
Introductory Logic
Lectures 3 and 4: First-Order Logic

Alan Mycroft

Computer Laboratory, University of Cambridge, UK
http://www.cl.cam.ac.uk/˜am21

MPhil in ACS – 2011/12

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 1 / 24

Lecture Outline

First-order logic (FOL)
Syntax
Semantics, interpretations
Validity, models, semantic entailment
Examples
Deduction, axioms, inference rules
Soundness, Completeness, the Entscheidungsproblem

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 2 / 24

First-order logic

This is known by several names, formally “first-order predicate logic”
but also “first-order predicate calculus” or, unless qualified otherwise,
just “predicate calculus” or “predicate logic”. “FOL” is very common.
[Apologies for just calling it ‘predicate logic’ in Lecture 2.]

It refines the notion of ‘propositional variables’ occurring in wffs
into ‘atomic formulae’ which can contain function symbols, relation
symbols, and (individual) variables.
We also add power to talk about ‘for all’ and ‘there exists’ as well
as ‘and’, ‘or’, ‘implication’ etc.

NB: propositional variables like A are interpreted as true or false, while
variables in FOL may be interpreted ranging over as arbitrary
mathematical objects. The adjective ‘individual’ is used to emphasise
the difference when needed.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 3 / 24

FOL formally

We assume:
A countable set Var = {x1, x2, . . .} of (individual) variables.
A countable set {F1,F2, . . .} of function symbols, each with its
arity. Constants are just function symbols or arity zero.
A countable set {P1,P2, . . .} of predicate (or relation) symbols,
each with its arity. Old-style “Propositional variables” are just
captured as predicate symbols of arity zero. One of these
symbols, of arity 2, is distinguished (‘picked out’) as the equality
relation symbol ‘=’.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 4 / 24

One logic or many?

What was the purpose of ‘countable’ above?

For variables x we really need an unlimited supply. If the logic said
there were only 42 variables then there might be some concept
we could only express using 43 variables.
For function symbols and predicate symbols the case is less clear.
Historically (and some logicians prefer to have) one logic, where
any concept which anyone might ever imagine as having an
available symbol to represent it.
The more modern style is to have one logic for each situation, and
such a logic has a finite number of function and predicate symbols.
E.g. arithmetic. One possibility: predicate symbols {=, <} both of
arity 2. and function symbols {0,S,+,×} of arities 0,1,2,2
respectively.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 5 / 24

Syntax

Being Computer Scientists and knowing about syntax, trees,
bracket-matching etc., we will express the syntax of FOL using BNF.
(But remember this is really defining a set of formulae by induction:
“the smallest set that . . . ”.)
We define (following Enderton):

(Terms) t ::= x | F (t1, . . . , tarity(F))
Atomic Formulae (Atoms) A ::= P(t1, . . . , tarity(P))
(Wffs) σ ::= A | ¬σ | σ → σ | ∀x σ

What about ‘∃’, ‘∧’, ‘∨’, ‘↔’ etc? Syntactic sugar:
we consider ∃xA as shorthand for ¬∀x (¬A)

since ¬ and → are universal (Lecture 2) we can consider all other
propositional connectives as shorthand.
E.g. A ∨ B represents (¬A) → B.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 6 / 24

Why ‘first-order’?

This will become clearer when we give semantics.
We only allow ∀-quantification on values, not on functions or
relations.
Induction using predicate P can be expressed
[P(0) ∧ ∀k (P(k) → P(S(k)))] → ∀n P(n)], but only by using “one
sentence for each predicate”
The general form: ∀P [P(0)∧ ∀k (P(k) → P(S(k)))] → ∀n P(n)] is
a statement in higher-order logic, not first-order.
(An aside) notation: ∀k (P(k)) can look clumsy, even though it’s
quite proper, so some people prefer to define their syntax to use
(∀k)σ, ∀k : σ or ∀k .σ (but ‘:’ and ‘.’ often have other meanings in
theoretical CS).

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 7 / 24

Free variables and Sentences

The wff ∀x P(x) has no free variables, while the wff Q(y) has y as a
free variable. This is a simple computable function on syntax – define
the set of free variables of a Term or Wff by:

FV (x) = {x}

FV (F (t1, . . . , tn)) = FV (P(t1, . . . , tn)) =
n⋃

i=1

FV (ti)

FV (¬σ) = FV (σ)

FV (σ → σ′) = FV (σ) ∪ FV (σ′)

FV (∀x σ) = FV (σ) \ {x}

Wffs without free variables are important enough to be given the name
sentences. Compare: that well-formed programs in a language like
Java similarly have no free (undeclared) variables.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 8 / 24

Semantics

How do we determine when a wff is true, or false? Like the truth
assignments in propositional logic, but taking into account the new
forms.
An interpretation (‘structure’ in Enderton) I consists of

a non-empty set D (also written |I|) called the universe of
discourse;
a function FI : Dk −→ D for each function symbol F of arity k .
a k -ary relation PI ⊆ Dk for each relation symbol P of arity k .
However, we insist that the predicate symbol ‘=’ is always
interpreted as equality on D.

