the same alphabet), computes whether or not they are
equivalent? (Cf. Slide 8.)

(d) Is every language of the form L(7)?

Slide 9

8 1 REGULAR EXPRESSIONS

The answer to question (a) on Slide 9 is ‘yes’. Algorithmsdeciding such pattern-
matching questions make use of finite automata. We will gseltiring the next few sections.

If you have used the UNIX utilityrep, or a text editor with good facilities for regular
expression based search, lleacs, you will know that the answer to question (b) on Slide 9
is also ‘yes’—the regular expressions defined on Slide 5eleatt some forms of pattern
that one sees in such applications. However, the answeetquéstion is also ‘no’, in the
sense that (for a fixed alphabet) these extra forms of regxjaression are definable, up
to equivalence, from the basic forms given on Slide 5. Fongxta, if the symbols of the
alphabet are ordered in some standard way, it is common toder@ form of pattern for
naming ranges of symbols—for exampde— z] might denote a pattern matching any lower-
case letter. It is not hard to see how to define a regular esioregalbeit a rather long one)
which achieves the same effect. However, some other conynoaclurring kinds of pattern
are much harder to describe using the rather minimalistagyat Slide 5. The principal
example icomplementation~(r):

u matchesv(r) iff w« does nomatchr.

It will be a corollary of the work we do on finite automata (angad measure of its power)
that every pattern making use of the complementation ojperat(—) can be replaced by
an equivalent regular expression just making use of theatipes on Slide 5. But why do
we stick to the minimalist syntax of regular expressionstat slide? The answer is that it
reduces the amount of work we will have to do to show that, ingiple, matching strings
against patterns can be decided via the use of finite automata

The answer to question (c) on Slide 9 is ‘yes’ and once agasnltl be a corollary of
the work we do on finite automata. (See Section 5.3.)

Finally, the answer to question (d) is easily seen to be ‘podvided the alphabet
contains at least one symbol. For in that ca&$es countably infinite; and hence the number of
languages ovey, i.e. the number of subsets Bf is uncountable. (Recall Cantor’s diagonal
argument.) But sinc& is a finite set, there are only countably many regular exppess
over. (Why?) So the answer to (d) is ‘no’ for cardinality reasadswever, even amongst
the countably many languages that are ‘finitely describgateintuitive notion that we will
not formulate precisely) many are not of the foinir) for any regular expression For
example, in Section 5.2 we will use the ‘Pumping Lemma’ totbe¢

{a"b" | n >0}

is not of this form.

1.4 Exercises

Exercise 1.4.1.Write down an ML data type declaration for a type constru¢torregExp
whose values correspond to the regular expressions ovéplaabet’ a.

Exercise 1.4.2.Find regular expressions ovfl, 1} that determine the following languages:

(@) {u | u contains an even number b}

1.4 Exercises 9

(b) {u | u contains an odd number 05}

Exercise 1.4.3.For which alphabet& is the set~* of all finite strings overX itself an
alphabet?

Tripos questions 2005.2.1(d) 1999.2.1(s) 1997.2.1(q) 1996.2.1(i)) 19925.

10

1 REGULAR EXPRESSIONS

11

2 Finite State Machines

We will be making use of mathematical models of physicalayst calledinite automata
or finite state machinet recognise whether or not a string is in a particular laggua
This section introduces this idea and gives the preciseitefirof what constitutes a finite
automaton. We look at several variations on the definitiandp with the concept of
determinism) and see that they are equivalent for the perpbeecognising whether or not
a string is in a given language.

2.1 Finite automata

Example of a finite automaton

States: qo, g1, 42, g3-

Input symbols: a, b.
Transitions: as indicated above.
Start state: qg.

Accepting state(s): g3.

Slide 10

The key features of this abstract notion of ‘machine’ aretidelow and are illustrated
by the example on Slide 10.

e There are only finitely many differestatesthat a finite automaton can be in. In the
example there are four states, labelgdq, g2, andgs.

e We do not care at all about the internal structure of machies. All we care about
is whichtransitionsthe machine can make between the states. A symbol from some
fixed alphabet is associated with each transition: we think of the elemehts
asinput symbols Thus all the possible transitions of the finite automatom lca
specified by giving a finite graph whose vertices are the state whose edges have

12

2 FINITE STATE MACHINES

both a direction and a label (drawn fron). In the example: = {a, b} and the only
possible transitions from stage are

b a
g1 —qo and q — qo.

In other words, in state; the machine can either input the symband enter state
qo, Or it can input the symbal and enter statg,. (Note that transitions from a state
back to the same state are allowed: ;g ¢s in the example.)

There is a distinguishedtart state! In the example it isg. In the graphical
representation of a finite automaton, the start state isllysndicated by means of
a unlabelled arrow.

The states are partitioned into two kindgcepting statesand non-accepting states.
In the graphical representation of a finite automaton, ticeating states are indicated
by double circles round the name of each such state, and thacuepting states are
indicated using single circles. In the example there is onky accepting states; the
other three states are non-accepting. (The two extremébildses thatall states are
accepting, or thamo states are accepting, are allowed,; it is also allowed fostag
state to be accepting.)

The reason for the partitioning of the states of a finite awatimm into ‘accepting’ and

‘non-accepting’ has to do with the use to which one puts faittomata—namely to recognise
whether or not a string € ¥* is in a particular language=(subset of¥*). Givenu we
begin in the start state of the automaton and traverse ifghgoatransitions, using up the
symbols inu in the correct order reading the string from left to rightwk can use up all the
symbols inu in this way and reach an accepting state, thes in the language ‘accepted’
(or ‘recognised’) by this particular automaton; otherwises not in that language. This is
summed up on Slide 11.

The terminitial state is a common synonym for ‘start state’.
The termfinal stateis a common synonym for ‘accepting state’.

2.1 Finite automata 13

L(M), language accepted by a finite automaton M

consists of all strings u over its alphabet of input symbols satisfying
qo L q with gg the start state and ¢ some accepting state. Here

q —* q

means, if u = aia2 . .. a, say, that for some states q1,q2,...,qn = ¢
(not necessarily all distinct) there are transitions of the form

al a2 as an
Qo —q1 —>q2 —> - —> qp = (.

N.B.

casen=0: ¢=*¢ iff ¢=¢
@ 7 a /

casen=1: gq—="¢ iff ¢g—=¢q.

Slide 11

Example 2.1.1. Let M be the finite automaton pictured on Slide 10. Using the nmtati
introduced on Slide 11 we have:

9o Geady q3 (soaaab € L(M))
go L2 g iff g=qy (soabaa ¢ L(M))
o P g i g=gq3 (no conclusion abouk (M)).

In fact in this case
L(M) = {u | u contains three consecutiués}.

(Forg; (i = 0,1, 2) corresponds to the state in the process of reading a strindnich the
lasti symbols read were alf's.) So L(M) coincides with the languagl(r) determined by
the regular expression

r = (a|b)*aaa(alb)*

(cf. Slide 8).

14 2 FINITE STATE MACHINES

A non-deterministic finite automaton ~ (NFA), M,
is specified by

e afinite set States s (of states)
e afinite set X5 (the alphabet of input symbols)

e for each ¢ € States)s and each a € Xj/, a subset
Anr(g,a) C States yr (the set of states that can be reached from
q with a single transition labelled a)

e anelement s); € States) (the start state)

e asubset Accept,; C States s (of accepting states)

Slide 12

2.2 Determinism, non-determinism, ande-transitions

Slide 12 gives the formal definition of the notion of finite aoaton. Note that the function
Ay gives a precise way of specifying the allowed transitiondffvia: ¢ = ¢/ iff ¢ €
An(q,a).

The reason for the qualification ‘non-deterministic’ ond8lil2 is because in general,
for each statg € States), and each input symbal € X;,, we allow the possibilities that
there are no, one, or many states that can be reached in a simggition labelled from ¢,
corresponding to the cases ti®, (¢, a) has no, one, or many elements. For examplé&/ if
is the NFA pictured on Slide 13, then

Ap(g1,b) =0 i.e.in M, no state can be reached frgmwith a transition labelled;

An(q1,a) ={qg2} i.e.in M, precisely one state can be reached frgnwith a transition
labelleda;

Ani(qo,a) ={qo,q1} i.e. in M, precisely two states can be reached frgmwith a
transition labelled:.

2.2 Determinism, non-determinism, asxdransitions 15

Example of a non-deterministic finite automaton

Input alphabet: {a, b}.
States, transitions, start state, and accepting states as shown:

a a
b b

The language accepted by this automaton is the same as for the
automaton on Slide 10, namely

{u € {a,b}" | u contains three consecutive a’s}.

Slide 13

When each subseék (¢, a) has exactly one element we say thdtis deterministic
This is a particularly important case and is singled out ffirdtion on Slide 14.

