
Introductory Logic
Lecture 2: Propositional Logic

Alan Mycroft

Computer Laboratory, University of Cambridge, UK
http://www.cl.cam.ac.uk/˜am21

MPhil in ACS – 2011/12

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 1 / 1

Lecture Outline

Forms of Logic
Propositional (or Sentential) Logic.

Wffs, and the Computer Science view.
Valuation of a formula, Truth tables
Satisfiability, Tautology
Effectiveness, Feasibility.
Compactness Theorem.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 2 / 1

Forms of Logic

There are many formulation of logic; all model what we think of as
logic, but some are more sophisticated than others:

Propositional (or Sentential) Logic. No variables.
Predicate Logic. Adds variables, ∀, ∃. Role of equality.
Modal Logic. Adds a notion of modality – e.g. temporal logics in
which we can talk about time and express statements like “once A
has become true then it remains true”.
Intuitionistic Logic. Disallows reasoning based on axioms such as
“A ∨ ¬A” (justification: Gödel and others).

We start with the simplest form.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 3 / 1

Syntax 1

We assume a (countable) set A = {A1,A2, . . . } of propositional
variables. The logical connectives are {∧,∨,¬,→,↔}.
The set A of well-formed formulae (wffs), ranged over by σ, is the
smallest set such that:

A ⊆ A
whenever σ ∈ A then (¬σ) ∈ A
whenever σ, σ′ ∈ A then (σ ∧ σ′) ∈ A
ditto for ∨,→,↔.

Note that this is an inductive definition of set A.

Formally all wffs are fully bracketed, but we elide them for humans:
e.g. ¬A ∨ B ∧ C.
[‘¬’ binds tightest, then ‘∧’, then ‘∨’.]

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 4 / 1

Syntax 2

Computer Scientists have an additional formalism to specify
inductively-defined sets like that of wffs – we write BNF:

σ ::= A | σ ∧ σ′ | σ ∨ σ′ | ¬σ | σ → σ′ | σ ↔ σ′

Seen as a grammar on strings this is ambiguous, but seen as a
grammar on trees then this is fine.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 5 / 1

Semantics

How do we determine when a wff is true, or false?
For propositional variables we need a truth assignment (or valuation)
v : A −→ B to tell us.
Don’t confuse ‘−→’ (function space) and ‘→’ (implication in the logic).

We extend v to all wffs (not just propositional variables) with a function
v : A −→ B using truth tables:

v(A) = v(A)

v(σ ∧ σ′) = true if v(σ) = true and v(σ′) = true
= false otherwise

v(σ ∨ σ′) = see over

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 6 / 1

Semantics 2

v(A) = v(A)

v(σ ∧ σ′) = true if v(σ) = true and v(σ′) = true
= false otherwise

v(σ ∨ σ′) = true if v(σ) = true or v(σ′) = true
= false otherwise

v(¬σ) = true if v(σ) = false
= true otherwise

v(σ → σ′) = true if v(σ) = false or v(σ′) = true
= false otherwise

v(σ ↔ σ′) = true if v(σ) = v(σ′)

= false otherwise

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 7 / 1

Semantics 3

What we’re really doing is modelling ‘real’ ‘and’, ‘or’ etc. in the logic.
Indeed, if we write AND : B× B −→ B (and similarly for the other
connectives) then the equations simply mirror our informal
understanding of logic within the formal logic:

v(A) = v(A)

v(σ ∧ σ′) = AND(v(σ), v(σ′))

v(σ ∨ σ′) = OR(v(σ), v(σ′))

v(¬σ) = NOT (v(σ))

v(σ → σ′) = IMP(v(σ), v(σ′))

v(σ ↔ σ′) = EQV (v(σ), v(σ′))

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 8 / 1

Truth tables

The functions AND, OR etc. can be written as truth tables:

AND true false
true true false
false false false

OR true false
true true true
false true false

NOT true
true false
false true

IMP true false
true true false
false true true

EQV true false
true true false
false false true

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 9 / 1

Truth tables 2

People who have done Computer Hardware/Digital Electronics have
seen this all before.

