
Multicore Semantics and Programming

Peter Sewell Tim Harris

University of Cambridge MSR

with thanks to

Francesco Zappa Nardelli, Jaroslav Ševčík, Susmit Sarkar, Tom Ridge,
Scott Owens, Magnus O. Myreen, Luc Maranget,

Mark Batty, Jade Alglave

October – November, 2011

– p. 1

The Golden Age, 1945–1959

Processor

Memory

– p. 2

The Golden Age, 1945–1959

Memory = An array of values

– p. 3

Multiprocessors, 1960–2011
Niche multiprocessors since before 1964 (UNIVAC 1108A)
IBM System 370/158MP in 1972

Mass-market since 2005 (Intel Core 2 Duo).

Now: dual core ARM phones (HTC, Samsung, iPhone4S),
12+ core x86 servers, 1024-thread Power 7 servers, Sparc,
Itanium

– p. 4

Multiprocessors, 1960–2011
Why now?

Exponential increases in transistor counts continuing — but
not per-core performance

energy efficiency (computation per Watt)

limits of instruction-level parallelism

Concurrency finally mainstream — but how to understand and
design concurrent systems?

– p. 5

Concurrency Everywhere
In many forms and at many scales:

intra-core

GPU

multicore (/manycore) systems

datacenter-scale

explicit message-passing vs shared memory

– p. 6

The First Bizarre Example

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

What final states are allowed?

– p. 7

The First Bizarre Example

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

What final states are allowed?

...an example of relaxed memory behaviour

– p. 7

These Lectures
Part 1: Concurrency in multiprocessors and programming
languages (Peter Sewell and others)

Establish a solid basis for thinking about relaxed-memory
executions, linking to usage, microarchitecture, experiment,
and semantics.

Part 2: Concurrent algorithms (Tim Harris)

Concurrent programming: simple algorithms, correctness
criteria, advanced synchronisation patterns, transactional
memory.

– p. 8

Start with SC

– p. 9

In an Ideal World

Multiprocessors would have sequentially consistent (SC)
shared memory:

“the result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, and the operations of each
individual processor appear in this sequence in the
order specified by its program”.

Leslie Lamport, 1979

Thread Thread

Shared Memory

– p. 10

A Tiny Language
location, x , m address (or pointer value)
integer , n integer
thread id , t thread id
k , i , j

expression, e ::= expression
| n integer literal
| ∗x read from pointer
| ∗x = e write to pointer
| e; e ′ sequential composition
| e + e ′ plus

process , p ::= process
| t :e thread
| p|p′ parallel composition

– p. 11

A Tiny Language

That was just the syntax — how can we be precise about the
permitted behaviours of programs?

– p. 12

An SC Semantics for that Language
Take a memory M to be a function from addresses to integers,
and a state 〈p, M 〉 to be a pair of a process and a memory.

state, s ::= state
| 〈p, M 〉 process p and memory M

thread label , lt ::= thread label
| Wt x=n write
| Rt x=n read
| τt internal action (tau)

We’ll define a transition relation 〈p, M 〉 lt−→ 〈p′, M ′〉

– p. 13

Example: SC Whole-System Trace
For a thread t1:(∗x = ∗y); ∗x starting in memory
{x 7→ 0, y 7→ 7}:

〈t1:(∗x = ∗y); ∗x , {x 7→ 0, y 7→ 7}〉

Rt1
y=7

��

〈t1:(∗x = 7); ∗x , {x 7→ 0, y 7→ 7}〉

Wt1
x=7

��

〈t1:7; ∗x , {x 7→ 7, y 7→ 7}〉

τt1
��

〈t1:∗x , {x 7→ 7, y 7→ 7}〉

Rt1
x=7

��

〈t1:7, {x 7→ 7, y 7→ 7}〉

– p. 14

Defining an SC Semantics — threads
What can a thread do in isolation? (without prescribing how
the memory behaves)

label , l ::= label
| W x=n write
| R x=n read
| τ internal action (tau)

– p. 15

Defining an SC Semantics: expressions (1)

e
l
−→ e ′ e does l to become e ′

∗x
R x=n
−−−−→ n

READ

∗x = n
W x=n
−−−−→ n

WRITE

e
l
−→ e ′

∗x = e
l
−→ ∗x = e ′

WRITE CONTEXT

n; e
τ

−→ e
SEQ

e1
l
−→ e ′1

e1; e2
l
−→ e ′1; e2

SEQ CONTEXT

– p. 16

Defining an SC Semantics: expressions (2)

e
l
−→ e ′ e does l to become e ′

e1
l
−→ e ′1

e1 + e2
l
−→ e ′1 + e2

PLUS CONTEXT 1

e2
l
−→ e ′2

n1 + e2
l
−→ n1 + e ′2

PLUS CONTEXT 2

n = n1 + n2

n1 + n2
τ

−→ n
PLUS

– p. 17

Example: SC Expression Trace
(∗x = ∗y); ∗x

– p. 18

Example: SC Expression Trace
(∗x = ∗y); ∗x

(∗x = ∗y); ∗x
R y=7
−−−→

W x=7
−−−−→

τ
−→

R x=9
−−−→ 9

– p. 18

Example: SC Expression Trace
(∗x = ∗y); ∗x

(∗x = ∗y); ∗x
R y=7
−−−→

W x=7
−−−−→

τ
−→

R x=9
−−−→ 9

∗y
R y=7
−−−→ 7

READ

∗x = ∗y
R y=7
−−−→ ∗x = 7

WRITE

(∗x = ∗y); ∗x
R y=7
−−−→ (∗x = 7); ∗x

SEQ CONTEXT

– p. 18

Example: SC Expression Trace
(∗x = ∗y); ∗x

(∗x = ∗y); ∗x
R y=7
−−−→

W x=7
−−−−→

τ
−→

R x=9
−−−→ 9

∗x = 7
W x=7
−−−−→ 7

WRITE

(∗x = 7); ∗x
W x=7
−−−−→ 7; ∗x

SEQ CONTEXT

– p. 18

Example: SC Expression Trace
(∗x = ∗y); ∗x

(∗x = ∗y); ∗x
R y=7
−−−→

W x=7
−−−−→

τ
−→

R x=9
−−−→ 9

7; ∗x
τ
−→ ∗x

SEQ

∗x
R x=9
−−−→ 9

READ

– p. 18

Defining an SC Semantics: lifting to processes

p
lt−→ p′ p does lt to become p′

e
l
−→ e ′

t :e
lt−→ t :e ′

THREAD

p1
lt−→ p′1

p1|p2
lt−→ p′1|p2

PAR CONTEXT LEFT

p2
lt−→ p′2

p1|p2
lt−→ p1|p′2

PAR CONTEXT RIGHT

free interleaving

– p. 19

Defining an SC Semantics: SC memory

M
l
−→ M ′ M does l to become M ′

M (x) = n

M
R x=n
−−−−→ M

MREAD

M
W x=n
−−−−→ M ⊕ (x 7→ n)

MWRITE

– p. 20

Defining an SC Semantics: whole-system states

s
lt−→ s ′ s does lt to become s ′

p
Rt x=n
−−−−→ p′

M
R x=n
−−−−→ M ′

〈p, M 〉
Rt x=n
−−−−→ 〈p′, M ′〉

SREAD

p
Wt x=n
−−−−−→ p′

M
W x=n
−−−−→ M ′

〈p, M 〉
Wt x=n
−−−−−→ 〈p′, M ′〉

SWRITE

p
τt−→ p′

〈p, M 〉
τt−→ 〈p′, M 〉

STAU

synchronising between the process and the memory
– p. 21

Example: SC Interleaving
All threads can read and write the shared memory.

