
Prolog Assessed Exercise

Lecturer and Assessor: David Evans <david.evans@cl.cam.ac.uk>

21st November 2011

This exercise is about foam1 puzzles. Here’s one:

7 6 1

0 9 C
Each piece is labelled for ease of identification, a label consisting of what is written on the piece’s two
sides. In this case the labels of these pieces, clockwise from the top left, are 74, 65, 13, Cc, 98, and 02.

The goal is to assemble these six pieces, by interlocking the “fingers” that are on each edge, to form a cube.
The result looks something like this

In this solution to the puzzle, the sides of the pieces that show 7, 6, 1, C, 9, and 0 are on the inside of the
cube. This is why 4, 5, and 8 are visible in the picture; the invisible three exterior faces show 3, 2, and c.

You will develop a Prolog program to solve these sorts of puzzles.

You should work through and complete all steps of this document. Ensure that each implemented predicate
behaves correctly under backtracking. You may make reasoned use of the cut operator where appropriate,
although if you find yourself using it a lot then you are on the wrong track—a correct solution exists that
does not use cut at all. Frequently we will need to represent true and false. By convention we shall use 0
for false and 1 for true.

The date above indicates the document version. Check the subject web page for updates. The changes
made between document versions will be listed on the subject web page. Details about submission and
marking are at the end of this document. This document consists of 8 pages.

1Of course they don’t need to be made of foam but often they are.

1



1 Representing the puzzle

In common with the puzzles that we have discussed in lectures, the first task is to devise a representation
of the problem. Doing this requires encoding the individual pieces and how they may be placed.

Consider piece 74 in the above diagram. This piece has 4 sides, which we denote 0 through 3 starting at
the top and counting clockwise. Each side has six fingers. We start in the upper left corner (which is side
0) and write a 1 if a finger is present and a 0 if it is not. Side 0 can therefore be represented by the list
[1,1,0,0,1,0]. Continuing clockwise, side 1 corresponds to the list [0,1,0,1,0,0] and so on for
sides 2 and 3.

In general, we encode each piece as a list. The first element is a label for the piece. The second element of
the piece data structure is a list of edges, with edge 0 coming first, edge 1 next, and so on.

Based on this, the puzzle above would be encoded as follows:

[’74’, [[1,1,0,0,1,0], [0,1,0,1,0,0], [0,1,0,0,1,0], [0,1,0,0,1,1]]]
[’65’, [[1,1,0,0,1,1], [1,0,1,1,0,0], [0,0,1,1,0,0], [0,1,0,1,0,1]]]
[’13’, [[0,1,0,1,0,1], [1,1,0,1,0,1], [1,1,0,0,1,1], [1,1,0,0,1,0]]]
[’Cc’, [[0,0,1,1,0,0], [0,0,1,1,0,0], [0,1,0,0,1,0], [0,0,1,1,0,0]]]
[’98’, [[1,1,0,0,1,0], [0,1,0,0,1,0], [0,0,1,1,0,0], [0,0,1,1,0,1]]]
[’02’, [[0,0,1,1,0,0], [0,1,0,0,1,1], [1,0,1,1,0,0], [0,0,1,1,0,0]]]

(The labels here were chosen to correspond to the physical puzzle used for the photo.) We say that these
pieces are in their canonical orientations, where the first edge is at the top (edge 0), the next is on the
right-hand side (edge 1), and so on.

Alongside the pieces we have to encode a configuration of the pieces. The cube we are trying to construct
has six sides, so we label those sides as follows:

0
1
4
5

32

A candidate solution to the puzzle consists of filling each of these six slots with a piece that is flipped or
not and is in a specific orientation. A solution is valid if adjacent pieces fit together, so the bottom edge of
what is in slot 0 has to plug into the top edge of what is in slot 1 and, similarly, the left edge of what is in
slot 2 has to plug into the left edge of what is in slot 5.

2 Library predicates

Your solution will be much simpler if you use some SWI-Prolog predicates that were not discussed in
lectures. These are explained in this section and part of the exercise is learning how to use them. That said,
none should be mysterious.