One particular aspect is that any function B× · · · × B −→ B can be
written as a composition of AND, OR and NOT .

We say {AND,OR,NOT} is universal for boolean functions.

Note that {NAND} is also universal where

NAND(x , y) = NOT (AND(x , y))

as is {NOR}.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 10 / 1

Satisfaction, Tautology

We say, given a wff σ that:
valuation v satisfies σ if v(σ) = true
σ is satisfiable if there is a valuation which satisfies σ
σ is a tautology if every valuation satisfies σ
σ is unsatisfiable if no valuation satisfies σ

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 11 / 1

Tautologous Implication

A particularly interesting question is when does wff σ ‘imply’ wff σ′.
We could write σ → σ′ but we’re interested in situations where the LH
σ behaves like a theory and the RH σ′ behaves like a question (or
some hypotheses and a conclusion).

So we write σ |= τ where |= is part of our mathematics, not part of the
logic.
In fact we generalise to the form Σ |= τ where Σ is a set of wffs and
define Σ |= τ to hold

if whenever a valuation satisfies all σ ∈ Σ then it also satisfies τ

[Note the use of ‘hold’ when we’re talking about maths (the meta-level)
rather than ‘is true’ which is a value within the logic.]

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 12 / 1

Tautology revisited

Given wff σ consider ∅ |= σ, often written |= σ.
By vacuous reasoning this holds whenever σ is a tautology.

Some tautologies:
A ∨ ¬A (excluded middle)
¬(A ∨ B)↔ ¬A ∧ ¬B (de Morgan)
¬(A ∧ B)↔ ¬A ∨ ¬B (de Morgan)
A ∧ (B ∨ C)↔ (A ∧ B) ∨ (A ∧ C) (distributivity)
A ∨ (B ∧ C)↔ (A ∨ B) ∧ (A ∨ C) (distributivity)

Meta-theorem (duality): swapping ∧ and ∨ in a tautology only involving
∧, ∨, ¬,↔ gives another tautology.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 13 / 1

Computability, Feasibility

Determining whether a statement (in propositional logic) is
satisfiable or a tautology is (effectively) computable, as indeed
almost anything else about propositional logic.
But satisfiablity is NP-complete, often called infeasible as the
best-known algorithm is exponential in the number of variables in
the worst case.
However there’s a growth industry in SAT solvers which get fast
results on many cases which arise in practice.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 14 / 1

Digression: Truth versus Proof

Intuitively there are two ways to show two expressions are equivalent:
show they have the same output value for every input value
do algebraic manipulations on both until they are syntactically
equal.

Note that (interpreting ‘expression’ as ‘wff’) we have only exploited the
former version here – which is easy and computable because there
are only a finite number of possible input values.

So we haven’t bothered with the latter (which corresponds to proof).
But it will rise in prominence when we turn to predicate calculus (a.k.a.
first-order logic) when the range of input values may be infinite.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 15 / 1

Compactness

One more tricky question concerns the behaviour of Σ |= τ when Σ is
infinite (perhaps not even countable).
Note the the more members we put in Σ the less satisfiable it becomes
(and vice versa):
{A} is satisfiable
{¬A} is satisfiable
{A,¬A} is not satisfiable

We have seen that sometimes odd things happen when we move to
infinite sets, so the question we ask is (compactness):

Is the behaviour of Σ |= τ explained by the behaviour of
Σ′ |= τ where Σ′ ranges over all finite subsets of Σ.

We answer the question in the affirmative.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 16 / 1

Compactness Theorem

Notation: a set Σ of wffs is satisfiable if there is a truth assignment
which satisfies every σ ∈ Σ.

Theorem (compactness): a set Σ of wffs is satisfiable iff every finite
subset Σ0 ⊆ Σ is satisfiable.

Equivalent form of compactness: if Σ |= τ then there is a finite Σ0 ⊆ Σ
such that Σ0 |= τ .

Why is this important? Reading Σ as a set of hypotheses (allowed to
be infinite) which imply τ , we want to be able to construct a textual
proof (which must be finite and so can’t use an infinite number of
hypotheses in Σ).

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 17 / 1