This is in principle enough to give a meaning to sentences, but we
need to add a (partial) function v : Var −→ D giving meaning to free
variables (because sentence ∀x σ contains σ which is in general is
only a wff and not a sentence).

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 9 / 24

Semantics 2

We write |=I,v σ to means that I, v satisfies σ. [There are many
variants on this notation: sometimes you see I, v |= σ (conflicts with
Σ |= τ elsewhere) and Enderton writes |=I σ[v]. The
program-semantics notation [[σ]]Iv giving a value in B is also used.]

First we define the meaning [[t]]Iv (a value in D) of a term t under I, v :

[[x]]Iv = v(x)

[[F (t1, . . . , tk)]]Iv = FI([[t1]]Iv , . . . , [[tk]]Iv)

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 10 / 24

Semantics 3

Now we define |=I,v σ on the structure of wffs:
|=I,v P(t1, . . . , tk) iff PI([[t1]]Iv , . . . , [[tk]]Iv)

|=I,v ¬σ iff 6|=I,v σ

|=I,v σ → τ iff iff 6|=I,v σ or |=I,v τ

|=I,v ∀x σ iff for every d ∈ D we have |=I,v [x 7→d] σ

Here v [x 7→ d] updates the value of a function v at a point x :

v [x 7→ d](x) = d
v [x 7→ d](y) = v(y) if y and x are different variables

For sentences, note how v merely keeps track of the variables in
scope due to ‘∀’ within the recursive definition. So for sentences σ, we
write |=I σ to abbreviate |=I,∅ σ.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 11 / 24

Notes on Semantics

In propositional logic we said, given a wff σ that:
valuation v satisfies σ if v(σ) = true
σ is satisfiable if there is a valuation which satisfies σ
σ is a tautology if every valuation satisfies σ
σ is unsatisfiable if no valuation satisfies σ

Now we say, for each sentence σ:
σ is true in interpretation I if |=I σ. We also say I is a model of σ.
σ is satisfiable if there is an interpretation which makes σ true.
σ is valid if every interpretation makes σ true.

[We’re avoiding talking about wffs which are not sentences here.]

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 12 / 24

Notes

Why don’t we use the same words for propositional logic (e.g.
‘tautology’ meaning true under every truth assignment) and FOL (e.g.
‘valid’ meaning true in every interpretation)?

Partly historical accident.
Partly because it’s useful to identify that subset of valid sentences
obtained by replacing propositional variables with wffs. In this
understanding:
∃x P(x) → ∃x P(x) is valid and also a tautology; while
∀x P(x) → ∃x P(x) is valid but not a tautology (because it’s an
instance of A → B but not of A → A).

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 13 / 24

Semantic entailment

We now define a form of “from these hypotheses we can deduce this
consequence” notion. Let Σ be a set of sentences and let τ be a
sentence.
Then say:

Σ |= τ if every model of Σ is also a model of τ .

(An interpretation I is a model of a set of sentences Σ if it is a model of
each element.)
I use the phrase “semantic entailment” for Σ |= τ ; Enderton uses
“logically implies” which is used for multiple purposes in the literature,
and “tautological implication” when talking about propositional logic.
The term “semantic consequence” is also used.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 14 / 24

Why do all this?

Semantic entailment, Σ |= τ , tells us when one set of sentences
require another to be true.

In propositional logic we could determine mechanically whether or
not Σ |= τ holds by simply testing every truth assignment.
In FOL there are an infinite number of interpretations and so we
cannot directly determine whether Σ |= τ holds.
In fact in FOL there is no effective means of determining whether
Σ |= τ holds.
However, there is an effective enumeration of all such Σ and τ
such that Σ |= τ holds. Why: we’ll see later (Gödel’s
completeness theorem) that all true sentences in FOL have a
proof and these proofs can be effectively enumerated.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 15 / 24

Some examples

∀x σ → ∃x σ is valid whatever wff σ represents. (We want this to
be so, and that’s why we require every domain of discourse to be
non-empty.)
∃y ∀x L(x , y) → ∀x ∃y L(x , y) is valid.
∀x x = x is valid.
∀x P(x , x) is satisfiable, but not valid.
∀x ∀y x = y is true only in interpretations having one element.
∃x ∃y ∃z (x 6= y ∧ x 6= z ∧ y 6= z) is true only in interpretations
having at least 3 elements. [Formally x 6= y is sugar for ¬(x = y)
not a separate predicate symbol.]

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 16 / 24

Example models

Suppose we have a logic with function symbols {0,+} and a set of
sentences Σ containing ∀x∀y∀z x + (y + z) = (x + y) + z,
∀x∀y x + y = y + x and ∀x x + 0 = x . (These are the axioms for a
commutative semigroup with identity, but lacking the additive inverse
operation a group would have.) Here are 3 models for Σ:

(N; 0,+;) is possibly the ‘intended’ model
(R; 1,×;) is another model, quite expected
(B; false,∨;) is perhaps a surprising model.

