
Prolog lecture 5

● Data structures
● Difference lists
● Appendless append

L5-2

Appending two Lists

append([],L,L).
append([X|T],L,[X|R]) :- append(T,L,R).

Predicate definition is elegantly simple:

Run-time performance is not good though
– Procedural languages would not scan a list to append

Want to modify the end of the list directly
– Prolog can achieve this!

L5-3

append([1,2],[3,4],A).

append([X|T],L,[X|R]):-append(T,L,R).
append([1|[2]],[3,4],[1|V

1
]):-append([2],[3,4],V

1
).

append([X|T],L,[X|R]):-append(T,L,R).
append([2|[]]],[3,4],[2|V

2
]):-append([],[3,4],V

2
).

append([],L,L).
append([],[3,4],[3,4]).

A=[1|V
1
]

V
1
=[2|V

2
]

V
2
=[3,4]

append([],L,L).
append([X|T],L,[X|R]) :- append(T,L,R).

L5-4

Difference Lists (p185)

Instead of storing one list, store two
– Represent our original list as the difference between

these other two lists

We might represent the “normal” list [1,2,3] as
– [1,2,3,4,5]-[4,5] or
– [1,2,3,foo]-[foo] or
– [1,2,3|X]-X

It is the last form here that is key!

L5-5

Difference List Append

1 :: (2 :: (3 :: []))

4 :: (5 :: (6 :: []))

Append one list to another...

L5-6

Difference List Append

1 :: (2 :: (3 :: []))

4 :: (5 :: (6 :: []))

... in a single list-linking step

L5-7

Difference List Append

A

Prolog syntax for the first list is [1,2,3|A]

1 :: (2 :: (3 :: A))

4 :: (5 :: (6 :: B))

(Although A “is” the second list, to “be” the
second list just requires being a label for the

beginning of that list.)

L5-8

Difference List Append

First list
e.g. [1,2,3|V1]

The variable at the
end of the first list

A potential representation of difference list append:

dapp(L1,V1,L2,V2,L3,V3)

Ideally the two parts (L1 and V1) of the difference list
would be kept together though...

L5-9

Difference List Append

By convention we write our difference list pair as
A-B

But we could also write something like:
differenceList(A,B)
or A+B
or A*B
etc.

dapp(L1-V1,L2-V2,L3-V3)
– True if L3-V3 is the result of appending difference list

L2-V2 to L1-V1

L5-10

Difference List Append
(implementation)

L1 l1
0
::l1

1
::  ::l1

n
::V1

L2 l2
0
::l2

1
::  ::l2

n
::V2

L3 l1
0
::  ::l1

n
::l2

0
::  ::l2

n
::V2

dapp(L1-V1,L2-V2,L3-V3) :- L3=L1,
 V1=L2,
 V3=V2.

L5-11

L1 l1
0
::l1

1
::  ::l1

n
::V1

L2 l2
0
::l2

1
::  ::l2

n
::V2

L3 l1
0
::  ::l1

n
::l2

0
::  ::l2

n
::V2

Difference List Append
(implementation)

dapp(L1-V1,L2-V2,L3-V3) :- V1=L2,
 L3=L1,
 V3=V2.

This is the value of the list we want to represent
and so our difference list has to be

[l1
0
,l1

1
,l1

2
...|V1]-V1

L5-12

L1 l1
0
::l1

1
::  ::l1

n
::V1

L2 l2
0
::l2

1
::  ::l2

n
::V2

L3 l1
0
::  ::l1

n
::l2

0
::  ::l2

n
::V2

Difference List Append
(implementation)

dapp(L1-V1,L2-V2,L3-V3) :- V1=L2,
 L3=L1,
 V3=V2.

L5-13

Difference List Append
(implementation)

dapp(L1-V1,L2-V2,L3-V3) :- V1=L2,
 L3=L1,
 V3=V2.

We know that V1 and L2 must be the unified:
– replace all instances of V1 and L2 with new variable B
– (we can remove the B=B of course)

dapp(L1-B,B-V2,L3-V3) :- B=B,
 L3=L1,
 V3=V2.

