

## Introductory Logic Lecture 2: Propositional Logic

#### Alan Mycroft

Computer Laboratory, University of Cambridge, UK http://www.cl.cam.ac.uk/~am21

#### MPhil in ACS - 2011/12

Alan Mycroft (University of Cambridge)

Introductory Logic - Lecture 2

• Forms of Logic

## • Propositional (or Sentential) Logic.

- Wffs, and the Computer Science view.
- Valuation of a formula, Truth tables
- Satisfiability, Tautology
- Effectiveness, Feasibility.
- Compactness Theorem.

There are many formulation of logic; all model what we think of as logic, but some are more sophisticated than others:

- Propositional (or Sentential) Logic. No variables.
- Predicate Logic. Adds variables, ∀, ∃. Role of equality.
- Modal Logic. Adds a notion of modality e.g. temporal logics in which we can talk about time and express statements like "once A has become true then it remains true".
- Intuitionistic Logic. Disallows reasoning based on axioms such as " $A \lor \neg A$ " (justification: Gödel and others).

We start with the simplest form.

# Syntax 1

We assume a (countable) set  $\mathcal{A} = \{A_1, A_2, ...\}$  of propositional variables. The logical connectives are  $\{\wedge, \lor, \neg, \rightarrow, \leftrightarrow\}$ . The set  $\overline{\mathcal{A}}$  of well-formed formulae (wffs), ranged over by  $\sigma$ , is the smallest set such that:

•  $\mathcal{A} \subseteq \overline{\mathcal{A}}$ 

- whenever  $\sigma \in \overline{\mathcal{A}}$  then  $(\neg \sigma) \in \overline{\mathcal{A}}$
- whenever  $\sigma, \sigma' \in \overline{\mathcal{A}}$  then  $(\sigma \land \sigma') \in \overline{\mathcal{A}}$
- ditto for  $\lor, \rightarrow, \leftrightarrow$ .

Note that this is an inductive definition of set  $\overline{\mathcal{A}}$ .

Formally all wffs are fully bracketed, but we elide them for humans: e.g.  $\neg A \lor B \land C$ . ['¬' binds tightest, then '∧', then '∨'.] Computer Scientists have an additional formalism to specify inductively-defined sets like that of wffs – we write BNF:

## $\sigma ::= \mathbf{A} \mid \sigma \land \sigma' \mid \sigma \lor \sigma' \mid \neg \sigma \mid \sigma \to \sigma' \mid \sigma \leftrightarrow \sigma'$

Seen as a grammar on *strings* this is ambiguous, but seen as a grammar on *trees* then this is fine.

How do we determine when a wff is true, or false? For propositional variables we need a *truth assignment* (or valuation)  $v : \mathcal{A} \longrightarrow \mathbb{B}$  to tell us. Don't confuse ' $\longrightarrow$ ' (function space) and ' $\rightarrow$ ' (implication in the logic).

We extend v to all wffs (not just propositional variables) with a function  $\overline{v} : \overline{\mathcal{A}} \longrightarrow \mathbb{B}$  using truth tables:

$$\overline{v}(A) = v(A)$$
  

$$\overline{v}(\sigma \wedge \sigma') = true \text{ if } \overline{v}(\sigma) = true \text{ and } \overline{v}(\sigma') = true$$
  

$$= false \text{ otherwise}$$
  

$$\overline{v}(\sigma \vee \sigma') = see \text{ over}$$

# Semantics 2

| $\overline{v}(A)$                                       | = | $\nu(A)$                                                                                                 |
|---------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------|
| $\overline{\textit{v}}(\sigma \wedge \sigma')$          | = | <i>true</i> if $\overline{v}(\sigma) = true$ and $\overline{v}(\sigma') = true$                          |
|                                                         | = | false otherwise                                                                                          |
| $\overline{\mathbf{v}}(\sigma \lor \sigma')$            | = | <i>true</i> if $\overline{\mathbf{v}}(\sigma) = true$ or $\overline{\mathbf{v}}(\sigma') = true$         |
|                                                         | = | false otherwise                                                                                          |
| $\overline{\mathbf{v}}(\neg\sigma)$                     | = | <i>true</i> if $\overline{\mathbf{v}}(\sigma) = \textit{false}$                                          |
|                                                         | = | true otherwise                                                                                           |
| $\overline{\mathbf{V}}(\sigma  ightarrow \sigma')$      | = | <i>true</i> if $\overline{v}(\sigma) = \textit{false} \text{ or } \overline{v}(\sigma') = \textit{true}$ |
|                                                         | = | false otherwise                                                                                          |
| $\overline{\textit{v}}(\sigma \leftrightarrow \sigma')$ | = | <i>true</i> if $\overline{\mathbf{v}}(\sigma) = \overline{\mathbf{v}}(\sigma')$                          |
|                                                         | = | false otherwise                                                                                          |
|                                                         |   |                                                                                                          |

What we're really doing is modelling 'real' 'and', 'or' etc. in the logic. Indeed, if we write  $AND : \mathbb{B} \times \mathbb{B} \longrightarrow \mathbb{B}$  (and similarly for the other connectives) then the equations simply mirror our informal understanding of logic within the formal logic:

| $\overline{v}(A)$                                       | = | v(A)                                                                        |
|---------------------------------------------------------|---|-----------------------------------------------------------------------------|
| $\overline{\mathbf{v}}(\sigma \wedge \sigma')$          | = | $AND(\overline{v}(\sigma),\overline{v}(\sigma'))$                           |
| $\overline{\mathbf{v}}(\sigma \lor \sigma')$            | = | $OR(\overline{v}(\sigma), \overline{v}(\sigma'))$                           |
| $\overline{\mathbf{V}}(\neg\sigma)$                     | = | $NOT(\overline{v}(\sigma))$                                                 |
| $\overline{\mathbf{V}}(\sigma  ightarrow \sigma')$      | = | $IMP(\overline{\boldsymbol{v}}(\sigma),\overline{\boldsymbol{v}}(\sigma'))$ |
| $\overline{\mathbf{V}}(\sigma \leftrightarrow \sigma')$ | = | $EQV(\overline{v}(\sigma),\overline{v}(\sigma'))$                           |