The finite automaton pictured on Slide 10 is deterministiat Bote that if we took the
same graph of transitions but insisted that the alphabetmiftisymbols waga, b, ¢} say,
then we have specified an NFA not a DFA, since for examplg(qo, ¢) = 0. The moral of
this is: when specifying an NFA, as well as giving the graph of statleditions, it is important
to say what is the alphabet of input symbfiecause some input symbols may not appear in
the graph at all).

When constructing machines for matching strings with ragakpressions (as we will
do in Section 3) it is useful to consider finite state machieesibiting an ‘internal’ form
of non-determinism in which the machine is allowed to chastgée without consuming any
input symbol. One calls such transitionsransitionsand writes them as

This leads to the definition on Slide 15. Note that in an NF&, we always assume that
is not an element of the alphab®f, of input symbols

16

2 FINITE STATE MACHINES

A deterministic finite automaton (DFA)

is an NFA M with the property that for each ¢ € States s and

a € X, the finite set AM(q, a) contains exactly one element—call it
o (q,a).

Thus in this case transitions in M are essentially specified by a
next-state function , 9,7, mapping each (state, input symbol)-pair (q, a)
to the unique state 5M(q, a) which can be reached from ¢ by a transition
labelled a:

q5q it ¢ =dnmlga)

Slide 14

An NFA with e-transitions (NFA®)
is specified by an NFA M together with a binary relation, called the
e-transition relation , on the set States; . We write

q=>q

to indicate that the pair of states (¢, ¢') is in this relation.

Example (with input alphabet = {a, b}):

Slide 15

2.3 A subset construction 17

L(M), language accepted by an NFA€ M

consists of all strings u over the alphabet >J; of input symbols satisfying

qo = q with ¢ the initial state and ¢ some accepting state. Here - = -
is defined by:

& ! - / . 9 /
q = q' iffq = q orthereis a sequence ¢ — --- g of one or more
e-transitions in M from ¢ to ¢’

&

g=q foracTy)iffg=>-5 .= ¢

g2 GorabeSyiffg>- 5. 5.5 S ¢

and similarly for longer strings

Slide 16

When using an NFA M to accept a string € ¥* of input symbols, we are interested in
sequences of transitions in which the symbols ioccur in the correct order, but with zero
or moree-transitions before or after each one. We write

q=q
to indicate that such a sequence exists from gtédestate;’ in the NFA. Then, by definition
u is accepted by the NFAM iff ¢ = ¢ holds forg, the start state anglsome accepting state:
see Slide 16. For example, for the NF8n Slide 15, it is not too hard to see that the language

accepted consists of all strings which either contain twosegutivea’s or contain two
consecutive’s, i.e. the language determined by the regular expressidn* (aa|bb)(a|b)*.

2.3 A subset construction

Note that every DFA is an NFA (whose transition relation isedainistic) and that every
NFA is an NFA (whoses-transition relation is empty). It might seem that non-date@ism
ande-transitions allow a greater range of languages to be ctearsed as recognisable by a
finite automaton, but this is not so. We can use a construatadled thesubset construction

to convert an NFA M into a DFA PM accepting the same language (at the expense of
increasing the number of states, possibly exponentiafjifle 17 gives an example of this
construction. The name ‘subset construction’ refers tddbethat there is one state 6t/

for each subset of the sBtates), of states of\/. Given two subsetS, S’ C States,, there

is a transitionS < S’ in PM just in caseS’ consists of all thel/-states;’ reachable from

18 2 FINITE STATE MACHINES

statesy in S via the- = - relation defined on Slide 16, i.e. such that we can get fgcim
¢’ in M via finitely manye-transitions followed by an-transition followed by finitely many
e-transitions.

Example of the subset construction

M - OpM : a b
. 0 0 0

@ {0} | {90, 01,02} {a2}
{a} | Aa} 0

5 e} 0 {a}
—@@a {q0, 1} | {90, 01,2} {a2}

{90, 92} | {90, 01,2} {a2}

{a1, 92} {a1} {a2}

{q07Q17q2} {q07Q17q2} {QQ}
b

Slide 17

By definition, the start state d? M is the subset obtates,; whose elements are the
states reachable kyytransitions from the start state 6f; and a subset C States,, is an
accepting state aP M iff some accepting state @il is an element of. Thus in the example
on Slide 17 the start state {go, ¢1, ¢2} and

ab € L(M) because il: gy % g0 = ¢2 2 ¢o

. a b
ab € L(PM) because iPM: {qo,q1,92} — {90, q1,%0} — {¢}

Indeed, in this casé (M) = L(a*b*) = L(PM). The fact that\/ and P M accept the same
language in this case is no accident, as the Theorem on Sidkdws. That slide also gives
the definition of the subset construction in general.

2.3 A subset construction 19

Theorem. For each NFA® M there is a DFA P M with the same

alphabet of input symbols and accepting exactly the same strings as
M, ie. with L(PM) = L(M)

Definition of P M (refer to Slides 12 and 14):

o Statesps def {S | S C Statesy}

def
o Spu = Sy

e S5 S inPMiff S’ = 6pp(S,a), where
def

dpnm(S,a) = {¢' | Jq € S(q:a>q’ in M)}
def 15
® spyv = {q|sm=q}

o Acceptpys o

{S € Statespys | g € S (q € Accept ;)}

Slide 18

To prove the theorem on Slide 18, given any NFEN we have to show that (M) =
L(PM). We split the proof into two halves.

Proof thatL(M) C L(PM). Consider the case affirst: if ¢ € L(M), thensy; = ¢ for
someq € Accept,,, hencespy, € Acceptp,, and thus € L(PM). Now given any non-
null stringu = aqas . . . an,, If uis accepted by then there is a sequence of transitions in
M of the form

(1) sM%q1%-~-a:$qn€AcceptM.
Since it is deterministic, feeding, as . . . a,, to PM results in the sequence of transitions
(2) SpMa—l)Sla—2>"'a—n)Sn

whereS; = dpar(spar,a), So = dpar(S1, az), etc. By definition obp,, (Slide 18), from
(1) we deduce

q1 € 0pm(spar,a1) =51
S0q2 € dpar(S1,az2) = S

SO0gy € 5PM(Sn717 an) = Sn

20 2 FINITE STATE MACHINES

and hence,, € Accept p,, (because,, € Accept,,;). Therefore (2) shows thatis accepted
by PM. O

Proof thatL(PM) C L(M). Consider the case of first: if ¢ € L(PM), thenspy, €
Accept p,, and so there is some € spy; With ¢ € Accept,,, i.€.5y = q € Accept,,
and thuss € L(M). Now given any non-null string = ajas . ..a,, if u is accepted by
PM then there is a sequence of transitiongAin/ of the form (2) withS,, € Acceptp,,,
i.e. with S,, containing somey,, € Accept,,;. Now sinceq, € S, = dpp(Sn—1,an),
by definition of p; there is somey,_1 € S,_1 With ¢,_1 = ¢, in M. Then since
Gn-1 € Spn—1 = 0ppm(Sp—2,a,_1), there is some,,_> € S,_o with ¢,,_» rgt Gr—1-
Working backwards in this way we can build up a sequence péttians like (1) until, at the
last step, from the fact that € S1 = dpr(spa, a1) we deduce that,, 4 ¢1. So we get
a sequence of transitions (1) wigh € Accept,,;, and hence is accepted by/. O

2.4 Summary

The important concepts in Section 2 are those dégrministic finite automataofFA) and

the language of strings that it accepts. Note that if we krieav & languagé. is of the form

L = L(M) for some DFAM, then we have a method for deciding whether or not any given
stringu (over the alphabet of) is in L or not: begin in the start state of/ and carry out

the sequence of transitions given by readinffom left to right(at each step the next state
is uniquely determined becaugé is deterministic);f the final state reached is accepting,
thenw is in L, otherwise it is not.We also introduced other kinds of finite automata (with
non-determinism ane-transitions) and proved that they determine exactly tineeselass of
languages as DFAs.

2.5 Exercises

Exercise 2.5.1.For each of the two languages mentioned in Exercise 1.4.2flDBA that
accepts exactly that set of strings.

Exercise 2.5.2.The example of the subset construction given on Slide 17taats a DFA
with eight states whose language of accepted strings hagpdmeL(a*b*). Give a DFA
with the same language of accepted strings, but fewer st@ige an NFA with even fewer
states that does the same job.

Exercise 2.5.3.Given a DFAM, construct a new DFAY/’ with the same alphabet of input
symbolsX,,; and with the property that for alt € X%, u is accepted by\/’ iff u is not
accepted by .