L5-14

Difference List Append
(implementation)

So we have:

But we know that L3 and L1 must be unified also
– Replace them with a new variable A:

dapp(L1-B,B-V2,L3-V3) :- L3=L1,
 V3=V2.

dapp(A-B,B-V2,A-V3) :- A=A,
 V3=V2.

L5-15

Difference List Append
(final implementation)

Now we have:

But we know that V3 and V2 must be the same
– Substituting a new variable C:

But that simplifies to the following final answer
– Gradual substitution like this is a useful technique

dapp(A-B,B-V2,A-V3) :- V3=V2.

dapp(A-B,B-C,A-C) :- C=C.

dapp(A-B,B-C,A-C).

L5-16

Representing empty Difference Lists

An empty difference list is an empty list with a
variable at its end ready for later binding.

– Let us call this variable A
– We've seen lists like [1,2|A]

If you understand the [|L] syntax you will
appreciate that removing 1,2 leaves (simply):
A

We write this in the conventional notation as:
A-A

L5-17

Another Difference List Example

Define a procedure rotate(X,Y) where both X and
Y are represented by difference lists, and Y is formed
by rotating X to the left by one element.

[14 marks]

1996-6-7

(This is the second example in your handout)

L5-18

Determine an answer first that does
not use Difference Lists

Take the first element off the first list (H) and append
it after the tail (i.e. at the end) in the solution (R)

rotate([H|T],R) :- append(T,[H],R).

L5-19

Rewrite with Difference Lists

Allocate “tail variables” to our original lists
– Give list [H|T] tail variable T1
– Give list R tail variable S

becomes:

rotate([H|T],R) :- append(T,[H],R).

rotate([H|T]-T1,R-S) :-
 dapp(T-T1,[H|L]-L,R-S).

L5-20

Rename variables to incorporate
difference list append

rotate([H|T]-T1,R-S) :-
 dapp(T-T1,[H|L]-L,R-S).

Recall: difference list append just shuffles vars

Set T1 as [H|L]: i.e. unify with B in dapp/3

dapp(A-B,B-C,A-C).

rotate([H|T]-[H|L],R-S) :-
 dapp(T-[H|L],[H|L]-L,R-S).

L5-21

Rename variables to incorporate
difference list append

From the previous slide:

Rename R to be T, thus unifying with A in dapp/3

dapp(A-B,B-C,A-C).

rotate([H|T]-[H|L],R-S) :-
 dapp(T-[H|L],[H|L]-L,R-S).

rotate([H|T]-[H|L],T-S) :-
 dapp(T-[H|L],[H|L]-L,T-S).

L5-22

Rename variables to incorporate
difference list append

From the previous slide:

Rename S to be L: thus unifying with C in dapp/3

dapp query is now redundant: remove it!

dapp(A-B,B-C,A-C).

rotate([H|T]-[H|L],T-S) :-
 dapp(T-[H|L],[H|L]-L,T-S).

rotate([H|T]-[H|L],T-L) :-
 dapp(T-[H|L],[H|L]-L,T-L).

L5-23

Final Answer

Beautifully concise... but also somewhat opaque!

It is recommended that you comment any line of
Prolog like this really, really thoroughly!

rotate([H|T]-[H|L],T-L).

L5-24

Converting to difference lists

... add in the tail variables ...

double([],[]).
double([H|T],[R|S]) :-
 R is H*2,
 double(T,S).

double(A-A,B-B).
double([H|T]-T1,[R|S]-S1) :-
 R is H*2,
 double(T-T1,S-S1).

L5-25

Question

What does double([1,2,3|T]-T,R) produce?

a) true, R = [2,4,6|X]-X
b) false
c) true, R = X-X
d) an exception

L5-26

Towers of Hanoi Revisited

Move n rings from Src to Dest
– move n-1 rings from Src to Aux
– move the nth ring from Src to Dest
– move n-1 rings from Aux to Dest

Base case: move 0 rings from Src to Dest

End

● Next lecture: solving Sudoku,
● constraint logic programming
● and where to go next...