Threads execute asynchronously – the semantics allows any
interleaving of the thread transitions. Here there are two:

〈t1:∗x = 1|t2:∗x = 2, {x 7→ 0}〉
Wt1

x=1

uukkkkkkkkkkkkkk
Wt2

x=2

))SSSSSSSSSSSSSS

〈t1:1|t2:∗x = 2, {x 7→ 1}〉

Wt2
x=2

��

〈t1:∗x = 1|t2:2, {x 7→ 2}〉

Wt1
x=1

��

〈t1:1|t2:2, {x 7→ 2}〉 〈t1:1|t2:2, {x 7→ 1}〉

But each interleaving has a linear order of reads and writes to
the memory.

– p. 22

Combinatorial Explosion
The behaviour of t1:∗x = ∗x + 1|t2:∗x = ∗x + 7 for the initial
store {x 7→ 0}:

〈t1:1|t2:(∗x = ∗x + 7), {x 7→ 1}〉
r // •

+
// •

w // 〈t1:1|t2:8, {ll 7→ 8}〉

〈t1:(∗x = 1)|t2:(∗x = ∗x + 7), {x 7→ 0}〉

r

**UUUUUUUUUUUUUUUUU

w

44iiiiiiiiiiiiiiiii

〈t1:1|t2:(∗x = 7 + 0), {x 7→ 1}〉

+

**UUUUUUUUUUUUUUUU

〈t1:(∗x = 1 + 0)|t2:(∗x = ∗x + 7), {x 7→ 0}〉

r

((QQQQQQQQQQQQ

+

66mmmmmmmmmmmm

〈t1:(∗x = 1)|t2:(∗x = 7 + 0), {x 7→ 0}〉

+

**UUUUUUUUUUUUUUUUU

w

44iiiiiiiiiiiiiiiii

〈t1:1|t2:(∗x = 7), {x 7→ 1}〉
w // 〈t1:1|t2:7, {x 7→ 7}〉

〈t1:(∗x = ∗x + 1)|t2:(∗x = ∗x + 7), {x 7→ 0}〉

r

66mmmmmmmmmmmm

r

((QQQQQQQQQQQQ
〈t1:(∗x = 1 + 0)|t2:(∗x = 7 + 0), {x 7→ 0}〉

+

44iiiiiiiiiiiiiiiii

+
**UUUUUUUUUUUUUUUUU

〈t1:(∗x = 1)|t2:(∗x = 7), {x 7→ 0}〉

w

44iiiiiiiiiiiiiiii

w

**UUUUUUUUUUUUUUUU

〈t1:(∗x = ∗x + 1)|t2:(∗x = 7 + 0), {x 7→ 0}〉

r

66mmmmmmmmmmmm

+
((QQQQQQQQQQQQ

〈t1:(∗x = 1 + 0)|t2:(∗x = 7), {x 7→ 0}〉

+

44iiiiiiiiiiiiiiiii

w

**UUUUUUUUUUUUUUUUU
〈t1:∗x = 1|t2:7, {x 7→ 7}〉

w // 〈t1:1|t2:7, {x 7→ 1}〉

〈t1:(∗x = ∗x + 1)|t2:(∗x = 7), {x 7→ 0}〉

r

44iiiiiiiiiiiiiiiii

w

**UUUUUUUUUUUUUUUUU
〈t1:∗x = 1 + 0|t2:7, {x 7→ 7}〉

+

44iiiiiiiiiiiiiiii

〈t1:∗x = ∗x + 1|t2:7, {x 7→ 7}〉
r // •

+
// •

w // 〈t1:8|t2:7, {ll 7→ 8}〉

NB: the labels +, w and r in this picture are just informal hints as to how
those transitions were derived

– p. 23

Morals

For free interleaving, number of systems states scales as
nt, where n is the threads per state and t the number of
threads.

Drawing state-space diagrams only works for really tiny
examples – we need better techniques for analysis.

Almost certainly you (as the programmer) didn’t want all
those 3 outcomes to be possible – need better idioms or
constructs for programming.

– p. 24

Mutual Exclusion

For “simple” concurrency, need some way(s) to synchronise
between threads, so can enforce mutual exclusion for shared
data.
– can code up mutual exclusion library using reads and writes
– but usually, at the language or OS level, there’s built-in
support from the scheduler, eg for mutexes and condition
variables
– and at the hardware level, various primitives that we’ll get
back to
See this – in the library – for a good discussion of mutexes and condition variables: A. Birrell, J.
Guttag, J. Horning, and R. Levin. Thread synchronization: a Formal Specification. In System
Programming with Modula-3, chapter 5, pages 119-129. Prentice-Hall, 1991.
See Herlihy and Shavit’s text, and N. Lynch Distributed Algorithms, for many algorithms (and
much more).

– p. 25

Adding Primitive Mutexes
Expressions e ::= . . . | lock x | unlock x

Say lock free if it holds 1, taken otherwise.

Don’t mix locations used as locks and other locations.

Semantics (outline): lock x has to atomically (a) check the
mutex is currently free, (b) change its state to taken, and (c) let
the thread proceed.
unlock x has to change its state to free.

Record of which thread is holding a locked lock? Re-entrancy?

– p. 26

Using a Mutex

Consider p =
t1:(lockm; ∗x = ∗x + 1; unlockm)|t2:(lockm; ∗x = ∗x + 7; unlockm)

in the initial store M = {x 7→ 0, m 7→ 1}:

〈t1:(1; ∗x = ∗x + 1; unlockm)|t2:(lockm; ∗x = ∗x + 7; unlockm), M ′〉
12

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

〈p, M 〉

lockm

22fffffffffffffffffffffffffff

lockm

,,XXXXXXXXXXXXXXXXXXXXXXXXXXX 〈t1:n1|t2:n2, {x 7→ 8, m 7→ 1}〉

〈t1:(lockm; ∗x = ∗x + 1; unlockm)|t2:(1; ∗x = ∗x + 7; unlockm), M ′′〉

12

22dddddddddddddddddddddddddddddd

– p. 27

Deadlock

lockm can block (that’s the point). Hence, you can deadlock.

p = t1:(lockm1; lockm2; ∗x = 1; unlockm1; unlockm2)

| t2:(lockm2; lockm1; ∗x = 2; unlockm1; unlockm2)

– p. 28

Locking Disciplines

Suppose we have several programs e1, ..., ek that we want to
execute concurrently without ‘interference’ (whatever that is).
You might think of them as transaction bodies.

There are many possible locking disciplines. We’ll describe
one, to see how it – and the properties it guarantees – can be
made precise and proved.