Exercise 2.5.4.Given two DFAs M;, My with the same alphabéet of input symbols,
construct a third such DFA/ with the property that: € X* is accepted byl iff it is

accepted by botld/; and M,. [Hint: take the states a¥/ to be ordered pairéq, ¢2) of
states withy; € Statesys, andgs € Statesyy,]

2.5 Exercises 21

Tripos questions 2010.2.9 2009.2.9 2004.2.1(d) 2001.2.1(d) 2000.2.1(b)
1998.2.1(s) 1995.2.19

22

2 FINITE STATE MACHINES

23

3 Regular Languages, |

Slide 19 defines the notion ofragular language which is a set of strings of the forii(M)
for some DFAM (cf. Slides 11 and 14). The slide also gives the statementle¢né’s
Theorem, which connects regular languages with the notionatching strings to regular
expressions introduced in Section 1. the collection of l@mglanguages coincides with the
collection of languages determined by matching stringh vagular expressions. The aim of
this section is to prove part (a) of Kleene’s Theorem. We taitkle part (b) in Section 4.

Definition
A language is regular iff it is the set of strings accepted by some
deterministic finite automaton.

Kleene's Theorem
(a) For any regular expression r, L(r) is a regular language
(cf. Slide 8).

(b) Conversely, every regular language is the form L(r) for some

regular expression 7.

Slide 19

3.1 Finite automata from regular expressions

Given a regular expression over an alphabet say, we wish to construct a DFA/ with
alphabet of input symbols and with the property that for eache X*, « matches- iff u is
accepted byW//—so thatL(r) = L(M).

Note that by the Theorem on Slide 18 it is enough to constrndiBA® N with the
propertyL(N) = L(r). For then we can apply the subset constructioiVtm obtain a DFA
M = PN with L(M) = L(PN) = L(N) = L(r). Working with finite automata that
are non-deterministic and havetransitions simplifies the construction of a suitable &nit
automaton fronr.

Let us fix on a particular alphabét and from now on only consider finite automata
whose set of input symbols }s. The construction of an NFAfor each regular expression
over proceeds by recursion on the syntactic structure of thdaegupression, as follows.

24 3 REGULAR LANGUAGES, |

(i) For each atomic form of regular expressian(a € X), ¢, and(), we give an NFA
accepting just the strings matching that regular exprassio

(i) Given any NFA's M, and M-, we construct a new NFA Union(M;, Ms) with the
property

L(Union(My, Ms)) = {u|u € L(My)oru € L(Ms)}.

ThUSL(T‘1|T2) = L(UTLZOTL(Ml, Mg)) WhenL(T‘l) = L(Ml) andL(T‘Q) = L(MQ)

(iii) Given any NFA's M, and M-, we construct a new NFA Concat (M, Ms) with the
property

L(Concat(My, Ms)) = {ujug | uy € L(M;) anduy € L(Ms)}.

ThUSL(T’ng) = L(Concat(Ml, Mg)) WhenL(Tl) = L(Ml) andL(Tg) = L(Mg)

(iv) Given any NFA M, we construct a new NFA Star (M) with the property
L(Star(M)) = {ujuz...u, | n > 0and each; € L(M)}.

ThusL(r*) = L(Star(M)) whenL(r) = L(M).

Thus starting with step (i) and applying the constructiansteps (ii)—(iv) over and over
again, we eventually build NFA with the required property for every regular expression

Put more formally, one can prove the statement

for all n > 0, and for all regular expressions of sizen, there exists an NFA
M such thatL(r) = L(M)

by mathematical induction on, using step (i) for the base case and steps (ii)—(iv) for the
induction steps. Here we can take thigeof a regular expression to be the number of
occurrences of unionH{|—), concatenation{ —), or star *) in it.

Step (i) Slide 20 gives NFAs whose languages of accepted stringespectivelyl(a) =
{a} (@nya € X)), L(¢) = {e}, andL(0) = 0.

3.1 Finite automata from regular expressions 25

NFAs for atomic regular expressions

just accepts the one-symbol string a

—(@®

just accepts the null string, €

—(w)

accepts no strings

Slide 20

Step (i) Given NFA's M; and Ms, the construction ofUnion(M;, Ms) is pictured on
Slide 21. First, renaming states if necessary, we assunéthes,;, and States;;, are
disjoint. Then the states dfnion (M, Ms) are all the states in eithéi/; or Ms, together
with a new state, callegh say. The start state dfnion (M, M,) is thisqy and its accepting
states are all the states that are accepting in eittigior M. Finally, the transitions of
Union(My, Ms) are given by all those in eithe¥/; or M, together with two newe-
transitions out ofjy to the start states af/; and M.

Thus ifu € L(M), i.e. if we havesy, = ¢i for someq, € Accept,,, then we
getqy — SM,y = ¢ showing thatu € L(Union(My, Ms). Similarly for M>. So
L(Union (M, M2)) contains the union of (M,) andL(M-). Conversely ifu is accepted by
Union (M, M,), there is a transition sequenge= ¢ with g € Accept s, Orq € Acceptyy, .
Clearly, in either case this transition sequence has tonbegh one or other of the-
transitions fromyg, and thereafter we get a transition sequence entirely inoorather of
M, or M, finishing in an acceptable state for that one. So & L(Union(M;, Ms)), then
eitheru € L(M;) oru € L(M,). So we do indeed have

L(Umon(Ml, MQ)) = {u | u < L(Ml) oru e L(MQ)}

26 3 REGULAR LANGUAGES, |

Set of accepting states is union of Accept), and Accept ;.

Slide 21

Step (iii) Given NFA's M; and Ms, the construction oConcat(M;, Ms) is pictured on
Slide 22. First, renaming states if necessary, we assumesSthés,;, and Statesy, are
disjoint. Then the states @foncat(M;, M) are all the states in eithéd; or M,. The start
state ofConcat (M, M>) is the start state af/;. The accepting states élfoncat (M, Ms)
are the accepting states df;. Finally, the transitions o€oncat(M;, M) are given by all
those in eithe\/; or M, together with new-transitions from each accepting stateléf to
the start state af/, (only one such new transition is shown in the picture).

Thus ifu; € L(M;) andus € L(Ms), there are transition sequenceg, 2 g in M,
with q; € Accepty;,, andsyy, = q2 In Mo with g2 € Accept,,. These combine to yield

u 1> u
SMy :$Q1 — SM, :g q2

in Concat (M, Ms) witnessing the fact that, u. is accepted byConcat(M;, M;). Con-
versely, it is not hard to see that evaryc L(Concat(M;, M,)) is of this form. For any
transition sequence witnessing the fact thas accepted starts out in the stateshf but
finishes in the disjoint set of states &f,. At some point in the sequence one of the new
e-transitions occurs to get from/; to M, and thus we can split asv = wujus With uy
accepted by/; andusy accepted by/>. So we do indeed have

L(Concat(My, Ms)) = {urus | uy € L(My) andug € L(Ms)}.

3.1 Finite automata from regular expressions 27

Concat (M, Ms)

r-—- - - - -~ Bl r- - - - - - -7 I
| le | |
) e O—HEw) M
Lo - _ _ L _ _ _ |

Set of accepting states is Accept My

Slide 22

Step (iv) Given an NFA M, the construction obtar(M) is pictured on Slide 23. The
states ofStar(M) are all those of\/ together with a new state, callgg say. The start state
of Star (M) is qo and this is also the only accepting statesair (/). Finally, the transitions
of Star(M) are all those of\/ together with new-transitions fromy, to the start state af/
and from each accepting statedf to ¢y (only one of this latter kind of transition is shown
in the picture).

Clearly, Star(M) accepts (since its start state is accepting) and any concatenation o
one or more strings accepted bi. Conversely, it is accepted bytar (M), the occurrences
of ¢o in a transition sequence witnessing this fact allow us ta sphto the concatenation of
zero or more strings, each of which is acceptedibySo we do indeed have

L(Star(M)) = {ujusy...u, | n > 0and eachy; € L(M)}.

28 3 REGULAR LANGUAGES, |

The only accepting state of Star (M) is qo.

Slide 23

This completes the proof of part (a) of Kleene’s Theoremd&li9). Figure 1 shows how
the step-by-step construction applies in the case of thdaegxpressiofia|b)*a to produce
an NFA M satisfyingL(M) = L((alb)*a). Of course an automaton with fewer states and
e-transitions doing the same job can be crafted by hand. Tim pbthe construction is that
it provides an automatic way of producing automata for amgigregular expression.

3.2 Decidability of matching

The proof of part (a) of Kleene’s Theorem provides us with sifpge answer to question (a)
on Slide 9. In other words, it provides a method that, givgnsanngu and regular expression
r, decides whether or natmatches. The method is:

e construct a DFAV/ satisfyingL(M) = L(r);

e beginning in)M'’s start state, carry out the sequence of transitiond inorresponding
to the stringu, reaching some statgof M (becauseV/ is deterministic, there is a
unique such transition sequence);

e check whethey is accepting or not: if it is, then € L(M) = L(r), sou matches;
otherwiseu ¢ L(M) = L(r), sou does not match .