2



2.1 bagof/3

The bagof(+Template, :Goal, -Bag) predicate gathers all solutions to Goal. You have not seen
the notation :Goal before; it indicates that Goal is a “meta-argument”, for our purposes meaning that it
contains some Prolog code. bagof/3 works as follows. Goal will be solved repeatedly, each resulting
in a binding for Template. Bag will be unified with a list of these bindings. Recall from lectures that the
perm/2 predicate computes list permutations. We can use bagof/3 to gather all the permutations of the
list [1, 2, 3] as follows:

?- bagof(P, perm([1, 2, 3], P), Ps).
Ps = [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2],

[3, 2, 1]].

2.2 lists:reverse/2

lists:reverse(?A, ?B) is true iff2 the elements in list A are in reverse order compared to list B. For
example,

?- lists:reverse([1, 2, 3], [1, 3, 2]).
false.

?- lists:reverse([1, 2, 3], B).
B = [3, 2, 1].

lists:reverse/2 is in the lists library module, so you should include

:- use_module(library(lists)).

in your source file.

2.3 maplist/3

The maplist family of predicates makes it easy to apply a given predicate to all the elements of a list.
The one with arity 3, maplist(:Goal, ?A, ?B), is true iff Goal can be successfully applied to
successive elements of the lists A and B. You can think of the call

maplist(pred, [A1, A2, A3], [B1, B2, B3])

being translated to

pred(A1, B1), pred(A2, B2), pred(A3, B3)

As an example, in lectures we talked about how the > operator is really the predicate >(+A, +B), true iff
A is numerically greater than B:

?- >(3,4).
false.

?- >(9,4).
true.

2“if and only if”

3



Using maplist/3 we can check whether every element in one list is great than its corresponding element
in another

?- maplist(>, [1,2,3], [4,1,2]).
false.

?- maplist(>, [5,2,3], [4,1,2]).
true.

maplist/3 is in the apply library module, so you should include

:- use_module(library(apply)).

in your source file.

3 Supporting predicates

3.1 Piece generation

Using the above representation for pieces, write a predicate piece(?P) that is true iff the piece P is an
encoded piece known to Prolog. Your predicate may consist of a simple set of facts.

Use bagof/3 to produce a list of the puzzle pieces known to Prolog and use the length/2 predicate in
a test, included in your source file, that there are in fact 6 (six) of them.

3.2 Rotating lists

In the lectures we discussed rotate(?A, ?B) which is true iff the list B is the list A rotated left by one
element. Write an enhanced version of this, rotate(+A, +N, ?B), which is true iff list B is the list
A rotated left by N elements. Include comments in your source file that explain how your predicate works
and tests that demonstrate that it is correct.

3.3 Exclusive-OR

Write a predicate xor(?A, ?B) which is true iff A xor B. Remember that A exclusive-OR (xor) B iff
either A or B is true (1 in our context) but not both. (As a hint, this really is as easy as it seems because of
Prolog’s closed-world assumption.)

3.4 Number ranges

In the course of building your solution you will need to generate integer values within a range. This was
visited in your supervision problems. Implement the predicate range(+Min, +Max, -Val) which
unifies Val with Min on the first evaluation and then all values up to Max - 1 on backtracking.

4



4 Piece orientation

Suppose that a piece is in its canonical orientation as defined in section 1. If we flip it along its vertical
axis, we end up with a new piece. This looks like the following for piece 74

7

4
Write a predicate flipped(+P, ?FP) which is true iff piece FP is piece P flipped. The flipped piece
doesn’t have a new label—it is still piece 74, for example, after all. Ensure that your predicate can generate
flipped pieces as well as check them. Include in your source file comments describing how your predicate
works.

We consider a piece to be in orientation Or if starting in its canonical orientation we rotate it Or times
anticlockwise. Therefore the canonical orientation is orientation 0. By convention we say that a piece
is in orientation -Or if that piece is placed in its canonical orientation, flipped (according to the scheme
described above), and then rotated Or times anticlockwise. Make sure that you are comfortable with the
fact that a piece in orientation -Or does not lead to the same shape as that piece rotated Or times clockwise!

Here is piece 74 in, from left to right, orientations 0, 1, 3, and -1.