– p. 29

An Ordered 2PL Discipline, (too!) Informally
Fix an association between locations and mutexes. For
simplicity, make it 1:1 – associate x with m, x1 with m1, etc.
Fix a lock acquisition order. For simplicity, make it m, m0, m1,
...
Require that each ei

acquires the lock mj for each location xj it uses, before it
uses it

acquires and releases each lock in a properly-bracketed
way

does not acquire any lock after it’s released any lock
(two-phase)

acquires locks in increasing order

Then, informally, 〈t1:e1| . . . |tk :ek ,M 〉 should (a) never deadlock,
and (b) be serialisable – any execution should be ‘equivalent’
to an execution of eπ(1); . . . ; eπ(k) for some permutation π.

– p. 30

Now can make the Ordered 2PL Discipline precise

Say p obeys the discipline if for any (finite or infinite) sequence
of transitions, then ...

– p. 31

... and make the guaranteed properties precise

Say e1, ..., ek are serialisable if for any initial memory M , if
〈t1:e1| . . . |tk :ek ,M 〉 −→

∗ 〈t1:e
′

1| . . . |tk :e
′

k ,M
′〉¬ −→ then for some

permutation π we have 〈t :e1; . . . ; ek ,M 〉 −→ ∗〈t :e ′,M ′〉¬ −→.

Say they are deadlock-free if ...?

(Warning: there are many subtle variations of these
properties!)

– p. 32

The Theorem

Conjecture 1 If each ei obeys the discipline, then e1, ...ek are
serialisable and deadlock-free.

– p. 33

Atomicity again

In this toy language, assignments and dereferencing are
atomic. For example,
〈t1:∗x = 3498734590879238429384|t2:∗x = 7, {x 7→ 0}〉
will reduce to a state with x either 3498734590879238429384 or
7, not something with the first word of one and the second
word of the other. Implement?

But in t1:(∗x = e)|t2:e
′, the steps of evaluating e and e ′ can be

interleaved.

And the 2PL discipline is enlarging the granularity of atomic
reads and writes.

(will come back to this for hardware and real programming
languages)

– p. 34

Data Races

another way to look at 2PL is as a means to exclude data
races

(and if you’ve done so, the exactly level of atomicity doesn’t
matter)

– p. 35

Using Locks

Large-scale lock ordering?

Compositionality?

– p. 36

Fairness

We’ve not discussed fairness – the semantics allows any
interleaving between parallel components, not only fair ones.

Imagine extending the language with conditionals and while
loops, and consider

t1:∗x = 1 | t2 : while true do . . .

starting with {x 7→ 0}.

– p. 37

Message Passing

Not everything is mutual exclusion:

∗x1 = 10; while 0 == ∗x do ();

∗x2 = 20; ∗x1 + ∗x2

∗x = 1

This is one-shot message passing — a step towards the
producer-consumer problems... (c.f. Herlihy and Shavit)

– p. 38

Recall We’re In An Ideal World

Sequentially consistent shared memory has been taken for
granted, by almost all:

concurrency theorists

program logics

concurrent verification tools

programmers

– p. 39

False, since 1972
IBM System 370/158MP

Mass-market since 2005.

– p. 40

The First Bizarre Example

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

What final states are allowed?

What are the possible sequential orders?

– p. 41

The First Bizarre Example

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [x]←1 (write x=1)
MOV EAX←[y] (read y=0)

MOV [y]←1 (write y=1)
MOV EBX←[x] (read x=1)

Thread 0:EAX = 0 Thread 1:EBX=1

– p. 41

The First Bizarre Example

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [x]←1 (write x=1)
MOV [y]←1 (write y=1)

MOV EAX←[y] (read y=1)
MOV EBX←[x] (read x=1)

Thread 0:EAX = 1 Thread 1:EBX=1

– p. 41

The First Bizarre Example

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [x]←1 (write x=1)
MOV [y]←1 (write y=1)

MOV EBX←[x] (read x=1)
MOV EAX←[y] (read y=1)

Thread 0:EAX = 1 Thread 1:EBX=1

– p. 41

The First Bizarre Example

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [y]←1 (write y=1)
MOV [x]←1 (write x=1)

MOV EAX←[y] (read y=1)
MOV EBX←[x] (read x=1)

Thread 0:EAX = 1 Thread 1:EBX=1

– p. 41

The First Bizarre Example

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [y]←1 (write y=1)
MOV [x]←1 (write x=1)

MOV EBX←[x] (read x=1)
MOV EAX←[y] (read y=1)

Thread 0:EAX = 1 Thread 1:EBX=1

– p. 41

The First Bizarre Example

At the heart of a mutual exclusion algorithm, e.g. Dekker’s,
you might find code like this, say on an x86.

Two memory locations x and y, initially 0

Thread 0 Thread 1

MOV [y]←1 (write y=1)
MOV EBX←[x] (read x=0)

MOV [x]←1 (write x=1)
MOV EAX←[y] (read y=1)

Thread 0:EAX = 1 Thread 1:EBX=0

– p. 41

The First Bizarre Example
Conclusion:

0,1 and 1,1 and 1,0 can happen, but 0,0 is impossible

– p. 42

The First Bizarre Example
Conclusion:

0,1 and 1,1 and 1,0 can happen, but 0,0 is impossible

In fact, in the real world:
we observe 0,0 every 630/100000 runs
(on an Intel Core Duo x86)

(and so Dekker’s algorithm will fail)

– p. 42

Simple Compiler Optimisation Example

In SC, message passing should work as expected:

Thread 1 Thread 2

data = 1

ready = 1 if (ready == 1)

print data

In SC, the program should only print 1.

– p. 43

Simple Compiler Optimisation Example

Thread 1 Thread 2

data = 1 int r1 = data

ready = 1 if (ready == 1)

print data

In SC, the program should only print 1.

Regardless of other reads.

– p. 43

Simple Compiler Optimisation Example

Thread 1 Thread 2

data = 1 int r1 = data

ready = 1 if (ready == 1)

print data

In SC, the program should only print 1.

But common subexpression elimination (as in gcc -O1 and
HotSpot) will rewrite

print data =⇒ print r1

– p. 43

Simple Compiler Optimisation Example

Thread 1 Thread 2

data = 1 int r1 = data

ready = 1 if (ready == 1)

print r1

In SC, the program should only print 1.

But common subexpression elimination (as in gcc -O1 and
HotSpot) will rewrite

print data =⇒ print r1

So the compiled program can print 0

– p. 43

Weakly Consistent Memory

Multiprocessors and compilers incorporate many performance
optimisations

(hierarchies of cache, load and store buffers, speculative execution,
cache protocols, common subexpression elimination, etc., etc.)

These are:

unobservable by single-threaded code

sometimes observable by concurrent code

Upshot: they provide only various relaxed (or weakly
consistent) memory models, not sequentially consistent
memory.

– p. 44

What About the Specs?

Hardware manufacturers document architectures:

Intel 64 and IA-32 Architectures Software Developer’s Manual
AMD64 Architecture Programmer’s Manual
Power ISA specification
ARM Architecture Reference Manual

and programming languages (at best) are defined by
standards:

ISO/IEC 9899:1999 Programming languages – C
J2SE 5.0 (September 30, 2004)

loose specifications,

claimed to cover a wide range of past and future
implementations.

– p. 45

What About the Specs?