Here we’re writing interpretations as mathematical structures:
(D; fns; preds) where D is a non-empty set supplying the domain of
discourse, fns lists the function interpretations in some agreed order
and preds lists the predicate interpretations in some agreed order.

Sentences τ such that Σ |= τ are those holding in any such semigroup
(this formalises ‘theorems which hold in a semigroup’)

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 17 / 24

Deduction

We’ve seen how to express semantic entailment Σ |= τ .
However, for FOL this is not effectively computable (“for every
interpretation I”), even though for propositional logic it is
computable (there are only 2n truth assignments for a wff
containing n propositional variables).
So, we want a separate idea of deducibility (or deduction) written
Σ ` τ . We can think of deduction as “syntactic entailment” –
indeed there is a separate course on “automated reasoning (or
deduction)” in which the syntactic representation of theorems is of
prime importance.
Ideally we’d like Σ |= τ iff Σ ` τ (“validity = provability”).
It turns out this is delicate: Gödel’s Completeness Theorem
(1930) proves it is the case for FOL, but Gödel’s Incompleteness
Theorem (1931) says it’s impossible when the logic is powerful
enough to express arithmetic (which includes higher-order logic).

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 18 / 24

Inference rules

We need to formalise the concept of theorem, proof and inference step
within the logic. Note that we then use the word metatheorem for
theorems about the logic so we don’t get confused.
We need three things:

a judgement form J giving the syntax of deducible statements,
e.g. ` τ or Σ ` τ where τ is a wff or a sentence. (We often drop
the {. . .} set brackets from the LHS.)
a set of axioms, which are judgements J expressing things we
assume to be true, e.g. φ ` φ ∨ ψ or ` φ→ (φ ∨ ψ).
(These axioms effectively say the same thing – in some systems
one or the other form will turn out to be more convenient.)

a set of inference rules (proof steps) written (NAME)
J1 . . . Jn

J0
(informally: given proofs for Ji ,1 ≤ i ≤ n then writing “hence,
because (NAME), J0” after these proofs constitutes a proof of J0).

Note that an axiom is just a special case (n = 0) of a rule.
Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 19 / 24

Proof rules (2)

A proof is a tree whose nodes are instances of proof rules and whose
leaves are instances of axioms. Trees are typically linearised in
English forms of proof by naming judgements and saying (e.g.) “using
theorems 1 and 2 and rule 27 we conclude 〈whatever〉”.

A judgement is a theorem if appears as the judgement at the root
(“final line’) of a proof.
The rule form enables visual representation of a proof tree:

J0 J1

J2

J3 J4

J6
J7

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 20 / 24

Proof rules (3)

There are two or three main approaches to formalising proof systems
for FOL.
Axiomatic (or Hilbert-style) systems These have many axioms and

just one or two rules. Enderton gives a system with an
infinite number of axioms and just one inference rule,

modus ponens: MP
` φ ` φ→ ψ

` ψ
Natural deduction systems These use just a finite number of rules and

axioms, argued to be more representative of how humans
reason (they have introduction and elimination rules for
logical operators. However, the judgement form is of the
form Γ ` φ and inference rules typically contain
judgements containing different Γ components. By
contrast rules, like MP above, in axiomatic systems above
do not change Γ so this can often be omitted from the
formalisation.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 21 / 24

Proof rules (4)

Sequent calculi This is another formulation with judgement form
φ1, . . . , φm ` ψ1, . . . , ψn which has left- and
right-manipulation rules for each logical operator. We’ll
not discuss it further.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 22 / 24

Soundness and Completeness

Given a set R of inference rules (including axioms as the “zero
antecedents” special case), we write Γ `R φ if there is a proof of Γ ` φ
using the rules in R.
We say a set of rules is

sound if Γ `R φ implies Γ |= φ.
complete if Γ |= φ implies Γ `R φ.

Note that the empty set of rules is sound, but very incomplete while
including every sentence as an axiom in R leads to a system which is
complete by dint of every sentence being true (but hence very
unsound).

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 23 / 24

The Entscheidungsproblem

We noted earlier that the valid sentences in FOL are recursively
enumerable (enumerate all the proofs generated by a sound and
complete set of rules).
The question arises to whether we can have a decision (German:
Entscheidung) procedure for FOL which, given a sentence or
sequent-style judgement, says “yes” or “no” as to whether it is valid or
not.
Church and Turing separately proved that no such algorithm can exist.
Turing’s argument is closest to Computer Science:

Given a Turing machine M, we can exhibit a sentence in FOL
which holds if and only if M terminates.
Since there is no algorithm for this (the halting problem) there can
be no decision procedure for validity (or for satisfiablity for FOL).

By contrast this problem is trivially decidable for Propositional Logic.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 24 / 24

