UNIVERSITY OF CAMBRIDGE

Introductory Logic Lecture 2: Propositional Logic

Alan Mycroft

Computer Laboratory, University of Cambridge, UK http://www.cl.cam.ac.uk/~am21

MPhil in ACS – 2011/12

Forms of Logic

Alan Mycroft (University of Cambridge)

There are many formulation of logic; all model what we think of as logic, but some are more sophisticated than others:

- Propositional (or Sentential) Logic. No variables.
- Predicate Logic. Adds variables, ∀, ∃. Role of equality.
- Modal Logic. Adds a notion of modality e.g. temporal logics in which we can talk about time and express statements like "once A has become true then it remains true".
- Intuitionistic Logic. Disallows reasoning based on axioms such as "A ∨ ¬A" (justification: Gödel and others).

We start with the simplest form.

Lecture Outline

- Forms of Logic
- Propositional (or Sentential) Logic.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2

- Wffs, and the Computer Science view.
- Valuation of a formula, Truth tables
- Satisfiability, Tautology
- Effectiveness, Feasibility.
 Compositions Theorem
- Compactness Theorem.

Syntax 1

We assume a (countable) set $\mathcal{A} = \{A_1, A_2, ...\}$ of *propositional variables*. The *logical connectives* are $\{\land, \lor, \neg, \rightarrow, \leftrightarrow\}$. The set $\overline{\mathcal{A}}$ of *well-formed formulae (wffs)*, ranged over by σ , is the smallest set such that:

MPhil in ACS - 2011/12 2 / 1

- $\mathcal{A} \subseteq \overline{\mathcal{A}}$
- whenever $\sigma \in \overline{\mathcal{A}}$ then $(\neg \sigma) \in \overline{\mathcal{A}}$
- whenever $\sigma, \sigma' \in \overline{\mathcal{A}}$ then $(\sigma \land \sigma') \in \overline{\mathcal{A}}$
- ditto for $\lor, \rightarrow, \leftrightarrow$.

Note that this is an inductive definition of set $\overline{\mathcal{A}}$.

Formally all wffs are fully bracketed, but we elide them for humans: e.g. $\neg A \lor B \land C$.

['¬' binds tightest, then ' \land ', then ' \lor '.]

Syntax 2

Computer Scientists have an additional formalism to specify inductively-defined sets like that of wffs – we write BNF:

 $\sigma ::= \mathbf{A} \mid \sigma \land \sigma' \mid \sigma \lor \sigma' \mid \neg \sigma \mid \sigma \to \sigma' \mid \sigma \leftrightarrow \sigma'$

Seen as a grammar on *strings* this is ambiguous, but seen as a grammar on *trees* then this is fine.

Semantics

How do we determine when a wff is true, or false? For propositional variables we need a *truth assignment* (or valuation) $v : \mathcal{A} \longrightarrow \mathbb{B}$ to tell us.

Don't confuse ' \longrightarrow ' (function space) and ' \rightarrow ' (implication in the logic).

We extend v to all wffs (not just propositional variables) with a function $\overline{v}: \overline{\mathcal{A}} \longrightarrow \mathbb{B}$ using truth tables:

$$\overline{v}(A) = v(A)$$

 $\overline{v}(\sigma \land \sigma') = true \text{ if } \overline{v}(\sigma) = true \text{ and } \overline{v}(\sigma') = true$
 $= false \text{ otherwise}$
 $\overline{v}(\sigma \lor \sigma') = \text{ see over}$

Semantics 2

Alan Mycroft (University of Cambridge)

$\overline{v}(A)$	=	<i>v</i> (<i>A</i>)
$\overline{\textit{v}}(\sigma \wedge \sigma')$	=	<i>true</i> if $\overline{v}(\sigma) = true$ and $\overline{v}(\sigma') = true$
	=	false otherwise
$\overline{\mathbf{V}}(\sigma \lor \sigma')$	=	<i>true</i> if $\overline{\mathbf{v}}(\sigma) = true$ or $\overline{\mathbf{v}}(\sigma') = true$
	=	false otherwise
$\overline{v}(\neg\sigma)$	=	<i>true</i> if $\overline{\mathbf{v}}(\sigma) = \textit{false}$
	=	true otherwise
$\overline{\mathbf{V}}(\sigma ightarrow \sigma')$	=	<i>true</i> if $\overline{\mathbf{v}}(\sigma) = \textit{false} \text{ or } \overline{\mathbf{v}}(\sigma') = \textit{true}$
	=	false otherwise
$\overline{\mathbf{V}}(\sigma \leftrightarrow \sigma')$	=	<i>true</i> if $\overline{v}(\sigma) = \overline{v}(\sigma')$
	=	false otherwise

Introductory Logic - Lecture 2

MPhil in ACS - 2011/12

Semantics 3

Alan Mycroft (University of Cambridge

What we're really doing is modelling 'real' 'and', 'or' etc. in the logic. Indeed, if we write $AND : \mathbb{B} \times \mathbb{B} \longrightarrow \mathbb{B}$ (and similarly for the other connectives) then the equations simply mirror our informal understanding of logic within the formal logic:

 $\overline{v}(A) = v(A)$ $\overline{v}(\sigma \land \sigma') = AND(\overline{v}(\sigma), \overline{v}(\sigma'))$ $\overline{v}(\sigma \lor \sigma') = OR(\overline{v}(\sigma), \overline{v}(\sigma'))$ $\overline{v}(\neg \sigma) = NOT(\overline{v}(\sigma))$ $\overline{v}(\sigma \to \sigma') = IMP(\overline{v}(\sigma), \overline{v}(\sigma'))$ $\overline{v}(\sigma \leftrightarrow \sigma') = EQV(\overline{v}(\sigma), \overline{v}(\sigma'))$

Alan Mycroft (University of Cambridge)

Introductory Logic – Lecture 2

The functions AND, OR etc. can be written as truth tables: $\begin{array}{c c c c c c c c c c c c c c c c c c c $	People who have done Computer Hardware/Digital Electronics have seen this all before. One particular aspect is that <i>any</i> function $\mathbb{B} \times \cdots \times \mathbb{B} \longrightarrow \mathbb{B}$ can be written as a composition of <i>AND</i> , <i>OR</i> and <i>NOT</i> . We say { <i>AND</i> , <i>OR</i> , <i>NOT</i> } is <i>universal</i> for boolean functions. Note that { <i>NAND</i> } is also universal where NAND(x, y) = NOT(AND(x, y)) as is { <i>NOR</i> }.
Alan Mycrott (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 9/1 Satisfaction, Tautology	Alan Mycroll (University of Cambridge) Introductory Logic - Lecture 2 MPhil in ACS - 2011/12 10 / 1 Tautologous Implication
We say, given a wff σ that: • valuation v satisfies σ if $\overline{v}(\sigma) = true$ • σ is satisfiable if there is a valuation which satisfies σ • σ is a tautology if every valuation satisfies σ • σ is unsatisfiable if no valuation satisfies σ	A particularly interesting question is when does wff σ 'imply' wff σ' . We <i>could</i> write $\sigma \rightarrow \sigma'$ but we're interested in situations where the LH σ behaves like a theory and the RH σ' behaves like a question (or some hypotheses and a conclusion). So we write $\sigma \models \tau$ where \models is part of our mathematics, not part of the logic. In fact we generalise to the form $\Sigma \models \tau$ where Σ is a set of wffs and define $\Sigma \models \tau$ to hold if whenever a valuation satisfies all $\sigma \in \Sigma$ then it also satisfies τ [Note the use of 'hold' when we're talking about maths (the meta-level) rather than 'is <i>true</i> ' which is a value within the logic.]
Alan Mycrott (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 11 / 1	Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 2 MPhil in ACS – 2011/12 12 / 1
Tautology revisitedGiven wff σ consider $\emptyset \models \sigma$, often written $\models \sigma$.By vacuous reasoning this holds whenever σ is a tautology.Some tautologies:• $A \lor \neg A$ (excluded middle)• $\neg(A \lor B) \leftrightarrow \neg A \land \neg B$ (de Morgan)• $\neg(A \land B) \leftrightarrow \neg A \lor \neg B$ (de Morgan)• $\neg(A \land B) \leftrightarrow \neg A \lor \neg B$ (de Morgan)• $A \land (B \lor C) \leftrightarrow (A \land B) \lor (A \land C)$ (distributivity)• $A \lor (B \land C) \leftrightarrow (A \lor B) \land (A \lor C)$ (distributivity)Meta-theorem (duality): swapping \land and \lor in a tautology only involving $\land, \lor, \neg, \leftrightarrow$ gives another tautology.	 Computability, Feasibility Determining whether a statement (in propositional logic) is satisfiable or a tautology is (effectively) computable, as indeed almost anything else about propositional logic. But satisfiablity is NP-complete, often called <i>infeasible</i> as the best-known algorithm is exponential in the number of variables in the worst case. However there's a growth industry in SAT solvers which get fast results on many cases which arise in practice.
Alan Mycrott (University of Cambridge) Introductory Logic - Lecture 2 MPhil in ACS - 2011/12 13 / 1 Digression: Truth versus Proof	Alan Mycrott (University of Cambridge) Introductory Logic – Lecture 2 MPhill in ACS – 2011/12 14 / 1 Compactness
	One more tricky question concerns the behaviour of $\Sigma \models \tau$ when Σ is

MPhil in ACS – 2011/12 15 / 1 Alan Mycroft (University of Cambridge)

Truth tables 2

Compactness Theorem

Alan Mycroft (University of Cambridge)

Notation: a set Σ of wffs is satisfiable if there is a truth assignment which satisfies every $\sigma \in \Sigma$.

Theorem (compactness): a set Σ of wffs is satisfiable iff every finite subset $\Sigma_0\subseteq\Sigma$ is satisfiable.

Equivalent form of compactness: if $\Sigma \models \tau$ then there is a finite $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \models \tau$.

Why is this important? Reading Σ as a set of hypotheses (allowed to be infinite) which imply τ , we want to be able to construct a textual proof (which must be finite and so can't use an infinite number of hypotheses in Σ).

Introductory Logic – Lecture 2

MPhil in ACS - 2011/12 17 / 1