7 7
7 4

Write a predicate orientation(+P, ?O, -OP) which is true iff OP is piece P in orientation O. In
effect, OP is a new piece manufactured by orientation/3. So, for example,

?- orientation([’74’, [[1, 1, 0, 0, 1, 0], [0, 1, 0, 1, 0, 0],
[0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1]]], 3, OP).

OP = [’74’, [[0, 1, 0, 0, 1, 1], [1, 1, 0, 0, 1, 0],
[0, 1, 0, 1, 0, 0], [0, 1, 0, 0, 1, 0]]]

The ? in front of O is critical: this predicate must be able to generate oriented pieces as well as check them!

5 Piece compatibility

The edges of two pieces may be plugged into each other if their fingers interlock, meaning that each position
contains exactly one finger. For example, edge 0 of piece 65 is compatible with edge 2 of piece 98. (But
remember that for this to work one of the edges has to be reversed!)

However, this is insufficient to describe a solution to the puzzle. Clearly edge 2 of the piece in slot 0 must
be compatible with edge 0 of that in slot 1. However, slots 0, 1, and share a corner. The fact that this corner
must contain exactly one finger from the three pieces is an extra constraint.

Write a predicate compatible(+P1, +Side1, +P2, +Side2) which is true iff Side1 of piece
P1 can be plugged into Side2 of P2. (compatible/4 does not need to be able to unify its arguments.)
How are you taking into account the issue of corners, as discussed above? Include in your source file
comments that indicate how your predicate works.

Write a predicate compatible_corner(+P1, +Side1, +P2, +Side2, +P3, +Side3) that
is true iff there is exactly one finger in the first position of each given side of each given piece.

5



6 Putting it all together

We are ready! Write a predicate puzzle(+Ps, ?S) where Ps = [P0, P1, P2, P3, P4, P5]
and P0–P5 are puzzle pieces in the form described in section 1. This defines the puzzle in question. Note
that your puzzle/2 predicate is not expected to handle malformed piece descriptions or pieces that are
physically impossible. S specifies a solution to the puzzle and is a list of six elements, element n describing
the piece and its orientation to go into slot n (the slots are defined in section 1), These elements are each a
list of two elements, the first being a piece from Ps and the second being an integer from -4 to 3 specifying
an orientation. See the test case below for an example of the layout of Ps and S. The ? in front of S is
significant: your predicate should be able to test as well as generate solutions.

puzzle/2 has the following declarative meaning.

puzzle(+Ps, ?S) is true iff the pieces P0, P1, P2, P3, P4, and P5 drawn from Ps in
orientations O0, O1, O2, O3, O4, O5 (yielding pieces OP0 through OP5) have the following
edges compatible

1. 2 of OP0 and 0 of OP1,
2. 3 of OP0 and 0 of OP2,
3. 3 of OP1 and 1 of OP2,
4. 1 of OP0 and 0 of OP3,
5. 1 of OP1 and 3 of OP3,
6. 2 of OP1 and 0 of OP4,
7. 2 of OP2 and 3 of OP4,
8. 2 of OP3 and 1 of OP4,
9. 2 of OP4 and 0 of OP5,

10. 3 of OP2 and 3 of OP5,
11. 0 of OP0 and 2 of OP5, and
12. 1 of OP3 and 1 of OP5

and the following edge triplets represent compatible corners

1. 3 of OP0, 0 of OP1, 1 of OP2;
2. 2 of OP0, 1 of OP1, 0 of OP3;
3. 2 of OP2, 3 of OP1, 0 of OP4;
4. 3 of OP3, 2 of OP1, 1 of OP4;
5. 0 of OP5, 3 of OP4, 3 of OP2;
6. 1 of OP5, 2 of OP4, 2 of OP3;
7. 2 of OP5, 1 of OP0, 1 of OP3; and
8. 3 of OP5, 0 of OP0, 0 of OP2

Upon finding a solution, your predicate will produce bindings for P0–P5 and O0–O5. Display these using
the following Prolog code:

format(’~w at ~w~n’, [P0, O0]),
format(’~w at ~w~n’, [P1, O1]),
format(’~w at ~w~n’, [P2, O2]),
format(’~w at ~w~n’, [P3, O3]),
format(’~w at ~w~n’, [P4, O4]),
format(’~w at ~w~n’, [P5, O5]).