Note. The subset construction used to convert the NF&sulting from steps (i)—(iv) of
Section 3.1 to a DFA produces an exponential blow-up of thaber of states. KM has

3.2 Decidability of matching

29

Step of type (i): a

Step of type (i): b

Step of type (ii): a|b

Step of type (iv): (a|b)*

Step of type (iii): (a|b)*a

Figure 1: Steps in constructing an NFA® for (alb)*a

30 3 REGULAR LANGUAGES, |

2™ states ifM hasn.) This makes the method described above very inefficienticiMmore
efficient algorithms exist.)
3.3 Exercises

Exercise 3.3.1.Why can’t the automatoftar (M) required in step (iv) of Section 3.1 be
constructed simply by taking/, making its start state the only accepting state and adding
newe-transitions back from each old accepting state to its state?

Exercise 3.3.2.Work through the steps in Section 3.1 to construct an NFA satisfying
L(M) = L((¢]b)*aab*). Do the same for some other regular expressions.

Exercise 3.3.3.Show that any finite set of strings is a regular language.

31

4 Regular Languages, I

The aim of this section is to prove part (b) of Kleene’s Theo(Slide 19).

4.1 Regular expressions from finite automata

Given any DFAM, we have to find a regular expressiofover the alphabet of input symbols

of M) satisfyingL(r) = L(M). In fact we do something more general than this, as described
in the Lemma on Slide 24.Note that if we can find such regular expressieﬁ; for any
choice ofQ), ¢, andq’, then the problem is solved. For takiggto be the whole oftates

andq to be the start state, say, then by definition of? , a stringu matches this regular

s,q’ !
expression iff there is a transition sequences* ¢’ in M. As ¢’ ranges over the finitely
many accepting stateg,, . . ., ¢x say, then we match exactly all the strings acceptedhby
In other words the regular expressiﬁﬁq1| e \rqu has the property we want for part (b)
of Kleene’s Theorem. (In cage= 0, i.e. there arao accepting states in/, thenL(M) is

empty and so we can use the regular expreghipn

Lemma Given an NFA M, for each subset () C States); and each
pair of states ¢, ¢/ € States)y, there is a regular expression r((;?q,
satisfying
Q . u / - . -
L(r/) ={ue (Em)" | ¢ = ¢ in M withallinter-
mediate states of the sequence

inQ}.

Hence L(M) = L(r), where r = 7| - - - |ry and
k = number of accepting states,

ri = rgqi with) = Statesy,

§ = start state,

q; = ith accepting state.

(In case k = 0, take 7 to be the regular expression ().)

Slide 24

Proof of the Lemma on Slid&. The regular expressionﬁq, can be constructed by induc-
tion on the number of elements in the subQet

The lemma works just as well wheth2f is deterministic or non-deterministic; it also works for
NFA®s, provided we replaces* by = (cf. Slide 16).

32 4 REGULAR LANGUAGES, II

Base case() is empty. In this case, for each pair of staigs,’, we are looking for a regular
expression to describe the set of strings

{u | ¢ =" ¢’ with nointermediate statgs

So each element of this set is either a single input symb@ ¢ = ¢’ holds in M) or
possiblye, in caseg = ¢'. If there are no input symbols that take us frgrto ¢’ in M, we
can simply take

r

0 det |0 ifqgF#d
7,9’ e ifqg=q¢.

On the other hand, if there are some such input symhels. ., a; say, we can take

0 def {a1\~“|ak if ¢ # ¢

eq" ay|---lagle ifqg=4q.

Induction step. Suppose we have defined the required regular expressioai Bubsets
of states withn elements. 1) is a subset withh + 1 elements, choose some elem@nt
and consider the-element set) \ {¢0} = {¢ € Q | ¢ # qo}. Then for any pair of states
q,q € States s, by inductive hypothesis we have already constructed thdaeexpressions

def Q\{q def def def Q\{q
ry = 7’q7(>,{ 0}, ro = rg%;éq(’}, ry = r%}éoq(’}, and r, = rqo}(;{,O}.

Consider the regular expression

r et ri|ra(rs)*ry.

Clearly every string matchingis in the set
{u] ¢ & ¢ with all intermediate states in this sequenc&ih

Conversely, ifu is in this set, consider the number of times the sequenceaa&itions

q¢ = ¢ passes through staig. If this number is zero then € L(r1) (by definition of
r1). Otherwise this number s > 1 and the sequence splits intot+ 1 pieces: the first piece
isin L(r2) (as the sequence goes franto the first occurrence afy), the nextk — 1 pieces
are inL(rs) (as the sequence goes from one occurrengg tf the next), and the last piece
isin L(r4) (as the sequence goes from the last occurrengg tfq’). So in this case is in
L(rs(r3)*ry). Soin either case is in L(r). So to complete the induction step we can define
rgq, to be this regular expression= ry|ry(rs)*ry. O

4.2 An example

Perhaps an example will help to understand the rather clrgeiment in Section 4.1. The
example will also demonstrate that we do not have to pursumthuctive construction of the
regular expression to the bitter end (the base ¢asel): often it is possible to find some of
the regular expressiom;% , One needs bgd hocarguments.

4.2 Anexample 33

Note also that at the inductive steps in the construction i&fgallar expression fob/
we are free to choose which stageto remove from the current state €g¢t A good rule of
thumb is:choose a state that disconnects the automaton as much ablposs

Example

Direct inspection yields:

A0 1 2 A2 g 1 9
Tig i
0 0 a* a*b
1 0 e a 1
2 aa* a*b € 2

Slide 25

As an example, consider the NFA shown on Slide 25. Since Hresate i) and this
is also the only accepting state, the language of accepteagsis that determined by the

regular expression{)?(;l’Z}. Choosing to remove statefrom the state set, we have

0,1,2 0,2}, {0,2 0,2}y« {0,2
(3) L(r éo }) L(T({),o }‘Té,l }(7{1 }) Tio })-

Direct inspection shows thdI(réOf}) = L(a*) and L(r({)012}) = L(a*b). To calculate

L(r{ {0, 2}) andL(rfOf}) we choose to remove state

0, 0 0 0\ {0
L% = L Y (3% i)

0 0 0 O0}yx, 10
L0 {9™) = L6 0).

These regular expressions can all be determined by inspees shown on Slide 25. Thus
Lr{Y™) = Ligla(e)* (b))

and it's not hard to see that this is equaltt|aa*b); and

L(ri%™) = L(0]a(e)* (aa®))

34 4 REGULAR LANGUAGES, II

which is equal ta.(aaa™). Substituting all these values into (3), we get

L(Té,oo’l’z}) = L(a*|a*b(e|aa™b)*aaa™).

So a*|a*b(e|laa*b)*aaa* IS a regular expression whose matching strings comprise the
language accepted by the NFA on Slide 25. (Clearly, one caiaiglify this to a smaller, but
equivalent regular expression (in the sense of Slide 8weudo not bother to do so.)

4.3 Complement and intersection of regular languages

We saw in Section 3.2 that part (a) of Kleene’s Theorem allog/$o answer question (a)
on Slide 9. Now that we have proved the other half of the thepmee can say more about
question (b) on that slide.

Complementation Recall that on page 8 we mentioned that for each regular ssiome-
over an alphabet, we can find a regular expressier{r) that determines the complement
of the language determined by

L(~(r)) ={u e X" [u ¢ L(r)}.

As we now show, this is a consequence of Kleene’s Theorem.

Not(M)

States not(nr) def States s

def
SNot(M) = SM

transitions of Not(M) = transitions of M

start state of Not(M) = start state of M

Accept yopary = {q € Statesnr | g ¢ Accepty}.

Provided M is a deterministic finite automaton, then w is accepted by
Not(M) iff it is not accepted by M:

L(Not(M)) = {u € ¥* | u ¢ L(M)}.

Slide 26

4.3 Complement and intersection of regular languages 35

Lemma 4.3.1.If L is a regular language over alphab&}, then its complemertu € ¥* |
u ¢ L} is also regular.

Proof. SinceL is regular, by definition there is a DFEN such that, = L(M). Let Not(M)
be the DFA constructed from/ as indicated on Slide 26. Thdm € ¥* | u ¢ L} is the set
of strings accepted by ot (M) and hence is regular. O

Given a regular expression by part (a) of Kleene’s Theorem there is a DBA such
that L(r) = L(M). Then by part (b) of the theorem applied to the DFa¢(M), we can
find a regular expression(r) so thatL(~(r)) = L(Not(M)). Since

L(Not(M)) = {u € £* | u ¢ L(M)} = {ue = | u ¢ L(r)},

this ~(r) is the regular expression we need for the complement of

Note. The construction given on Slide 26 can be applied to a finiteraaton)M whether or
not it is deterministic. However, fob(Not(M)) to equal{u € ¥* | uw ¢ L(M)} we need
M to be deterministic. See Exercise 4.4.2.