Hardware manufacturers document architectures:

Intel 64 and IA-32 Architectures Software Developer’s Manual
AMD64 Architecture Programmer’s Manual
Power ISA specification
ARM Architecture Reference Manual

and programming languages (at best) are defined by
standards:

ISO/IEC 9899:1999 Programming languages – C
J2SE 5.0 (September 30, 2004)

loose specifications,

claimed to cover a wide range of past and future
implementations.

Flawed. Always confusing, sometimes wrong. – p. 45

What About the Specs?

“all that horrible horribly incomprehensible and
confusing [...] text that no-one can parse or reason
with — not even the people who wrote it”

Anonymous Processor Architect, 2011

– p. 46

Hardware Models

x86 in detail

Why are industrial specs so often flawed?

A usable model: x86-TSO

Reasoning about x86-TSO code: races

Power/ARM

SPARC, Alpha, Itanium

Programming Language Models (Java/C++)

– p. 47

Uses

1. how to code low-level concurrent datastructures

2. how to build concurrency testing and verification tools

3. how to specify and test multiprocessors

4. how to design and express high-level language definitions

5. ... and in general, as an example of mathematically
rigorous computer engineering

– p. 48

Hardware Models

x86 in detail

Why are industrial specs so often flawed?

A usable model: x86-TSO

Reasoning about x86-TSO code: races

Power/ARM

SPARC, Alpha, Itanium

Programming Language Models (Java/C++)

– p. 49

In practice

Architectures described by informal prose:

In a multiprocessor system, maintenance of cache
consistency may, in rare circumstances, require
intervention by system software.

(Intel SDM, Nov. 2006, vol 3a, 10-5)

– p. 50

A Cautionary Tale
Intel 64/IA32 and AMD64 - before August 2007 (Era of
Vagueness)

A model called Processor
Ordering, informal prose

Example: Linux Kernel mail-
ing list, 20 Nov 1999 - 7 Dec
1999 (143 posts)

Keywords: speculation, or-
dering, cache, retire, causal-
ity

A one-instruction program-
ming question, a microarchi-
tectural debate!

1. spin unlock() Optimization On Intel
20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: "spin unloc
optimization(i386)"
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred
Spraul, Peter Samuelson, Ingo Molnar
Manfred Spraul thought he’d found a way to shave spin unloc
down from about 22 ticks for the "lock; btrl $0,%0" asm code
to 1 tick for a simple "movl $0,%0" instruction, a huge gain. Later
he reported that Ingo Molnar noticed a 4% speed-up in a bench-
mark test, making the optimization very valuable. Ingo also
added that the same optimization cropped up in the FreeBSD
mailing list a few days previously. But Linus Torvalds poured cold
water on the whole thing, saying:

It does NOT WORK!
Let the FreeBSD people use it, and let them get faster
timings. They will crash, eventually.
The window may be small, but if you do this, then sud-
denly spinlocks aren’t reliable any more.

– p. 51

Resolved only by appeal to
an oracle:

that the piplines are no longer invalid and the buffers
should be blown out.
I have seen the behavior Linus describes on a hard-
ware analyzer, BUT ONLY ON SYSTEMS THAT
WERE PPRO AND ABOVE. I guess the BSD people
must still be on older Pentium hardware and that’s why
they don’t know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel,
also replied to Linus, pointing out a possible misconception
his proposed exploit. Regarding the code Linus posted, Er
replied:

It will always return 0. You don’t need "spin un-

lock()" to be serializing.
The only thing you need is to make sure there is a
store in "spin unlock()", and that is kind of true by
the fact that you’re changing something to be observ-
able on other processors.
The reason for this is that stores can only possibly
be observed when all prior instructions have retired
(i.e. the store is not sent outside of the processor until
it is committed state, and the earlier instructions are
already committed by that time), so the any loads,
stores, etc absolutely have to have completed first,
cache-miss or not.

He went on:
Since the instructions for the store in the spin unlock

– p. 52

IWP and AMD64, Aug. 2007/Oct. 2008 (Era of Causality)

Intel published a white paper (IWP) defining 8 informal-prose
principles, e.g.

P1. Loads are not reordered with older loads
P2. Stores are not reordered with older stores

supported by 10 litmus tests illustrating allowed or forbidden
behaviours, e.g.

Message Passing (MP)
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV EAX←[y] (read y=1)

MOV [y]←1 (write y=1) MOV EBX←[x] (read x=0)
Forbidden Final State: Thread 1:EAX=1 ∧ Thread 1:EBX=0

– p. 53

P3. Loads may be reordered with older stores to different
locations but not with older stores to the same location

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)
Allowed Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

– p. 54

P3. Loads may be reordered with older stores to different
locations but not with older stores to the same location

Store Buffer (SB)
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)
Allowed Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

W
rite B

uffer

W
rite B

uffer

Shared Memory

ThreadThread

– p. 54

Litmus Test 2.4. Intra-processor forwarding is allowed
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[x] (read x=1) MOV ECX←[y] (read y=1)
MOV EBX←[y] (read y=0) MOV EDX←[x] (read x=0)
Allowed Final State: Thread 0:EBX=0 ∧ Thread 1:EDX=0

Thread 0:EAX=1 ∧ Thread 1:ECX=1

– p. 55

Litmus Test 2.4. Intra-processor forwarding is allowed
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[x] (read x=1) MOV ECX←[y] (read y=1)
MOV EBX←[y] (read y=0) MOV EDX←[x] (read x=0)
Allowed Final State: Thread 0:EBX=0 ∧ Thread 1:EDX=0

Thread 0:EAX=1 ∧ Thread 1:ECX=1

W
rite B

uffer

W
rite B

uffer

Shared Memory

ThreadThread

– p. 55

Problem 1: Weakness
Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)

(read y=0) (read x=0)

Allowed or Forbidden?

– p. 56

Problem 1: Weakness
Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)

(read y=0) (read x=0)

Allowed or Forbidden?

Microarchitecturally plausible? yes, e.g. with shared store
buffers

W
rite B

uffer

Thread 1 Thread 3

W
rite B

uffer

Thread 0 Thread 2

Shared Memory – p. 56

Problem 1: Weakness
Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)

(read y=0) (read x=0)

Allowed or Forbidden?

AMD3.14: Allowed

IWP: ???

Real hardware: unobserved

Problem for normal programming: ?

Weakness: adding memory barriers does not recover SC,
which was assumed in a Sun implementation of the JMM

– p. 56

Problem 2: Ambiguity

P1–4. ...may be reordered with...

P5. Intel 64 memory ordering ensures transitive visibility of
stores — i.e. stores that are causally related appear to
execute in an order consistent with the causal relation

Write-to-Read Causality (WRC) (Litmus Test 2.5)
Thread 0 Thread 1 Thread 2

MOV [x]←1 (W x=1) MOV EAX←[x] (R x=1) MOV EBX←[y] (R y=1)

MOV [y]←1 (W y=1) MOV ECX←[x] (R x=0)

Forbidden Final State: Thread 1:EAX=1 ∧ Thread 2:EBX=1

∧ Thread 2:ECX=0

– p. 57

Problem 3: Unsoundness!
Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)
Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

Observed on real hardware, but not allowed by (any
interpretation we can make of) the IWP ‘principles’.