The functions AND, OR etc. can be written as truth tables:

| AND   | true  | false | OR    | true  | false | NOT   | true  |
|-------|-------|-------|-------|-------|-------|-------|-------|
| true  | true  | false | true  | true  | true  | true  | false |
| false | false | false | false | true  | false | false | true  |
|       |       |       |       |       |       |       |       |
|       | IMP   | true  | false | EQV   | true  | false |       |
|       | true  | true  | false | true  | true  | false |       |
|       | false | true  | true  | false | false | true  |       |

People who have done Computer Hardware/Digital Electronics have seen this all before.

One particular aspect is that *any* function  $\mathbb{B} \times \cdots \times \mathbb{B} \longrightarrow \mathbb{B}$  can be written as a composition of *AND*, *OR* and *NOT*.

We say {*AND*, *OR*, *NOT*} is *universal* for boolean functions.

Note that {NAND} is also universal where

NAND(x, y) = NOT(AND(x, y))

as is {*NOR*}.

We say, given a wff  $\sigma$  that:

- valuation *v* satisfies  $\sigma$  if  $\overline{v}(\sigma) = true$
- $\sigma$  is satisfiable if there is a valuation which satisfies  $\sigma$
- $\sigma$  is a *tautology* if every valuation satisfies  $\sigma$
- $\sigma$  is *unsatisfiable* if no valuation satisfies  $\sigma$

A particularly interesting question is when does wff  $\sigma$  'imply' wff  $\sigma'$ . We *could* write  $\sigma \rightarrow \sigma'$  but we're interested in situations where the LH  $\sigma$  behaves like a theory and the RH  $\sigma'$  behaves like a question (or some hypotheses and a conclusion).

So we write  $\sigma \models \tau$  where  $\models$  is part of our mathematics, not part of the logic.

In fact we generalise to the form  $\Sigma \models \tau$  where  $\Sigma$  is a set of wffs and define  $\Sigma \models \tau$  to hold

if whenever a valuation satisfies all  $\sigma \in \Sigma$  then it also satisfies  $\tau$ 

[Note the use of 'hold' when we're talking about maths (the meta-level) rather than 'is *true*' which is a value within the logic.]

Given wff  $\sigma$  consider  $\emptyset \models \sigma$ , often written  $\models \sigma$ . By vacuous reasoning this holds whenever  $\sigma$  is a tautology.

Some tautologies:

- A  $\vee \neg$  A (excluded middle)
- $\neg (A \lor B) \leftrightarrow \neg A \land \neg B$  (de Morgan)
- $\neg (A \land B) \leftrightarrow \neg A \lor \neg B$  (de Morgan)
- $A \land (B \lor C) \leftrightarrow (A \land B) \lor (A \land C)$  (distributivity)
- $A \lor (B \land C) \leftrightarrow (A \lor B) \land (A \lor C)$  (distributivity)

Meta-theorem (duality): swapping  $\land$  and  $\lor$  in a tautology only involving  $\land$ ,  $\lor$ ,  $\neg$ ,  $\leftrightarrow$  gives another tautology.

- Determining whether a statement (in propositional logic) is satisfiable or a tautology is (effectively) computable, as indeed almost anything else about propositional logic.
- But satisfiablity is NP-complete, often called *infeasible* as the best-known algorithm is exponential in the number of variables in the worst case.
- However there's a growth industry in SAT solvers which get fast results on many cases which arise in practice.

Intuitively there are two ways to show two expressions are equivalent:

- show they have the same output value for every input value
- do algebraic manipulations on both until they are syntactically equal.
- Note that (interpreting 'expression' as 'wff') we have only exploited the former version here which is easy and computable because there are only a finite number of possible input values.

So we haven't bothered with the latter (which corresponds to proof). But it will rise in prominence when we turn to *predicate calculus* (a.k.a. *first-order logic*) when the range of input values may be infinite. One more tricky question concerns the behaviour of  $\Sigma \models \tau$  when  $\Sigma$  is infinite (perhaps not even countable).

Note the the more members we put in  $\Sigma$  the less satisfiable it becomes (and vice versa):

- {*A*} is satisfiable
- {¬A} is satisfiable
- $\{A, \neg A\}$  is not satisfiable

We have seen that sometimes odd things happen when we move to infinite sets, so the question we ask is (*compactness*):

Is the behaviour of  $\Sigma \models \tau$  explained by the behaviour of  $\Sigma' \models \tau$  where  $\Sigma'$  ranges over all finite subsets of  $\Sigma$ .

We answer the question in the affirmative.

Notation: a set  $\Sigma$  of wffs is satisfiable if there is a truth assignment which satisfies every  $\sigma \in \Sigma$ .

Theorem (compactness): a set  $\Sigma$  of wffs is satisfiable iff every finite subset  $\Sigma_0 \subseteq \Sigma$  is satisfiable.

Equivalent form of compactness: if  $\Sigma \models \tau$  then there is a finite  $\Sigma_0 \subseteq \Sigma$  such that  $\Sigma_0 \models \tau$ .

Why is this important? Reading  $\Sigma$  as a set of hypotheses (allowed to be infinite) which imply  $\tau$ , we want to be able to construct a textual proof (which must be finite and so can't use an infinite number of hypotheses in  $\Sigma$ ).