
Understanding POWER multiprocessors

Susmit Sarkar

University of Cambridge

Multicore Programming, 2011



POWER: A Different Hardware Model

IBM Power – used in big servers (with lots of processors)

Different Relaxed Memory Model to X86
. . . and much more subtle

ARM memory model is similar: your (next?) phone/tablet!

High-level languages (C++/C) models informed by POWER/ARM
features

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 2 / 31



Recall: X86-TSO

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

On POWER, things are a little more subtle!

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 3 / 31



Subtlety 1: Writes propagating in different orders

Write-to-Read Causality: WRC

Test WRC : Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf

po
rf

po

rf

Writes propagate to different threads in different orders

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 4 / 31



Subtlety 2: Program order not maintained

Test MP : Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

Writes and reads can execute out-of-program order

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 5 / 31



What is going on?

Visible Microarchitectural Effects:

Out-of-order, and Speculative Execution

Buffering of Stores and Loads

Topology of Interconnection

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 6 / 31



A (Misleading) Microarchitectural view

Test IRIW : Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1 e: R[y]=1

Thread 3

f: R[x]=0

rf

po

rf

po

rf rf

W
rite B

uffer

Thread 1 Thread 3

W
rite B

uffer

Thread 0 Thread 2

Shared Memory

Perhaps with even more hierarchy

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 7 / 31



The model structure

Overall structure:

Write request

Barrier request
Write announce

Barrier ack

Storage Subsystem

ThreadThread

Some aspects are thread-only, some storage-only, some both

Threads and Storage Subsystem: Abstract state machines

Speculative execution in Threads;
Topology-independent Storage Subsystem

Formally: transitions, guarded by preconditions, change state, and
synchronize with each other

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 8 / 31



Storage Subsystem I

Storage subsystem has (among other things):

Per-thread, a list of events propagated there

The last write is the value to be read

Stores can propagate to another thread at any time,
subject to . . .

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 9 / 31



Coherence

Coherence: total order of writes to each location,
Such that no reader reads out-of-sequence

Test CoRR1 : Forbidden

Thread 0

a: W[x]=2 b: R[x]=2

Thread 1

c: R[x]=1

rf
po

rf

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 10 / 31



Storage Subsystem II

Storage subsystem has (among other things):

Per-thread, a list of events propagated there

The last write is the value to be read

A set of constraints on coherence order (partial order)

(Partial) Coherence Commitments can be made at any time

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 11 / 31



Write Propagation and Coherence: Demo

Test CoRR2 : Forbidden

Thread 0

a: W[x]=1 b: W[x]=2

d: R[x]=1

e: R[x]=1

Thread 1

c: R[x]=2

f: R[x]=2

Thread 2 Thread 3

co rf

rf

rf rf
po po

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 12 / 31



Thread Subsystem I

Instructions can be executed out-of-order, and speculated
In-flight instructions are committed when [. . . TBD]

i1 i2 i3 i4 i5

i6

i8

i7

i9

i10

i13

i11 i12

Until then, subject to rollback

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 13 / 31



Thread Subsystem II

Read requests can be issued at any time, satisfied by storage subsystem
Remember: Read request is different from Committing Read
Subject to rollback

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 14 / 31



Read Satisfy and Restart: Demo

Test CoRR1 : Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[x]=0

rf
po

rf

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 15 / 31



Enforcing order where needed

How to enforce order?

Coherence

Dependencies

Barriers

Synchronizing Instructions (LL/SC)

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 16 / 31



Restoring Order when needed: Proposed C++ mapping

C++11 Operation POWER Implementation

Non-atomic Load ld

Load Relaxed ld

Load Consume ld (and preserve dependency)
Load Acquire ld; cmp; bc; isync

Load Seq Cst hwsync; ld; cmp; bc; isync

Non-atomic Store st

Store Relaxed st

Store Release lwsync; st

Store Seq Cst hwsync; st

Cmpxchg Relaxed loop: lwarx; cmp; bc exit; stwcx.; bc loop; exit:

Cmpxchg Acquire loop: lwarx; cmp; bc exit; stwcx.; bc loop;

isync; exit:

Cmpxchg Release lwsync; loop: lwarx; cmp; bc exit;

stwcx.; bc loop; exit:

stwcx.; bc loop; isync; exit:

Cmpxchg SeqCst hwsync; loop: lwarx; cmp; bc exit;

stwcx.; bc loop; isync; exit:

Acquire Fence lwsync

Release Fence lwsync

SeqCst Fence hwsync

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 17 / 31



Coherence

Test CoWW : Forbidden

Thread 0

a: W[x]=1

b: W[x]=2

co

Test CoRR1 : Forbidden

Thread 0

a: W[x]=2 b: R[x]=2

Thread 1

c: R[x]=1

rf
po

rf

Test CoRW : Forbidden

Thread 0

a: R[x]=2

b: W[x]=1

c: W[x]=2

Thread 1

po
corf

Test CoWR : Forbidden

Thread 0

a: W[x]=1

b: R[x]=2

Thread 1

c: W[x]=2

po
co

rf

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 18 / 31



Dependencies

Address Dependency: A read feeds value of address of subsequent
read/write
r1 = x; y = (*r1);

Data Dependency: A read feeds value of data of subsequent write
r2 = x; y = r2;

Control Dependency: A read feeds a condition value branched on, and a
write is after the branch
if (x == 1) {y = 2;}

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 19 / 31



Dependencies, microarchitecturally

Address Dependency:
r1 = x; y = (*r1);

Cannot ask storage subsystem to do read/write before address available

Data Dependency:
r2 = x; y = r2;

Cannot ask storage subsystem to do write before data available

Control Dependency:
if (x == 1) {y = 2;}
Cannot ask storage subsystem to commit write before branch resolved

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 20 / 31



Barriers

General-purpose (often expensive) instructions to restore order

Here will look at two: lwsync and sync

(Others used for systems programming: ptesync, eieio, mbar)

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 21 / 31



Barriers keep instructions in order

Test MP+lwsyncs : Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

lwsync
rf

lwsync

rf

Instructions committed in order, and
Writes propagated in order

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 22 / 31



Programming on many-threads: Cumulativity

Test WRC+lwsync+addr : Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf

lwsync
rf

addr

rf

Keep writes from other threads in order

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 23 / 31



(Heavyweight) Sync

Test SB+syncs : Forbidden

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[x]=0

sync sync

rf rf

Have to wait till sync (and preceding writes) propagated everywhere

Restore SC if every instruction is separated by a sync (Can now be proved!)

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 24 / 31



How do we know?

Read the Manuals
“all that horrible horribly incomprehensible and confusing
[...] text that no-one can parse or reason with — not even
the people who wrote it”

— Anonymous Processor Architect, 2011

Run lots of tests

WRC 23M/93G
WRC+sync+addr 0/110G

Discuss with Designers/Architects

Make tentative model, and Repeat

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 25 / 31



Smart synchronizations: Compare-and-Swap

Clever algorithms often require atomic load/store

Most commonly: Compare-and-Swap (CAS)

. . . CAS x,v1,v2: if x holds v1, then atomically write v2, else fail

e.g. Concurrent List (simplified):

push(x) {
do {

r = head;

x.next = r;

} while (!CAS (head,r,x))

}

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 26 / 31



Problems with CAS

push(x) {
do {

r = head;

x.next = r;

} while (!CAS (head,r,x))

}

Two reads

ABA problem: can concurrently change!

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 27 / 31



More general solution: LL/SC

Load-linked (lwarx): read data
Store-conditional (stwcx): if last value read is still most-recent (?) write

More general: CAS(x,v1,v2) is just
lwarx x,r1; cmp r1 v1; bc exit; stwcx x,v2; exit

But what is most recent?

Microarchitecturally: if we have not lost the cache-line since last
lwarx then stwcx can succeed

More abstractly: need to relate to other events

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 28 / 31



Modeling lwarx/stwcx

Intuition: Have to be atomic for that location

Idea: Look at coherence order

For a stwcx to succeed, it should be coherence later the write read from
by the lwarx, and no other write should intervene

Coherence Point: everything below in coherence is linear (all decisions
made), and no other write is later allowed to come below

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 29 / 31



Recap

Write request

Barrier request
Write announce

Barrier ack

Storage Subsystem

ThreadThread

How to enforce order?

Coherence

Dependencies

Barriers

Synchronizing Instructions (LL/SC)

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 30 / 31



More details

Paper and additional materials:

http://www.cl.cam.ac.uk/˜pes20/ppc-supplemental

Look most particularly at the ppcmem tool:

http://www.cl.cam.ac.uk/˜pes20/ppcmem/

Susmit Sarkar (Cambridge) Understanding POWER multiprocessors Multicore Programming, 2011 31 / 31

http://www.cl.cam.ac.uk/~pes20/ppc-supplemental
http://www.cl.cam.ac.uk/~pes20/ppcmem/