Multiple solutions are to be returned upon backtracking over puzzle/2.

6



7 Test case

Append the following test clause to your file:

test :-
P0 = [’74’, [[1,1,0,0,1,0], [0,1,0,1,0,0], [0,1,0,0,1,0], [0,1,0,0,1,1]]],
P1 = [’65’, [[1,1,0,0,1,1], [1,0,1,1,0,0], [0,0,1,1,0,0], [0,1,0,1,0,1]]],
P2 = [’13’, [[0,1,0,1,0,1], [1,1,0,1,0,1], [1,1,0,0,1,1], [1,1,0,0,1,0]]],
P3 = [’Cc’, [[0,0,1,1,0,0], [0,0,1,1,0,0], [0,1,0,0,1,0], [0,0,1,1,0,0]]],
P4 = [’98’, [[1,1,0,0,1,0], [0,1,0,0,1,0], [0,0,1,1,0,0], [0,0,1,1,0,1]]],
P5 = [’02’, [[0,0,1,1,0,0], [0,1,0,0,1,1], [1,0,1,1,0,0], [0,0,1,1,0,0]]],
puzzle([P0, P1, P2, P3, P4, P5], S),
(
S = [[P0, 0], [P1, 2], [P4, 3], [P2, 1], [P3, 0], [P5, 2]];
S = [[P0, 0], [P1, 2], [P4, 3], [P2, 1], [P3, -4], [P5, 2]];
S = [[P0, 0], [P1, 2], [P4, 3], [P2, 1], [P5, 3], [P3, 3]];
S = [[P0, 0], [P1, 2], [P4, 3], [P2, 1], [P5, 3], [P3, -3]]

).

(Note that test/0 uses the “or” predicate ;/2 for tidiness but you don’t need to understand it any more
than you want to.) Prolog will reply “true” to the test/0 predicate if the solutions returned by your
implementation are correct for the chosen puzzle.

Each of these four solutions has piece 74 in position 0. Why is this sufficient to represent every solution to
the puzzle, meaning that there are only four? You will be asked this in your viva!

8 Deliverables and Deadlines

You should submit a single Prolog source file named CRSID-prolog11.pl (replace CRSID with your
CRSID). This file should contain all the clauses above along with appropriate tests. The file should compile
and load in SWI-Prolog without errors, warnings about singleton variables, or failed clauses. For the
avoidance of doubt, your code is expected to work correctly on the SWI-Prolog version running on PWF
Linux.

Email your submission to prolog-tick@cl.cam.ac.uk .

Examination will take the form of a visual inspection of your source code, a test using different puzzles
from that above, and an oral examination. Your oral viva examination will last for seven and a half minutes
and you will be expected to explain the functioning of your code and resolve any issues that are raised by
your examiner. Ensure that you have re-familiarised yourself with your submission prior to attending your
exam. You will be told at the end of your viva whether you have passed your tick.

8.1 Important Dates

Viva sign-up sheets placed outside Student Administration in the
William Gates Building. Write your CRSID in an empty slot.

Fri 20-Jan-2012 12:00 noon

Submission deadline for your tick (by email) Fri 27-Jan-2012 12:00 noon
Viva sign-up sheets taken down Fri 27-Jan-2012 12:00 noon
Viva Examinations Thu 9-Feb-2012 13:00-16:00
Viva Examinations Fri 10-Feb-2012 13:00-16:00

7



8.2 Tick Checklist

In order to achieve your tick you must have accomplished the following:

1. Implement and test the clauses described above providing comments where requested;

2. Your submitted code must pass visual inspection and a further test on a different example puzzle;

3. Sign up for a viva examination before Friday 27-Jan-2012 12:00 noon;

4. Submit your tick by email before Friday 27-Jan-2012 12:00 noon;

5. Attend your examination and answer questions about your submission to the examiner’s satisfaction:
be prepared and be punctual.

8.3 Alternative: C & C++ Assessed Exercise

You need only complete either the Prolog tick or the C & C++ tick but you may complete both if you wish.
No further examination credit is available for completing both ticks. The examination procedure for the C
& C++ tick is of similar form to the above and will run concurrently with the Prolog tick examinations.

END OF TICK

8


