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Exercise Sheet

1 Regular Expressions

Exercise 1.1. Write down an ML data type declaration for a type constructor’a regExp whose
values correspond to the regular expressions over an alphabet ’a.

Exercise 1.2. Find regular expressions over{0, 1} that determine the following languages:

(a) {u | u contains an even number of1’s}

(b) {u | u contains an odd number of0’s}

Exercise 1.3. For which alphabetsΣ is the setΣ∗ of all finite strings overΣ itself an alphabet?
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2 Finite State Machines

Exercise 2.1. For each of the two languages mentioned in Exercise1.2 find a DFA that accepts exactly
that set of strings.

Exercise 2.2. The example of the subset construction given on Slide 17 in the lecture notes constructs
a DFA with eight states whose language of accepted strings happens to beL(a∗b∗). Give a DFA with
the same language of accepted strings, but fewer states. Give an NFA with even fewer states that does
the same job.
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3 Regular Languages

Exercise 3.1. Why can’t the automatonStar (M) required in step (iv) of Section 3.1 be constructed
simply by takingM , making its start state the only accepting state and adding newε-transitions back
from each old accepting state to its start state?

Exercise 3.2. Construct an NFAε M satisfyingL(M) = L((ε|b)∗aab∗).

Exercise 3.3. Show that any finite set of strings is a regular language.

Exercise 3.4. Use the construction in Section 4.1 to find a regular expression for the DFAM whose
state set is{0, 1, 2}, whose start state is0, whose only accepting state is2, whose alphabet of input
symbols is{a, b}, and whose next-state function is given by the following table.

δM : a b
0 1 2
1 2 1
2 2 1
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Exercise 3.5. The constructionM 7→ Not(M) given on Slide 26 applies to both DFA and NFA; but
for L(Not(M)) to be the complement ofL(M) we needM to be deterministic. Give an example of
an alphabetΣ and a NFAM with set of input symbolsΣ, such that{u ∈ Σ∗ | u /∈ L(M)} is not the
same set asL(Not(M)).

Exercise 3.6. Let r = (a|b)∗ab(a|b)∗. Find a complement forr over the alphabetΣ = {a, b}, i.e. a
regular expressions∼(r) over the alphabetΣ satisfyingL(∼(r)) = {u ∈ Σ∗ | u /∈ L(r)}.
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4 The Pumping Lemma

Exercise 4.1. Show that there is no DFAM for whichL(M) is the language on Slide 33. [Hint:
argue by contradiction. If there were such anM , consider the DFAM ′ with the same states asM ,
with alphabet of input symbols just consisting ofa and b, with transitions all those ofM which are
labelled bya or b, with start stateδM (sM , c) (wheresM is the start state ofM ), and with the same
accepting states asM . Show that the language accepted byM ′ has to be{anbn | n ≥ 0} and deduce
that no suchM can exist.]
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5 Grammars

Exercise 5.1. Why is the stringthe dog a not in the language generated by the context-free grammar
in Section 6.1?

Exercise 5.2. Give a derivation showing thatx+(x′′) is in the language generated by the context-free
grammar on Slide 37. Prove thatx+ (x)′′ is not in that language. [Hint: show that ifu is a string of
terminals and non-terminals occurring in a derivation of this grammar and that ‘′’ occurs inu, then
it does so in a substring of the formv′, or v′′, or v′′′, etc., wherev is eitherx or id.]

Exercise 5.3. Give a context-free grammar generating all the palindromesover the alphabet{a, b}.

Exercise 5.4. Give a context-free grammar generating all the regular expressions over the alphabet
{a, b}.

Exercise 5.5. Using the construction given in the proof of part (a) of the Theorem on Slide 40, convert
the regular grammar with start symbolq0 and productions

q0 → ε

q0 → abq0

q0 → cq1

q1 → ab

into an NFAεwhose language is that generated by the grammar.

Exercise 5.6. Is the language generated by the context-free grammar on Slide 35 a regular language?
What about the one on Slide 37?
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6 Pushdown Automata

Exercise 6.1. Show that ifM is the NPDA from Slide 46, thenL(M) is the context-free language
{anbn | n ≥ 1}.

Exercise 6.2. Give a NPDA accepting the language of palindromes over the alphabet{a, b}.
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