Intersection As another example of the power of Kleene’s Theorem, givguoles expres-
sionsr; andr, we can show the existence of a regular expresgipfir,) with the property:

u matchegr &r9) iff w matches; andwu matches:.
This can be deduced from the following lemma.

Lemma 4.3.2. If L; and L, are a regular languages over an alphab®g{ then their
intersection

LiNLy ¥ {ue>* |ueLandu € Ly}

is also regular.

Proof. Since L, and L, are regular languages, there are DBA and M, such that
L, = L(M;) (i = 1,2). Let And(M;, M) be the DFA constructed from/; and M, as on
Slide 27. Itis not hard to see thatd (M, M>) has the property that anyc ¥* is accepted
by And (M, M) iff it is accepted by both\/; andM,. ThusL; N Ly = L(And (M, Ms))
is a regular language. O

36 4 REGULAR LANGUAGES, II

And(Ml, Mg)

e states of And(M;, M>) are all ordered pairs (g1, g2) with
q1 € States), and g2 € States pp,

e alphabet of And(M;, M) is the common alphabet of M7 and Mo
e (q1,42) = (¢},) in And(My, My) itf g1 = ¢} in My and
a .
g2 — ¢4 in My
e start state of And (M1, M2)is (Snr,, Suy)

® (q1,q2) accepting in And (M, My) iff ¢ accepting in M7 and g2
accepting in M.

Slide 27

Thus given regular expressionsandrs,, by part (a) of Kleene’s Theorem we can find
DFA M, and M; with L(r;) = L(M;) (i = 1,2). Then by part (b) of the theorem we can
find a regular expression &re so thatL(r1&ry) = L(And(M;y, Ms)). Thusu matches
ri&ry iff And(M;, M) acceptau, iff both M; and M, acceptu, iff « matches both; and
ro, as required.

4.4 Exercises

Exercise 4.4.1.Use the construction in Section 4.1 to find a regular expoedsir the DFA

M whose state set i), 1,2}, whose start state (5 whose only accepting statedswhose
alphabet of input symbols &, b}, and whose next-state function is given by the following
table.

5M3 a b
0|1 2
112 1
212 1

Exercise 4.4.2.The constructiol/ — Not(M) given on Slide 26 applies to both DFA and
NFA,; but for L(Not(M)) to be the complement df ()) we needM to be deterministic.
Give an example of an alphabEtand a NFAM with set of input symbols:, such that
{u e X*|u¢ L(M)} is notthe same set d Not(M)).

4.4 Exercises 37

Exercise 4.4.3.Let r = (alb)*ab(alb)*. Find a complement for over the alphabet
Y = {a, b}, i.e. aregular expressionsr) over the alphabeX satisfyingL(~(r)) = {u €
¥*|u¢ L(r)}.

Tripos questions 2003.2.9 2000.2.7 1995.2.20 1994.3.3 1988.2.3

38

4 REGULAR LANGUAGES, II

39

5 The Pumping Lemma

In the context of programming languages, a typical examfiéeregular language (Slide 19)
is the set of all strings of characters which are well-forrrd@ngbasic keywords, identifiers,
etc) in a particular programming language, Java say. Byrasitthe set of all strings which
represent well-formed Jayaogramsis a typical example of a language that is not regular.
Slide 28 gives some simpler examples of non-regular langgiagor example, there is no
way to use a search based on matching a regular expressiowl tallfthe palindromes in a
piece of text (although of course there are other kinds adrétlgm for doing this).

Examples of non-regular languages

e The set of strings over {(,), a, b, . .., z} in which the parentheses
‘(" and *)” occur well-nested.

e The set of strings over {a, b, ..., z} which are palindromes,
i.e. which read the same backwards as forwards.

o {a"V" |n >0}

Slide 28

The intuitive reason why the languages listed on Slide 28areegular is that a machine
for recognising whether or not any given string is in the lzexge would neethfinitely many
different states (whereas a characteristic feature of thehmes we have been using is that
they have onlyinitelymany states). For example, to recognise that a string idbtimab"
one would need to remember how marg/had been seen before the fisss encountered,
requiring countably many states of the form ‘juseéenn_as’. This section make this intuitive

argument rigorous and describes a useful way of showingldhguuages such as these are
not regular.

The fact that a finite automaton does only have finitely maagestmeans that as we look

at longer and longer strings that it accepts, we see a césitadrof repetition—thgumping
lemma propertygiven on Slide 29.

40 5 THE PUMPING LEMMA

The Pumping Lemma

For every regular language L, there is a number ¢ > 1 satisfying the
pumping lemma property

allw € L with length(w) > £ can be expressed as a concatenation of
three strings, w = u1vug, where w1, v and us satisfy:
e length(v) > 1
(i.e. v # €)
e length(ujv) < ¥
e forallm > 0, u1v"ug € L

(.e. uqug € L, ujvug € L [but we knew that anyway], ujvvug € L,

UVVVU2 € L, etc).

Slide 29

5.1 Proving the Pumping Lemma

SinceL is regular, it is equal to the séf(M) of strings accepted by some DBA. Thenwe

can take the numbermentioned on Slid29 to be the number of states M. For suppose

w = ajas...a, Withn > £. If w € L(M), then there is a transition sequence as shown at
the top of Slide 30. Thew can be split into three pieces as shown on that slide. Note tha
by choice ofi andj, length(v) = j — i > 1 andlength(u;v) = j < £. So it just remains

to check that,;v"uy € L for all n > 0. As shown on the lower half of Slide 30, the string
v takes the machin@/ from stateg; back to the same state (singe= ¢;). So for anyn,
uyv"uy takes us from the initial state,;, = ¢, to ¢;, thenn times round the loop from; to
itself, and then fromy; to q,, € Accept,,. Therefore for any. > 0, u;v"us is accepted by
M,i.e.ujv™uy € L. O

Note. In the above construction it is perfectly possible that 0, in which caseu; is the
null-string,e.

5.2 Using the Pumping Lemma 41

If n > ¢ = number of states of M, then in

ai az ap an
SM=¢0 —>q1 —> G2 —>qe-- —> qn € Accepty

£+1 states

qo; - - - , q¢ can't all be distinct states. So g; = g, for some
0 <17 < j < /. So the above transition sequence looks like

v

SM = qo -5 q; = qj* L2 g, € Accept

where

def def def
Uy = ay...a; UV = Qi1 ...045 U2 = Gj41---0n.

Slide 30

Remark 5.1.1. One consequence of the pumping lemma property ahd/ is that if there
is any stringw in L of length> /¢, then L contains arbitrarily long strings. (We just ‘pump
up’ w by increasing.)

If you did Exercise 3.3.3, you will know that ff is afinite set of strings then it is regular.
In this case, what is the numbéwith the property on Slide 29? The answer is that we can
take any/ strictly greater than the length of any string in the finite 5eThen the Pumping
Lemma property is trivially satisfied because there arevne L with length(w) > ¢ for
which we have to check the condition!

5.2 Using the Pumping Lemma

The Pumping Lemma (Slide 5.1) says that every regular laggbas a certain property—
namely that there exists a numbéwith the pumping lemma property. So to show that
a languagel is not regular, it suffices to show that n® > 1 possesses the pumping
lemma property for the languade Because the pumping lemma property involves quite a
complicated alternation of quantifiers, it will help to dpalt explicitly what is its negation.
This is done on Slide 31. Slide 32 gives some examples.

42

5 THE PUMPING LEMMA

How to use the Pumping Lemma to prove
that a language L is not regular

For each ¢ > 1, find some w € L of length > ¢ so that

no matter how w is split into three, w = ujvus,
) with length(ujv) < ¢ and length(v) > 1,

there is some n > 0 for which u1v™us is not in L.

Slide 31

Examples

£
() L1 et ranpn | n > 0} is not regular.

[Foreach £ > 1, a*b* € L is of length > £ and has property (f) on
Slide 31.]

(i) Lo def {w € {a,b}" | wapalindrome} is not regular.

[Foreach £ > 1, a*ba’ € L is of length > ¢ and has property (1).]

def . .

(i) Ly = {aP | p prime} is not regular.
[For each £ > 1, we can find a prime p with p > 2/ and then a? € L3 has
length > ¢ and has property (}).]

Slide 32

5.2 Using the Pumping Lemma 43

Proof of the examples on Sli@2. We use the method on Slide 31.

(i) For any/ > 1, consider the stringv = a‘b®. Itisin L; and has lengt> ¢. We show
that property {) holds for thisw. For supposer = a‘b’ is split asw = wujvus With
length(uiv) < ¢ andlength(v) > 1. Thenu;v must consist entirely ofis, sou; = a”
andv = a* say, and hence, = a*~"~*b*. Then the case = 0 of u;v"u, is notinL; since

w0 uy = ugug = a” (a0 = at ot
anda’~*b* ¢ L, becausé — s # { (sinces = length(v) > 1).