(can see allowed in store-buffer microarchitecture)

– p. 58

Problem 3: Unsoundness!
Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)
Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

In the view of Thread 0:
a→b by P4: Reads may [...] not be reordered with older writes to the same location.
b→c by P1: Reads are not reordered with other reads.
c→d, otherwise c would read 2 from d
d→e by P3. Writes are not reordered with older reads.
so a:Wx=1 → e:Wx=2

But then that should be respected in the final state, by P6: In a multiprocessor system, stores to

the same location have a total order, and it isn’t.

(can see allowed in store-buffer microarchitecture) – p. 58

Problem 3: Unsoundness!
Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)
Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

Observed on real hardware, but not allowed by (any
interpretation we can make of) the IWP ‘principles’.

(can see allowed in store-buffer microarchitecture)

So spec unsound (and also our POPL09 model based on it).

– p. 58

Intel SDM and AMD64, Nov. 2008 – now

Intel SDM rev. 29–35 and AMD3.17

Not unsound in the previous sense

Explicitly exclude IRIW, so not weak in that sense. New
principle:

Any two stores are seen in a consistent order by
processors other than those performing the stores

But, still ambiguous, and the view by those processors is left
entirely unspecified

– p. 59

Intel:
http://www.intel.com/products/processor/manuals/index.htm

(rev. 35 on 6/10/2010).
See especially SDM Vol. 3A, Ch. 8.

AMD:
http://developer.amd.com/documentation/guides/Pages

/default.aspx

(rev. 3.17 on 6/10/2010).
See especially APM Vol. 2, Ch. 7.

– p. 60

Why all these problems?
Recall that the vendor architectures are:

loose specifications;

claimed to cover a wide range of past and future
processor implementations.

Architectures should:

reveal enough for effective programming;

without revealing sensitive IP; and

without unduly constraining future processor design.

There’s a big tension between these, compounded by internal
politics and inertia.

– p. 61

Fundamental Problem

Architecture texts: informal prose attempts at subtle loose
specifications

Fundamental problem: prose specifications cannot be used

to test programs against, or

to test processor implementations, or

to prove properties of either, or even

to communicate precisely.

– p. 62

Aside: x86 ISA, Locked Instructions

Thread 0 Thread 1

INC x INC x

– p. 63

Aside: x86 ISA, Locked Instructions

Thread 0 Thread 1

INC x (read x=0; write x=1) INC x (read x=0; write x=1)
Allowed Final State: [x]=1

Non-atomic (even in SC semantics)

– p. 63

Aside: x86 ISA, Locked Instructions

Thread 0 Thread 1

INC x (read x=0; write x=1) INC x (read x=0; write x=1)
Allowed Final State: [x]=1

Non-atomic (even in SC semantics)

Thread 0 Thread 1

LOCK;INC x LOCK;INC x

Forbidden Final State: [x]=1

– p. 63

Aside: x86 ISA, Locked Instructions

Thread 0 Thread 1

INC x (read x=0; write x=1) INC x (read x=0; write x=1)
Allowed Final State: [x]=1

Non-atomic (even in SC semantics)

Thread 0 Thread 1

LOCK;INC x LOCK;INC x

Forbidden Final State: [x]=1

Also LOCK’d ADD, SUB, XCHG, etc., and CMPXCHG

– p. 63

Aside: x86 ISA, Locked Instructions

Compare-and-swap (CAS):

CMPXCHG dest←src

compares EAX with dest, then:

if equal, set ZF=1 and load src into dest,

otherwise, clear ZF=0 and load dest into EAX

All this is one atomic step.

Can use to solve consensus problem...

– p. 64

Aside: x86 ISA, Memory Barriers

MFENCE memory barrier

(also SFENCE and LFENCE)

– p. 65

Hardware Models

x86 in detail

Why are industrial specs so often flawed?

A usable model: x86-TSO

Reasoning about x86-TSO code: races

Power/ARM

SPARC, Alpha, Itanium

Programming Language Models (Java/C++)

– p. 66

Inventing a Usable Abstraction
Have to be:

Unambiguous

Sound w.r.t. experimentally observable behaviour

Easy to understand

Consistent with what we know of vendors intentions

Consistent with expert-programmer reasoning

Key facts:

Store buffering (with forwarding) is observable

IRIW is not observable, and is forbidden by the recent
docs

Various other reorderings are not observable and are
forbidden

These suggest that x86 is, in practice, like SPARC TSO. – p. 67

x86-TSO Abstract Machine

Separate instruction semantics and memory model

Define the memory model in two (provably equivalent) styles:

an abstract machine (or operational model)

an axiomatic model

Put the instruction semantics and abstract machine in
parallel, exchanging read and write messages (and
lock/unlock messages).

– p. 68

x86-TSO Abstract Machine

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

– p. 69

x86-TSO Abstract Machine: Interface
Events
e ::= Wt x=v a write of value v to address x by thread t

| Rt x=v a read of v from x by t

| Bt an MFENCE memory barrier by t

| Lt start of an instruction with LOCK prefix by t

| Ut end of an instruction with LOCK prefix by t

| τt x=v an internal action of the machine,
moving x = v from the write buffer on t to
shared memory

where

t is a hardware thread id, of type tid,

x and y are memory addresses, of type addr

v and w are machine words, of type value

– p. 70

x86-TSO Abstract Machine: Machine States

A machine state s is a record

s : 〈[M : addr→ value;
B : tid→ (addr× value) list;
L : tid option]〉

Here:

s.M is the shared memory, mapping addresses to values

s.B gives the store buffer for each thread

s.L is the global machine lock indicating when a thread
has exclusive access to memory

– p. 71

x86-TSO Abstract Machine: Auxiliary Definitions

Say t is not blocked in machine state s if either it holds the
lock (s.L = SOME t) or the lock is not held (s.L = NONE).

Say there are no pending writes in t’s buffer s.B(t) for address
x if there are no (x, v) elements in s.B(t).

– p. 72

x86-TSO Abstract Machine: Behaviour

RM: Read from memory

not blocked(s , t)

s .M (x) = v

no pending(s .B(t), x)

s
R
t
x=v

−−−−−→ s

Thread t can read v from memory at address x if t is

not blocked, the memory does contain v at x , and

there are no writes to x in t ’s store buffer.

– p. 73

x86-TSO Abstract Machine: Behaviour

RB: Read from write buffer
not blocked(s , t)

∃b1 b2. s .B(t) = b1 ++[(x , v)] ++b2

no pending(b1, x)

s
R
t
x=v

−−−−−→ s

Thread t can read v from its store buffer for address x

if t is not blocked and has v as the newest write to x

in its buffer;

– p. 74

x86-TSO Abstract Machine: Behaviour

WB: Write to write buffer

s
W

t
x=v

−−−−−→ s ⊕ 〈[B := s .B ⊕ (t 7→ ([(x , v)] ++s .B(t)))]〉

Thread t can write v to its store buffer for address x

at any time;

– p. 75

x86-TSO Abstract Machine: Behaviour

WM: Write from write buffer to memory

not blocked(s , t)

s .B(t) = b ++[(x , v)]

s
τ
t x=v

−−−−→

s ⊕ 〈[M := s .M ⊕ (x 7→ v)]〉 ⊕ 〈[B := s .B ⊕ (t 7→ b)]〉

If t is not blocked, it can silently dequeue the oldest

write from its store buffer and place the value in

memory at the given address, without coordinating

with any hardware thread

– p. 76

x86-TSO Abstract Machine: Behaviour

L: Lock
s .L = NONE

s .B(t) = []

s
L
t−→ s ⊕ 〈[L :=SOME(t)]〉

If the lock is not held and its buffer is empty, thread t

can begin a LOCK’d instruction.

