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Lecture Outline

Natural Deduction
Intuitionism
Proofs as programs, formulae as types
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Natural Deduction

Previously we gave Hilbert-style proof rules for FOL: a set of axioms
with a single inference rule (modus ponens).
An alternative sound and complete proof system can be given in
natural deduction style. Here judgements are of the form Γ ` τ as
previously, but the key differences are:

there are two forms of rules for each logical connective
(introduction rules and elimination rules).
rules exploit the ability to vary Γ.

Natural deduction proofs have neat connections to programs and
many type systems are specified in natural deduction style.
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Natural Deduction Rules

(AND-I)
Γ ` φ Γ ` ψ

Γ ` φ ∧ ψ
(AND-E1)

Γ ` φ ∧ ψ
Γ ` φ

(AND-E2)
Γ ` φ ∧ ψ

Γ ` ψ

(OR-I1)
Γ ` φ

Γ ` φ ∨ ψ
(OR-I2)

Γ ` ψ
Γ ` φ ∨ ψ

(OR-E)
Γ ` φ ∨ ψ Γ, φ ` τ Γ, ψ ` τ

Γ ` τ

(IMP-I)
Γ, φ ` ψ

Γ ` φ→ ψ
(IMP-E)

Γ ` φ→ ψ Γ ` φ
Γ ` ψ

(NOT-I)
Γ, φ ` ⊥
Γ ` ¬φ

(NOT-E)
Γ ` φ Γ ` ¬φ

Γ ` ψ
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Natural Deduction Rules (2)

(ASSUME)
Γ, φ ` φ

(ALL-I)
Γ ` φ

Γ ` ∀x φ
provided x is not free in Γ (ALL-E)

Γ ` ∀x φ
Γ ` φ[t/x ]

(DNEG)
Γ ` ¬¬φ

Γ ` φ
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Natural Deduction Rules (3)

It turns out that these above rules R, we once again have soundness
and completeness:

Γ `R φ iff Γ |= φ

Without the rule (DNEG) the rules are incomplete for FOL, but allow an
additional constructive or intuitionistic reading. For more details see

http://plato.stanford.edu/entries/logic-intuitionistic/

but in essence a sentence like A ∨ ¬A (“Law of the Excluded Middle”)
is only provable when we can first establish A or establish ¬A. This
anticipates Gödel’s idea of statements which are neither true nor false,
and indeed to computer science where a proof search procedure may
return “yes”, “no” or merely fail to terminate.
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Intuitionism is weaker?

One might argue that intuitionistic proof systems are weaker since they
lose completeness by dropping DNEG. In terms of provability this is
certainly true.
However, in terms of expressivity, at some level they include classical
logic as a special case. Glivenko’s theorem states (for the
propositional subset of FOL):

Theorem
If Γ is a set of propositional formulas and φ a propositional formula,
then Γ ` φ using classical logic if and only if Γ ` ¬¬φ using intuitionistic
logic.

See e.g.

http://en.wikipedia.org/wiki/
Gödel-Gentzen_negative_translation
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Intuitionism and Programming Languages

One reason why intuitionistic reason is relevant to Computer Science
is the Curry-Howard correspondence relating formulae to types and
proofs to programs.

We consider a language like ML or lambda-calculus with syntax (note
we use the word ‘sum’ for ‘disjoint union’):

e ::= x | λx .e | e1 e2 functions
| (e1,e2) | π1e | π2e pairing, projection
| in1e | in2e inject to sum
| case e0 of {in1x ⇒ e1; in2y ⇒ e2} case analysis of sum
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Typed lambda-calculus

In programming languages type correctness of these rules are given
by natural deduction-style rules. Types have syntax (assuming a
primitive type int):

t ::= int | t + t ′ | t × t ′ | t → t ′

Judgements are Γ ` e : t (’in context Γ we infer that e has type t ’)
where context Γ is a set of assumptions of the form x : t . We also need
notion to represent scoping: ignore any existing assumptions for x in Γ
and add x : t :

Γ[x : t ] = Γ \ {x : t ′ | ∃t ′(x : t ′ ∈ Γ)} ∪ {x : t}

The rules are naturally given as follows:
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Typed lambda-calculus (2)

(VAR)
Γ[x : t ] ` x : t

(×-I)
Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1,e2) : t1 × t2

(×-E1)
Γ ` e : t1 × t2
Γ ` π1e : t1

(×-E2)
Γ ` e : t1 × t2
Γ ` π2e : t2

(+-I1)
Γ ` e : t1

Γ ` in1e : t1 + t2
(+-I2)

Γ ` e : t2
Γ ` in2e : t1 + t2

(+-E)
Γ ` e0 : t1 + t2 Γ[x : t1] ` e1 : t3 Γ[y : t2] ` e2 : t3

Γ ` case e0 of {in1x ⇒ e1; in2y ⇒ e2} : t3

(→-I)
Γ[x : t1] ` e : t2

Γ ` λx .e : t1 → t2
(→-E)

Γ ` e1 : t2 → t3 Γ ` e2 : t2
Γ ` e1 e2 : t3
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Curry-Howard Correspondence

Note the correspondence between the two systems. If we erase all
uses of x and e (replacing e : t in judgement forms, including Γ), and
similarly only consider the propositional forms involving AND, OR and
IMPLIES, then intuitionistic propositional deduction and type checking
are isomorphic (replacing {∧,∨,→} with {×,+,→}.

Hence this view is often called ‘propositions as types’. But intuitionism
gives us more: the x and e parts of the judgments can be seen as
proof forms for intuionistic proofs, hence the enriched view (of
‘propositions as types’): ‘programs as proofs’.

It’s worth reading this case carefully: a proof of A ∧ B is a proof of A
and a proof of B; a proof of A ∨ B is a proof of A or a proof of B and a
marker as to which one has been proved. A proof of A → B is a
function which takes a proof of A and returns a proof of B.
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