(i) The argument is very similar to that for example (i), starting with the palindrome
w = a‘ba’. Once again, the = 0 of u;v™us yields a stringuius = a*~*ba’ which is
not a palindrome (becauge- s # /).

(i) Given ¢ > 1, since there are infinitely many primgswe can certainly find one satisfying

p > 2¢. | claim thatw = af has property{). For supposer = a? is split asw = ujvus

with length(uiv) < ¢ andlength(v) > 1. Lettingr et length(uy) ands e length(v), SO

thatlength(us) = p — r — s, we have

J— J— J— J— J— 2 J— J—
UL P Sy = a"a’P=8) gp—r—s — osp—s +p—s _ ,(s+1)(p—s)

Now (s + 1)(p — s) is not prime, because + 1 > 1 (sinces = length(v) > 1) and
p—s>20—(¢=1{¢>1(sincep > 2¢ by choice, and < r + s = length(ujv) < /).
Thereforeu;v™us ¢ L3 whenn = p — s.

Remark 5.2.1. Unfortunately, the method on Slide 31 can’t cope with evesp-negular
language. This is because the pumping lemma property isessaxy, but not a sufficient
condition for a language to be regular. In other words therexdst languages for which a
number/ > 1 can be found satisfying the pumping lemma property on Sl@leb@t which
nonetheless, are not regular. Slide 33 gives an examplecbfesl..

44 5 THE PUMPING LEMMA

Example of a non-regular language
that satisfies the ‘pumping lemma property’

LY {™a™" | m >1landn > 0}

U
{a™b"™ | m,n > 0}
satisfies the pumping lemma property on Slide 29 with £ = 1.

[Forany w € L of length > 1, can take u1 = &, v = first letter of w,

U = rest of w.]

But L is not regular. [See Exercise 5.4.2.]

Slide 33

5.3 Decidability of language equivalence

The proof of the Pumping Lemma provides us with a positiverengo question (c) on
Slide 9. In other words, it provides a method that, given any rregular expressions and

ro (over the same alphabg) decides whether or not the languages they determine agt, equ
L(r1) = L(ra).

First note that this problem can be reduceddeciding whether or not the set of
strings accepted by any given DFA is empBor L(r;) = L(re) iff L(r1) € L(r3) and
L(r2) C L(r1). Using the results about complementation and interseatiGection 4.3, we
can reduce the question of whether or agt;) C L(r2) to the question of whether or not
L(r1&(~r3)) =0, since

L(r1) C L(re) iff L(ri)N{ueX*|u¢ L(rs)} = 0.

By Kleene's theorem, given, andr, we can first construct regular expression& (~rs)
andrq&(~r1), then construct DFAS\/; and M, such thatL(M;) = L(ri&(~r2)) and
L(Ms) = L(r2&(~r1)). Thenr; andr, are equivalent iff the languages acceptedisy
and byM, are both empty.

The fact that, given any DFA/, one can decide whether or nbtA) = () follows from
the Lemma on Slide 34. For then, to check whether orInd) is empty, we just have to
check whether or not any of the finitely many strings of ledgs than the number of states
of M is accepted by/.

5.4 Exercises 45

Lemma If a DFA M accepts any string at all, it accepts one whose
length is less than the number of states in M.

Proof. Suppose M has ¢ states (so £ > 1). If L(M) is not empty, then
we can find an element of it of shortest length, ajas ... a,, say (where
n > 0). Thus there is a transition sequence

SM:C_Zoa—1>q1a—2>qz---a—”>qn€AcceptM.

If n > ¢, then not all the n + 1 states in this sequence can be distinct
and we can shorten it as on Slide 30. But then we would obtain a strictly
shorter string in L (M) contradicting the choice of ajas . . . a,. So we
must have n < /. O

Slide 34

5.4 Exercises

Exercise 5.4.1.Show that the first language mentioned on Slide 28 is not aegul

Exercise 5.4.2.Show that there is no DFA/ for which L(M) is the language on Slide 33.
[Hint: argue by contradiction. If there were suchh consider the DFAVI’ with the same
states as\/, with alphabet of input symbols just consistingcotindb, with transitions all
those of M which are labelled by: or b, with start statej,, (sas, ¢) (Wheres), is the start
state of M), and with the same accepting states\ds Show that the language accepted by
M’ has to be{a™b™ | n > 0} and deduce that no sudi can exist.]

Exercise 5.4.3.Check the claim made on Slide 33 that the language mentitweed satisfies
the pumping lemma property of Slide 29 with= 1.

Tripos questions 2011.2.8 2006.2.8 2004.2.9 2002.2.9 2001.2.7 1999.2.7
1998.2.7 1996.2.1()) 1996.2.8 1995.2.27 1993.6.12

46

5 THE PUMPING LEMMA

a7

6 Grammars

We have seen that regular languages can be specified in téfigebautomata that accept
or reject strings, and equivalently, in terms of pattermsegular expressions, which strings
are to match. This section briefly introduces an alternatyenerative’ way of specifying
languages.

6.1 Context-free grammars

Some production rules for ‘English’ sentences

SENTENCE — SUBJECT VERB OBJECT
SUBJECT — ARTICLE NOUNPHRASE
OBJECT — ARTICLE NOUNPHRASE

ARTICLE — a
ARTICLE — the

NOUNPHRASE — NOUN
NOUNPHRASE — ADJECTIVE NOUN

ADJECTIVE — big
ADJECTIVE — small

NOUN — cat
NOUN — dog

VERB — eats

Slide 35

Slide 35 gives an example of a context-free grammar for geimgy strings over the seven
element alphabet

5, €ef {a,big, cat,dog, eats, small, the}.

The elements of the alphabet are caltedninalsfor reasons that will emerge below. The
grammar uses finitely many extra symbols, called-terminals namely the eight symbols

ADJECTIVE, ARTICLE, NOUN, NOUNPHRASE, OBJECT, SENTENCE, SUBJECT, VERB.

One of these is designated as #art symbal In this case it ISENTENCE (because we are
interested in generating sentences). Finally, the cotftegtgrammar contains a finite set
of productionrules, each of which consists of a pair, written— «, wherex is one of the
non-terminals and is a string of terminals and non-terminals. In this casedlage twelve
productions, as shown on the slide.

48 6 GRAMMARS

The idea is that we begin with the start symB8NTENCE and use the productions to
continually replace non-terminal symbols by strings. Atcassive stages in this process we
have a string which may contain both terminals and non-temisi We choose one of the
non-terminals in the string and a production which has tbatterminal as its left-hand side.
Replacing the non-terminal by the right-hand side of thelpotion we obtain the next string
in the sequence, aterivationas it is called. The derivation stops when we obtain a string
containing only terminals. The set of strings ovethat may be obtained in this way from
the start symbol is by definition tHanguage generated the context-free grammar

A derivation

SENTENCE — SUBJECT VERB OBJECT
— ARTICLE NOUNPHRASE VERB OBJECT
— the NOUNPHRASE VERB OBJECT
— the NOUNPHRASE eats OBJECT
— the ADJECTIVE NOUN eats OBJECT
— the big NOUN eats OBJECT
— the big cat eats OBJECT
— the big cat eats ARTICLE NOUNPHRASE
— the big cat eats a NOUNPHRASE
— the big cat eats a ADJECTIVE NOUN
— the big cat eats a small NOUN
— the big cat eats a small dog

Slide 36

For example, the string
the big cat eats a small dog

is in this language, as witnessed by the derivation on Sl&jerBwhich we have indicated
left-hand sides of production rules by underlining. On ttieeo hand, the string

4) the dog a
is notin the language, because there is no derivation 88NTENCE to the string. (Why?)

Remark 6.1.1. The phrase ‘context-free’ refers to the fact that in a deigovawe are allowed
to replace an occurrence of a non-terminal by the right-reded of a production without
regard to the strings that occur on either side of the ocoae@ts ‘context’). A more general
form of grammar (a ‘typ® grammar’ in the Chomsky hierarchy—see page 257 of Kozen’s

6.2 Backus-Naur Form 49

book, for example) has productions of the form- v whereu andv are arbitrary strings of
terminals and non-terminals. For example a production@fohm

a ADJECTIVE cat — dog

would allow occurrences ofADJECTIVE’ that occur betweena’ and ‘cat’ to be replaced
by ‘dog’, deleting the surrounding symbols at the same time. Thid kif production is not
permitted in a context-free grammar.