Note that if a hardware thread t comes to a LOCK’d instruction

when its store buffer is not empty, the machine can take one or

more τ
t x=v steps to empty the buffer and then proceed.

– p. 77

x86-TSO Abstract Machine: Behaviour

U: Unlock
s .L = SOME(t)

s .B(t) = []

s
U

t−→ s ⊕ 〈[L :=NONE]〉

If t holds the lock, and its store buffer is empty, it can end a
LOCK’d instruction.

– p. 78

x86-TSO Abstract Machine: Behaviour

B: Barrier

s .B(t) = []

s
B
t−→ s

If t ’s store buffer is empty, it can execute an MFENCE.

– p. 79

Notation Reference

SOME and NONE construct optional values

(·, ·) builds tuples

[] builds lists

++ appends lists

· ⊕ 〈[· := ·]〉 updates records

·(· 7→ ·) updates functions.

– p. 80

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0x=0

– p. 81

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

Wt0
x=1

x= 0

– p. 81

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

(x,1)

x= 0

– p. 81

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

(x,1)

Wt1
y=1

x= 0

– p. 81

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

(y,1)(x,1)

x= 0

– p. 81

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

Rt0
y=0 (y,1)(x,1)

x= 0

– p. 81

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

Rt1
x=0(y,1)(x,1)

x= 0

– p. 81

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

τt0 x=1

(y,1)(x,1)

x= 0

– p. 81

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

(y,1)

x= 1

– p. 81

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 0

τt1 y=1

(y,1)

x= 1

– p. 81

First Example, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

y= 1x= 1

– p. 81

Barriers and LOCK’d Instructions, recap

MFENCE memory barrier
flushes local write buffer

LOCK’d instructions (atomic INC, ADD, CMPXCHG, etc.)
flush local write buffer
globally locks memory

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MFENCE MFENCE

MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)
Forbidden Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

NB: both are expensive

– p. 82

NB: This is an Abstract Machine

A tool to specify exactly and only the programmer-visible
behavior, not a description of the implementation internals

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread ⊇beh

6=hw

Force: Of the internal optimizations of processors, only
per-thread FIFO write buffers are visible to programmers.

Still quite a loose spec: unbounded buffers, nondeterministic
unbuffering, arbitrary interleaving

– p. 83

Processors, Hardware Threads, and Threads

Our ‘Threads’ are hardware threads.

Some processors have simultaneous multithreading (Intel:
hyperthreading): multiple hardware threads/core sharing
resources.

If the OS flushes store buffers on context switch, software
threads should have the same semantics.

– p. 84

Validating the Semantics

Testing tools:

LITMUS, runs litmus tests on real h/w

MEMEVENTS, symbolically finds all possible results

EMUL, daemonic emulator

(Also modelling & testing instruction semantics)

Informal vendor support

Formalized in theorem prover (HOL4)

One reasonable model

– p. 85

Liveness

Question: is every memory write guaranteed to eventually
propagate from store buffer to shared memory?

We tentatively assume so (with a progress condition on
machine traces).

AMD: yes

Intel: unclear

(ARM: yes)

– p. 86

NB: Not All of x86

Coherent write-back memory (almost all code), but assume

no exceptions

no misaligned or mixed-size accesses

no ‘non-temporal’ operations

no device memory

no self-modifying code

no page-table changes

– p. 87

x86-TSO: The Axiomatic Model

The abstract machine generates x86-TSO executions
stepwise.

The axiomatic model says whether a complete candidate
execution is admitted by x86-TSO.

– p. 88

Events: i:Wt x=v, i:Rt x=v and i:Bt as before, but with unique
ids i.

Event structures E:

a set of events

program order (po) and intra-instruction causality order
(iico) over them (strict partial orders)

an atomicity relation over them (a partial equivalence
relation)

Execution witness X:

execution witness =

〈[memory order : event reln;

rfmap : event reln;

initial state : addr→ value]〉 – p. 89

tso1 Thread t0 Thread t1

MOV [x]←$1 MOV [x]←$2
MOV EAX←[x]

a:W
t0
x=1

MOV [x]←$1

b:R
t0
x=2

MOV EAX←[x]

d:W
t1
x=2

MOV [x]←$2

po

– p. 90

Axioms: Memory Order

X.memory order is a partial order over memory read and write
events of E

X.memory order , when restricted to the write events of E, is a
linear order.

– p. 91

Axioms: Reads-from map

The rfmap only relates such pairs with the same address and
value:

reads from map candidates E rfmap =

∀(ew , er) ∈ rfmap.(er ∈ mem reads E) ∧ (ew ∈ mem writes E) ∧

(loc ew = loc er) ∧ (value of ew = value of er)

Auxiliary functions over events: loc, value of

Auxiliary functions over event structures:
mem reads, mem writes, mem accesses, mfences

– p. 92

Axioms: check rfmap written

Let po iico E be the union of (strict) program order and
intra-instruction causality.
Check that the rfmap relates a read to the most recent
preceding write.
previous writes E er <order =

{ew ′ | ew ′ ∈ mem writes E ∧ ew ′ <order er ∧ (loc ew ′ = loc er)}

check rfmap written E X =

∀(ew , er) ∈ (X .rfmap).

ew ∈ maximal elements (previous writes E er (<X .memory order) ∪

previous writes E er (<(po iico E)))

(<X .memory order)

– p. 93

Axioms: check rfmap initial

And similarly for the initial state:
check rfmap initial E X =

∀er ∈ (mem reads E \ range X .rfmap).

(∃l .(loc er = l) ∧ (value of er = X .initial state l)) ∧

(previous writes E er (<X .memory order) ∪

previous writes E er (<(po iico E)) = {})

– p. 94

Axioms: R/A Program Order

Program order is included in memory order, for a memory
read before a memory access (mo po read access)
(SPARCv8’s LoadOp):

∀er ∈ (mem reads E).∀e ∈ (mem accesses E).

er <(po iico E) e =⇒ er <X .memory order e

– p. 95

Axioms: W/W Program Order

Program order is included in memory order, for a memory
write before a memory write (mo po write write) (the
SPARCv8 StoreStore):

∀ew 1 ew 2 ∈ (mem writes E).

ew 1 <(po iico E) ew 2 =⇒ ew 1 <X .memory order ew 2

– p. 96

Axioms: Fencing

Program order is included in memory order, for a memory
write before a memory read, if there is an MFENCE between
(mo po mfence).

∀ew ∈ (mem writes E).∀er ∈ (mem reads E).∀ef ∈ (mfences E).