Example of Backus-Naur Form (BNF)

Terminals:
x "+ — % ()
Non-terminals:
id op exp
Start symbol:
exp

Productions:

id == x|id

op u= +[—[=x

exp == id|exp op exp | (exp)

Slide 37

6.2 Backus-Naur Form

It is quite likely that the same non-terminal will appear ¢ tleft-hand side of several
productions in a context-free grammar. Because of this,adbmmon to use a more compact
notation for specifying productions, callddbckus-Naur Form (BNF), in which all the
productions for a given non-terminal are specified togetivh the different right-hand
sides being separated by the symhbolBNF also tends to use the symbel=’ rather than
‘—’ In the notation for productions. An example of a contexdefigrammar in BNF is given
on Slide 37. Written out in full, the context-free grammartbis slide has eight productions,

50 6 GRAMMARS

namely:

id — x
id — id’
op — +
op — —
op — *
exp — id
exp — exp op exp
exp — (exp)

The language generated by this grammar is supposed to eepeestain arithmetic expres-
sions. For example

(5) x+ (x)
is in the language, but
(6) x + (x)"

is not. (See Exercise 6.5.2.)

A context-free grammar for the language
{a™b" | n > 0}
Terminals:
a b

Non-terminal:

1
Start symbol:

I
Productions:

I:=¢|alb

Slide 38

6.3 Regular grammars 51
6.3 Regular grammars

A languageL over an alphabek is context-freeiff L is the set of strings generated by
some context-free grammar (with set of terming)s The context-free grammar on Slide 38
generates the language™b™ | n > 0}. We saw in Section 5.2 that this is not a regular
language. So the class of context-free languages is notatine s the class of regular
languages. Nevertheless, as Slide 39 points out, everyardguguage is context-free. For
the grammar defined on that slide clearly has the propertydéavations from the start
symbol to a string i2* must be of the form of a finite number of productions of the first
kind followed by a single production of the second kind, i.e.

SpM — a1q1 — a1a92qa — - —> 41402 ... ApQdy — A102 .. .0y

where inM the following transition sequence holds

s - 2 g, € Accept .

Thus a string is in the language generated by the grammaisfaccepted by/.

Every regular language is context-free

Given a DFA M, the set L(M) of strings accepted by M can be
generated by the following context-free grammar:

set of terminals = X1
set of non-terminals = States s
start symbol = start state of M

productions of two kinds:
q— aq’ whenever ¢ N q' in M
q— € whenever ¢ € Accept

Slide 39

(ii)

52 6 GRAMMARS

Definition A context-free grammar is regular iff all its productions are of
the form

X —uY

or
X —u

where u is a string of terminals and X and Y are non-terminals.

Theorem

(a) Every language generated by a regular grammar is a regular
language (i.e. is the set of strings accepted by some DFA).

(b) Every regular language can be generated by a regular grammatr.

Slide 40

It is possible to single out context-free grammars of a spdorm, calledregular (or
right linear), which do generate regular languages. The definition isliole 80. Indeed, as
the theorem on that slide states, this type of grammar geasadapossible regular languages.

Proof of the Theorem on Slid. First note that part (b) of the theorem has already been
proved, because the context-free grammar generaiing) on Slide 39 is a regular grammar
(of a special kind).

To prove part (a), given a regular grammar we have to cons&ri@A M whose set
of accepted strings coincides with the strings generatethbygrammar. By the Subset
Construction (Theorem on Slide 18), it is enough to constancNFA with this property.
This makes the task much easier. The construction is iitestron Slide 41. We take the
states ofM to be the non-terminals, augmented by some extra stateslmsbdelow. Of
course the alphabet of input symbols &f should be the set of terminal symbols of the
grammar. The start state is the start symbol. Finally, thesitions and the accepting states
of M are defined as follows.

For each production of the formp — uq’ with length(u) > 1, sayu = ajas .. .a, with
n > 1, we addn — 1 fresh stateg, ¢o, . . ., ¢,_1 t0 the automaton and transitions
ai a2 as An /
q—q —q2 — " ""Qqpn-1 —¢.

For each production of the form — g’ with length(u) = 0, i.e. withu = ¢, we add an
e-transition
q9—q.

6.3 Regular grammars 53

(iii) For each production of the formp — u with length(u) > 1, sayu = aqas . .. a, Withn > 1,

(iv)

we addn fresh stateg,, ¢2, g3, . . ., g, to the automaton and transitions
ail ao as Qnp
qQ—q1 —>q2 —>4q3 " —> (qn.
Moreover we make the stagg accepting.

For each production of the formp — w with length(u) = 0, i.e. withu = ¢, we do not add
in any new states or transitions, but we do malea accepting state.

If we have a transition sequence M of the forms,; = ¢ with ¢ € Accept,;, we
can divide it up into pieces according to where non-ternsiraicur and then convert each
piece into a use of one of the production rules, thereby fogna derivation ofu in the
grammar. Reversing this process, every derivation of agtf terminals can be converted
into a transition sequence in the automaton from the stai# $0 an accepting state. Thus
this NFA*does indeed accept exactly the set of strings generated ebgitlen regular
grammar.]

Example of the construction used
in the proof of the Theorem on Slide 40

regular grammar: ~~ | NFA®:

S—abX
X—bbY
Y—X
X—a

Y —e

OS0!

(start symbol = S)

Slide 41

54 6 GRAMMARS

Chomsky Normal Form (CNF)

Theorem
Any context-free language can be generated by a grammar whose
productions are of one of the following three types:

X =Y~/ X = a I — ¢

where X, Y, Z are non-terminals, a is a terminal, and [is the start
symbol.

The last type of production occurs if and only if the language contains
(which is why the use of CNFs is usually restricted to languages that do
not contain €.)

Slide 42

6.4 Chomsky and Greiback normal forms

The types of production which are allowed in a regular gramana very special. However,
as the results on Slides 42 and 43 show, apparently mild gkretions of them serve to
generataall context-free grammars. For proofs of these normal formltgssee Hopcroft
and Ullmang4.5 and§4.6, for example.

Example 6.4.1. Here is a context-free grammar in Chomsky normal form forldémguage
{a™b™ | n > 0}. The set of terminals i$a, b}, the set of non-terminals i, A, B, C'}, the
start symbol id and the productions are:

I == ¢|AB|AC
A = a

B == b

C = 1IB.

6.5 Exercises 55

Greibach Normal Form (GNF)

Theorem
Any context-free language can be generated by a grammar whose
productions are of one of the following two types:

X — aU I — ¢

where a is a terminal, U is a (possibly empty) string of non-terminals,
and [is the start symbol.

The last type of production occurs if and only if the language contains €
(which is why the use of GNFs is usually restricted to languages that do
not contain £.)

Slide 43

6.5 Exercises

Exercise 6.5.1.Why is the string (4) not in the language generated by theestiitee
grammar in Section 6.17?

Exercise 6.5.2.Give a derivation showing that (5) is in the language geeerdty the
context-free grammar on Slide 37. Prove that (6) is not im ldwaguage. [Hint: show that
if u is a string of terminals and non-terminals occurring in awdion of this grammar and
that ”” occurs inu, then it does so in a substring of the forfm orv”, orv’”’, etc., wherey is
eitherx orid.]

Exercise 6.5.3.Give a context-free grammar generating all the palindroowesthe alphabet
{a, b} (cf. Slide 28).

Exercise 6.5.4.Give a context-free grammar generating all the regularesgons over the
alphabet{a, b}.

Exercise 6.5.5.Using the construction given in the proof of part (a) of theedfem on

56 6 GRAMMARS

Slide 40, convert the regular grammar with start symjgand productions

qgo — €
qo — abqo

do — 1
q1 — ab

into an NFAwhose language is that generated by the grammar.

Exercise 6.5.6.1s the language generated by the context-free grammar de 34 a regular
language? What about the one on Slide 377

Exercise 6.5.7.Show that the language generated by the CFG in Example &4ntleed
{a"b" | n > 0}.

Tripos questions 2008.2.8 2005.2.9 2002.2.1(d) 1997.2.7 1996.2.1(k)
1994.4.3

57

7 Pushdown Automata

Roughly speaking, a non-deterministic pushdown automatan non-deterministic finite

automaton augmented with a single memory stack of unlindiggth. They can be used
to accept exactly the context-free languages in just theesaay that NFAs can be used
to accept exactly the regular languages. (Howeverd#terministicversion of pushdown

automata accept a strictly smaller class of languages, ntrast to the situation for DFAs
versus NFAs and regular languages.)

7.1 Non-deterministic pushdown automata

A non-deterministic pushdown automatofiNPDA)

M= (Q,%,s, FT' I A)

is specified by the giving the information listed on Slide 44.
The first part(Q, X, s, F') of M is like specifying an NFA minus its transition relation.