(ew <(po iico E) ef ∧ ef <(po iico E) er) =⇒ ew <X .memory order er

– p. 97

Axioms: Locked Instructions

Program order is included in memory order, for any two
memory accesses where at least one is from a LOCK’d
instruction (mo po access/lock):

∀e1 e2 ∈ (mem accesses E).∀es ∈ (E .atomicity).

((e1 ∈ es ∨ e2 ∈ es) ∧ e1 <(po iico E) e2) =⇒ e1 <X .memory order e2

– p. 98

Axioms: Atomicity

The memory accesses of a LOCK’d instruction occur
atomically in memory order (mo atomicity), i.e., there must be
no intervening memory events.

Further, all program order relationships between the locked
memory accesses and other memory accesses are included
in the memory order (this is a generalization of the SPARCv8
Atomicity axiom):

∀es ∈ (E .atomicity).∀e ∈ (mem accesses E \ es).

(∀e ′ ∈ (es ∩ mem accesses E).e <X .memory order e
′) ∨

(∀e ′ ∈ (es ∩ mem accesses E).e ′ <X .memory order e)

– p. 99

Axioms: Infinite Executions

For this course, consider only finite executions (E with finite
sets of events).

(In general, we require that the prefixes of the memory order
are all finite, ensuring that there are no limit points, and, to
ensure that each write eventually takes effect globally, there
must not be an infinite set of reads unrelated to any particular
write, all on the same memory location (this formalizes the
SPARCv8 Termination axiom).)

– p. 100

Say valid execution E X iff all the above hold.

– p. 101

Example

a:W
t0
x=1

MOV [x]←$1

b:R
t0
x=2

MOV EAX←[x]

d:W
t1
x=2

MOV [x]←$2

po

mo non-po write write

rf mo rf

a:W
t0
x=1

MOV [x]←$1

b:R
t0
x=2

MOV EAX←[x]

d:W
t1
x=2

MOV [x]←$2

porf mo non-po write write

– p. 102

Equivalence of the two models
Loosely:

Theorem 1 For any abstract-machine execution with

atomic sets properly bracketed by lock/unlock pairs

non-τ /L/U events E

ordered according to po iico

there is an X such that valid execution E X , with the
X .memory order the order in which machine memory reads
and buffer flushes occurred.

Theorem 2 For any axiomatic valid execution E X , there is
some abstract-machine path which when τ /L/U-erased has the
same events (ordered according to po iico and with atomic
sets properly bracketed by lock/unlock pairs) in which memory
reads and buffer flushes respect X .memory order .

– p. 103

Hardware Models

x86 in detail

Why are industrial specs so often flawed?

A usable model: x86-TSO

Reasoning about x86-TSO code: races

Power/ARM

SPARC, Alpha, Itanium

Programming Language Models (Java/C++)

– p. 104

For some applications, achieving sequential
consistency may not be worth the price of slowing
down the processors. In this case, one must be
aware that conventional methods for designing
multiprocess algorithms cannot be relied upon to
produce correctly executing programs. Protocols for
synchronizing the processors must be designed at
the lowest level of the machine instruction code, and
verifying their correctness becomes a monumental
task.

Leslie Lamport, 1979

– p. 105

Data Race Freedom (DRF)

Basic Principle (you’d hope):

If a program has no data races in any sequentially consistent
(SC) execution, then any relaxed-memory execution is
equivalent to some sequentially consistent execution.

NB: premise only involves SC execution.

– p. 106

Data Race Freedom (DRF)

Basic Principle (you’d hope):

If a program has no data races in any sequentially consistent
(SC) execution, then any relaxed-memory execution is
equivalent to some sequentially consistent execution.

NB: premise only involves SC execution.

But what is a data race?
what does equivalent mean?

– p. 106

What is a data race — first attempt

Suppose SC executions are traces of events

Rt x=v for thread t reading value v from address x

Wt x=v for thread t writing value v to address x

(erase τ ’s, and ignore lock/unlock/mfence for a moment)

Then say an SC execution has a data race if it contains a pair
of adjacent accesses, by different threads, to the same
location, that are not both reads:

. . ., Rt1
x=u , Wt2

x=v, . . .

. . ., Wt1
x=u , Rt2

x=v, . . .

. . ., Wt1
x=u , Wt2

x=v, . . .

– p. 107

What is a data race — for x86

1. Need not consider write/write pairs to be races

2. Have to consider SC semantics for LOCK’d instructions
(and MFENCE), with events:

Lt at the start of a LOCK’d instruction by t
Ut at the end of a LOCK’d instruction by t
Bt for an MFENCE by thread t

3. Need not consider a LOCK’d read/any write pair to be a
race

Say an x86 data race is an execution of one of these shapes:

. . ., Rt1
x=u , Wt2

x=v, . . .

. . ., Rt1
x=u , Lt2,. . . ,Wt2

x=v, . . .

(or v.v. No unlocks between the Lt2 and Wt2
x=v)

– p. 108

DRF Principle for x86-TSO
Say a program is data race free (DRF) if no SC execution
contains an x86 data race.

Theorem 3 (DRF) If a program is DRF then any x86-TSO
execution is equivalent to some SC execution.

(where equivalent means that there is an SC execution with
the same subsequence of writes and in which each read
reads from the corresponding write)

Proof: via the x86-TSO axiomatic model
Scott Owens, ECOOP 2010

– p. 109

Happens-Before Version

Here:

An SC race is two adjacent conflicting actions.

In the setting of an axiomatic model:

Often have a happens before partial order over events

...and a race is two conflicting actions that aren’t ordered by
happens-before

– p. 110

What is a data race, again?

acquire mutex(l) acquire mutex(l)
write x←1 read x
release mutex(l) release mutex(l)

– p. 111

Simple Spinlock

acquire mutex(x)

critical section

release mutex(x)

– p. 112

Simple Spinlock

while atomic decrement(x) < 0 {
skip

}

critical section

release mutex(x)

Invariant:
lock taken if x ≤ 0
lock free if x=1

– p. 112

Simple Spinlock

while atomic decrement(x) < 0 {
while x ≤ 0 { skip }

}

critical section

release mutex(x)

– p. 112

Simple Spinlock

while atomic decrement(x) < 0 {
while x ≤ 0 { skip }

}

critical section

x←1 OR atomic write(x, 1)

– p. 112

Simple Spinlock

while atomic decrement(x) < 0 {
while x ≤ 0 { skip }

}

critical section

x←1

– p. 112

Simple x86 Spinlock
The address of x is stored in register eax.

acquire: LOCK DEC [eax]
JNS enter

spin: CMP [eax],0
JLE spin
JMP acquire

enter:

critical section

release: MOV [eax]←1

From Linux v2.6.24.7

NB: don’t confuse levels — we’re using x86 LOCK’d instructions in implementations of Linux

spinlocks.
– p. 113

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1

– p. 114

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire

– p. 114

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical

– p. 114

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire

– p. 114

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x

– p. 114

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x

– p. 114

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x
x = 1 read x

– p. 114

Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x
x = 1 read x
x = 0 acquire

– p. 114

Spinlock SC Data Race
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x

– p. 115

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1

– p. 116

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire

– p. 116

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire

– p. 116

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x

– p. 116

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer

– p. 116

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x

– p. 116

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer

– p. 116

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer
x = 1 read x

– p. 116

Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer
x = 1 read x
x = 0 acquire

– p. 116

Triangular Races (Owens)

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race
... y←v2
...