The next parf” of M is used to build finitestacks these are just finite strings € I'*
over the alphabell’ of stack symbols, with the left-most string regarded as tbp of the
stack’. When strings are regarded as stacks in this way,aantgin operations on strings are
allowed, as specified on Slide 45V/(contains a distinguished stack symldot T" in order
to define its initial configuration: see Section 7.3 below.)

Finally, the finite state machine and stack aspect®/dare tied together by its transition
relation A, which formally speaking is any finite subset(@f x @ x ¥ x I'* x Q) U (I" x

Q x T x Q).

Slide 46 gives an example of a NPDA.

58

7 PUSHDOWN AUTOMATA

Non-deterministic Pushdown Automaton (NPDA)

is specified by:

e (), finite set of machine states

32, alphabet of input symbols

s € @, the start state

e [' C (), subset of accepting states

I', alphabet of stack symbols

I € T, the initial stack symbol

/A, finite set of transitions , which are either

input-transitions | A, ¢ — S, ¢’ |, or e-transitions | A, ¢ — S, q
where A€, qgeQ,ace X, SeT*andq € Q).

Slide 44

Allowed operations on stacks S € I'*

pop the top element A off a non-empty stack A.S, producing a new
stack S and returning the element A

push a finite string .S’ of elements on to the top of a stack .S, producing
a new stack S’ S

Note:
e pop is not defined on the empty stack;

e we may push an empty string onto a stack (in which case it is unchanged).

Slide 45

7.2 Behaviour of a NPDA 59

Example NPDA

States: i ¢q f
Input symbols: a b
Start state: ¢
Accepting state: f
Stack symbols: I A

Initial stack symbol:

e-transition ‘ a-transitions b-transitions

Transitions:| I,q = ¢, f | I,i = Al i A,iis,q
Ai % AA | A gD e q

Slide 46

7.2 Behaviour of a NPDA

The operation of a NDPA is described in terms of possiblesiteams between ‘instantaneous
configurations’ of the memory stack, the internal machirsgeseind the queue of input
symbols waiting to be processed. So such a configuratios thkeform

(S, ¢, w)
where
e S € I'"is the current stack of memory symbols,
e ¢ € QQis the current state, and
e w € Y* is the string of input symbols yet to be processed (from tefight).

We can think of the machine progressing from one such instg@aus configuration to the
nextnon-deterministicallypy performing transitions from, in the following sense:

(i) If (AS’,q, aw) is the current configuration and, ¢ % S, ¢’ is an input-transition of
M, then(SS’, ¢, w) is a possible next configuration. (In other words, the adtiden
is: ‘pop A off the stack, consume input change to stat¢’ and pushS onto the top
of the stack’.)

60 7 PUSHDOWN AUTOMATA

(i) If (AS’,q,w) is the current configuration and, ¢ = S, ¢ is ane-transition of M,
then(SS’, ¢’, w) is a possible next configuration. (In other words, the adien is:
‘pop A off the stack, change to stajéand pushS onto the top of the stack’.)

Note that in both cases the actions are only allowed to reathéesmemory symboH from
the top of the stack, but can replace it with a whetleng .S of memory symbols.

More formally, given a NPDAM = (Q,%,s, F,T',1,A), Slide 47 defines binary
relations between configurations:

one-step transition relation (.9, ¢, w) =! (5, ¢, w’)

many-step transition relation (S, ¢, w) =* (5, ¢, w’).

Next-configuration relation (S, ¢, w) = (S’, ¢, w’)

describes how a NDPA M = (Q, X, s, F,T", I, A) can move from one
configuration (.S, ¢, w) to another (S’, ¢, w’) in one step.

It is defined to hold if it matches either of the following two cases:
o (AS' q,aw) ="' (55',¢, w)
where A, q i S, ¢’ is an input-transition of M;

o (AS' q,w) =1 (S5',¢,w)
where A, q < S, ¢ is an e-transition of M.

We write | (S, ¢, w) =* (5, ¢',w’) |to mean

1 .

(Sacbw) = (‘917Q17w1) = e :>1 (Sn7QTL7wn) = (Sl7qlaw/)

holds for some n > 1 and configurations (S;, ¢;, w;).

Slide 47

7.3 Language accepted by a NPDA 61

For example, for the NPDA on Slide 46 we havei, a®b®) =* (e, f,¢) because of the
following one-step transitions:

(I,4,a%%) = (Al i,a*b?) becausd,i — Al i
=1 (AAI i, ab®) becaused,i % AA,i
=1 (AAAI i, b%) becaused, i % AA,i
=1 (AAI q,b?) becausel, ¢ > ¢, g
=1 (AI,q,b) becausel, ¢ > ¢, g
=1 (1,q,¢) becausel, g 2 £,q
=1 (e, f,e) becausd, ¢ = ¢, f.

L(M), language accepted by a NPDA M

fM=(Q,%,s F,T',I,A), then

L(M)={weX*|(,iw)="(5,q,¢) holds for
some S € '"and q € F'}.

Slide 48

7.3 Language accepted by a NPDA

Given a NPDAM = (Q,%,s, F,T', 1, A), the language it accepts consists of all strings
w € ¥* for which there is a transition from an initial configuratifor w to some accepting
configuration. By definition, thanitial configuration for w is

(I,i,w)

62 7 PUSHDOWN AUTOMATA

in other words, the stack of memory symbols just containgrihigl stack symboll, the
machine is in its start stateand the input string to be processeduis By definition, a
configuration(.S, ¢, w) is acceptingif ¢ € F' (the set of accepting states df) andw = ¢
(there are no more input symbols waiting to be processedieSget the definition of.(M),
the language accepted By, as on Slide 48.

Example 7.3.1.1f M is the NPDA given on Slide 46, thail M) is the context-free language
{a"b" | n > 0}.

We state without proof on Slide 49 the main result connedidRpAs with context-free
languages.

Theorem
A language is context-free if and only if it is accepted by some
push-down automaton.

For a proof, see for example Hopcroft and Ullman Sect. 5.5.

Slide 49
Remarks

() Note that an NFA can be regarded as a NPDA in which the &lehaf stack symbols
isjust{I}, there are ne-actions, and input-transitions all have the pushed s&qal
to I (so that the stack only ever contains the single ifeduring operation). For such
a NPDA, the definition of.(M) on Slide 48 agrees with the definition of the language
accepted by an NFA (Slide 11).

(i) In the literature, the languagé (M) defined on Slide 48 is called tHanguage
accepted byM by final state There is an alternative definition of ‘accepting
configuration’ for NPDAs that does without the subgebf accepting states of the
machine: one just takes configurations of the f@ey, €) in which the machine is an

7.4 Toward computation theory 63

arbitrary sate € @, but the stack of memory symbols is empty and there are no more
input symbols to be processed:

L'(M)={weX*| (I,i,w) =" (g,q,¢) holds for somey € Q}

is called thdanguage accepted h¥/ by empty stacklt can be shown that the class of
languages we get using this definition of accepting configamas no different from
before—it is all context-free languages.

(i) A NPDA is deterministicif for each instantaneous configuration (with non-empty
memory stack) there is exactly one transition that is apple. In other words, for all
(S, q,w) with S +# ¢, there is a uniquéS’, ¢’, w’) for which (S, ¢, w) =1 (5, ¢, w’)
holds. Unlike the situation for finite automata, deterrmmi®r pushdown automata
makes a difference to a machine’s recognising capabilities class of languages
accepted by some deterministic pushdown automaton iglgtemaller than the
collection of all context-free languages.

7.4 Toward computation theory

Why have just one memory stack? Why not have two or more? nistaut that a machine
with more than two stacks can always be simulated by one wghtyvo. However, having
two stacks rather than one gives a real leap in languagesnesiog power. Such machines
have the same power dsiring machinesand the languages they accept arerdwairsively
enumerabl@nes. These concepts are developed in the Part IB Compuiidigory course.

7.5 EXxercises

Exercise 7.5.1.Show that if M is the NPDA from Slide 46, theh (M) is the context-free
language{a™b™ | n > 0}.

Exercise 7.5.2.Give a NPDA accepting the language of palindromes over titesdlet{ a, b}
(cf. Slide 28).

Exercise 7.5.3.Let M be the NPDA({3, ¢}, {a,b,c},i,0,{I, X, Y}, I,A), whereA con-
tains the following transitions:

1,45 ¢.q I,i% XI,i Ii Yl 1,i % 1,q
X,i% XX,i X, i 5YVX,i X,i5% X,q
Y,i% XY,i Y,i 2 YY,i Y,i % Y.q
X,q&a,q.

What isL(M)? Consider the languadé(M) accepted by this NPDAy empty stackn the
sense of Remark (ii) above. Show that for anye {a, b}*, the stringwcw? is in L' (M),
wherew? is the reverse ofv. Is every string inL’(M) of this form? [If you get stuck, see
Hopcroft and Ullman, Example 5.1.]

64

7 PUSHDOWN AUTOMATA