...
x←v1 x
...

...

– p. 117

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... y←v2
...

...
x←v1 x
...

...

... y←v2

...
...

x←v1 x←w
...

...

– p. 117

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... y←v2
...

...
x←v1 x
...

...

... y←v2

... mfence
x←v1 x
...

...

– p. 117

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... y←v2
...

...
x←v1 x
...

...

... y←v2

...
...

x←v1 lock x
...

...

– p. 117

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... y←v2
...

...
x←v1 x
...

...

... lock y←v2

...
...

x←v1 x
...

...

– p. 117

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Triangular race
... y←v2
...

...
x←v1 x
...

...

... y←v2

...
...

lock x←v1 x
...

...

– p. 117

TRF Principle for x86-TSO

Say a program is triangular race free (TRF) if no SC execution
has a triangular race.

Theorem 4 (TRF) If a program is TRF then any x86-TSO
execution is equivalent to some SC execution.

If a program has no triangular races when run on a
sequentially consistent memory, then

x86-TSO = SC

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

Lock Shared Memory

Thread Thread

– p. 118

Spinlock Data Race

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x←1

x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x

acquire’s writes are locked

– p. 119

Program Correctness

Theorem 5 Any well-synchronized program that uses the
spinlock correctly is TRF.

Theorem 6 Spinlock-enforced critical sections provide mutual
exclusion.

– p. 120

Other Applications

A concurrency bug in the HotSpot JVM

Found by Dave Dice (Sun) in Nov. 2009

java.util.concurrent.LockSupport (‘Parker’)

Platform specific C++

Rare hung thread

Since “day-one” (missing MFENCE)

Simple explanation in terms of TRF

Also: Ticketed spinlock, Linux SeqLocks, Double-checked
locking

– p. 121

Reflections

We’ve introduced a plausible model, x86-TSO.

Usable:

as spec to test h/w against

to give a solid intuition for systems programmers

to develop reasoning tools above

to develop code testing tools above (daemonic emulator)

In terms of that model, we can clearly see why (and indeed
prove) that that Linux spinlock optimisation is correct.

– p. 122

	execution 0.40em0.1ex witness
	reads 0.40em0.1ex from 0.40em0.1ex map 0.40em0.1ex candidates
	previous 0.40em0.1ex writes
	check 0.40em0.1ex rfmap 0.40em0.1ex written
	check 0.40em0.1ex rfmap 0.40em0.1ex initial
	ve5
	ve6
	ve7
	ve8
	ve9
	The Golden Age, 1945--1959
	The Golden Age, 1945--1959
	Multiprocessors, 1960--2011
	Multiprocessors, 1960--2011
	Concurrency Everywhere
	The First Bizarre Example
	The First Bizarre Example

	These Lectures
	Start with SC
	In an Ideal World
	A Tiny Language
	A Tiny Language
	An SC Semantics for that Language
	Example: SC Whole-System Trace
	Defining an SC Semantics --- threads
	Defining an SC Semantics: expressions (1)
	Defining an SC Semantics: expressions (2)
	Example: SC Expression Trace
	Example: SC Expression Trace
	Example: SC Expression Trace
	Example: SC Expression Trace
	Example: SC Expression Trace

	Defining an SC Semantics: lifting to processes
	Defining an SC Semantics: SC memory
	Defining an SC Semantics: whole-system states
	Example: SC Interleaving
	Combinatorial Explosion
	Morals
	Mutual Exclusion
	Adding Primitive Mutexes
	Using a Mutex
	Deadlock
	Locking Disciplines
	An Ordered 2PL Discipline, {color {red}(too!)}
Informally
	Now can make the Ordered 2PL Discipline precise
	... and make the guaranteed properties precise
	The Theorem
	Atomicity again
	Data Races
	Using Locks
	Fairness
	Message Passing
	Recall We're In An Ideal World
	False, since 1972
	The First Bizarre Example
	The First Bizarre Example
	The First Bizarre Example
	The First Bizarre Example
	The First Bizarre Example
	The First Bizarre Example
	The First Bizarre Example

	The First Bizarre Example
	The First Bizarre Example

	Simple Compiler Optimisation Example
	Simple Compiler Optimisation Example
	Simple Compiler Optimisation Example
	Simple Compiler Optimisation Example

	Weakly Consistent Memory
	What About the Specs?
	What About the Specs?

	What About the Specs?
	Uses
	In practice
	A Cautionary Tale
	
ormalsize IWP and AMD64, Aug.~2007/Oct.~2008 (Era of Causality)
	Problem 1: Weakness
	Problem 1: Weakness
	Problem 1: Weakness

	Problem 2: Ambiguity
	Problem 3: Unsoundness!
	Problem 3: Unsoundness!
	Problem 3: Unsoundness!

	
ormalsize Intel SDM and AMD64, Nov.~2008 -- now
	Why all these problems?
	Fundamental Problem
	Aside: x86 ISA, Locked Instructions
	Aside: x86 ISA, Locked Instructions
	Aside: x86 ISA, Locked Instructions
	Aside: x86 ISA, Locked Instructions

	Aside: x86 ISA, Locked Instructions
	Aside: x86 ISA, Memory Barriers
	Inventing a Usable Abstraction
	x86-TSO Abstract Machine
	x86-TSO Abstract Machine
	x86-TSO Abstract Machine: Interface
	x86-TSO Abstract Machine: Machine States
	x86-TSO Abstract Machine: Auxiliary Definitions
	x86-TSO Abstract Machine: Behaviour
	x86-TSO Abstract Machine: Behaviour
	x86-TSO Abstract Machine: Behaviour
	x86-TSO Abstract Machine: Behaviour
	x86-TSO Abstract Machine: Behaviour
	x86-TSO Abstract Machine: Behaviour
	x86-TSO Abstract Machine: Behaviour
	Notation Reference
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited
	First Example, Revisited

	Barriers and LOCK'd Instructions, recap
	NB: This is an emph {Abstract} Machine
	Processors, Hardware Threads, and Threads
	Validating the Semantics
	Liveness
	NB: Not emph {All} of x86
	x86-TSO: The Axiomatic Model
	Axioms: Memory Order
	Axioms: Reads-from map
	Axioms: emph {check_rfmap_written}
	Axioms: emph {check_rfmap_initial}
	Axioms: R/A Program Order
	Axioms: W/W Program Order
	Axioms: Fencing
	Axioms: Locked Instructions
	Axioms: Atomicity
	Axioms: Infinite Executions
	Example
	Equivalence of the two models
	Data Race Freedom (DRF)
	Data Race Freedom (DRF)

	What is a data race --- first attempt
	What is a data race --- for x86
	DRF Principle for x86-TSO
	Happens-Before Version
	What is a data race, again?
	Simple Spinlock
	Simple Spinlock
	Simple Spinlock
	Simple Spinlock
	Simple Spinlock

	Simple x86 Spinlock
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)

	Spinlock SC Data Race
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)

	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}

	TRF Principle for x86-TSO
	Spinlock Data Race
	Program Correctness
	Other Applications
	Reflections

