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Overview

Two short cases studies where probability has played a pivitol role:

1. Birthday problem (“birthday attack”)
I cryptographic attacks

2. Probabilistic classification (“naive Bayes classifier”)
I email spam filtering
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The birthday problem

Consider the problem of computing the probability, p(n), that in a
party of n people at least two people share a birthday (that is, the
same day and month but not necessarily same year).
It is easiest to first work out 1−p(n) = q(n), say,
where q(n) = P(none of the n people share a birthday) then

q(n) =

(
364

365

)(
363

365

)
· · ·
(

365−n+ 1

365

)
=

(
1− 1

365

)(
1− 2

365

)
· · ·
(

1− n−1

365

)
=

n−1

∏
k=1

(
1− k

365

)
.

Surprisingly, n = 23 people suffice to make p(n) greater than 50%.
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Graph of p(n)
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Assumptions

We should record some of our assumptions behind the calculation
of p(n).

1. Ignore leap days (29 Feb)

2. Each birthday is equally likely

3. People are selected independently and without regard to their
birthday to attend the party (ignore twins, etc)
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Examples: coincidences on the football field

Ian Stewart writing in Scientific American illustrates the birthday
problem with an interesting example. In a football match there
are 23 people (two teams of 11 plus the referee) and on 19 April
1997 out of 10 UK Premier Division games there were 6 games
with birthday coincidences and 4 games without.
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Examples: cryptographic hash functions

A hash function y = f (x) used in cryptographic applications is
usually required to have the following two properties (amongst
others):

1. one-way function: computationally intractible to find an x
given y .

2. collision-resistant: computationally intractible to find
distinct x1 and x2 such that f (x1) = f (x2).
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Probability of same birthday as you
Note that in calculating p(n) we are not specifying which birthday
(for example, your own) matches. For the case of finding a match
to your own birthday amongst a party of n other people we would
calculate

1−
(

364

365

)n

.
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General birthday problem

Suppose we have a random sample X1,X2, . . . ,Xn of size n
where Xi are IID with Xi ∼ U(1,d) and let p(n,d) be the
probability that there are at least two outcomes that coincide.
Then

p(n,d) =

{
1−∏

n−1
k=1

(
1− k

d

)
n ≤ d

1 n > d .

The usual birthday problem is the special case when d = 365.
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Approximations

One useful approximation is to note that for x � 1
then 1−x ≈ e−x . Hence for n ≤ d

p(n,d) = 1−
n−1

∏
k=1

(
1− k

d

)
≈ 1−

n−1

∏
k=1

e−
k
d

= 1− e−(∑
n−1
k=1 k)/d

= 1− e−n(n−1)/(2d) .

We can further approximate the last expression as

p(n,d)≈ 1− e−n
2/(2d) .
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Inverse birthday problem
Using the last approximation

p(n,d)≈ 1− e−n
2/(2d)

we can invert the birthday problem to find n = n(p,d), say, such
that p(n,d)≈ p so then

e−n(p,d)
2/(2d) ≈ 1−p

−n(p,d)2

2d
≈ log(1−p)

n(p,d)2 ≈ 2d log

(
1

1−p

)
n(p,d)≈

√
2d log

(
1

1−p

)
.

In the special case of d = 365 and p = 1/2 this gives the
approximation n(0.5,365)≈

√
2×365× log(2)≈ 22.49.
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Expected waiting times for a collision/match

Let Wd be the random variable specifiying the number of iterations
when you choose one of d values independently and uniformly at
random (with replacement) and stop when any value is selected a
second time (that is, a “collision” or “match” occurs).
It is possible to show that

E(Wd)≈
√

πd

2
.

Thus in the special case of the birthday problem where d = 365 we

have that E(W365)≈
√

π×365
2 ≈ 23.94.

In the case that we have a cryptographic hash function
with 160-bit outputs (d = 2160) then E(W2160)≈ 1.25×280. This
level of reduction leads to so-called “birthday attacks”. (See the IB
course Security I for further details.)
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Further results
Persi Diaconis and Frederick Mosteller give results on the minimum
number nk required to give a probability greater than 1/2 of k or
more matches with d = 365 possible choices.

k 2 3 4 5 6 7 8 9 10
nk 23 88 187 313 460 623 798 985 1181
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Email spam filtering

Suppose that an email falls into exactly one of two classes (spam
or ham) and that various features F1,F2, . . . ,Fn of an email
message can be measured. Such features could be the presence or
absence of particular words or groups of words, etc, etc.
We would like to determine P(C |F1,F2, . . . ,Fn) the probability that
an email message falls into a class C given the measured
features F1,F2, . . . ,Fn. We can use Bayes’ theorem to help us.
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Bayes’ theorem for emails

We have that

P(C |F1,F2, . . . ,Fn) =
P(C )P(F1,F2, . . . ,Fn |C )

P(F1,F2, . . . ,Fn)

which can be expressed in words as

posterior probability =
prior probability× likelihood

evidence
.
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Naive Bayes classifier

In the naive Bayes classifier we make the assumption of
independence across features. So that

P(F1,F2, . . . ,Fn |C ) =
n

∏
i=1

P(Fi |C )

and then

P(C |F1,F2, . . . ,Fn) ∝ P(C )
n

∏
i=1

P(Fi |C ) .
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Decision rule for naive Bayes classifier

We then use the decision rule to classify an email with observed
features F1,F2, . . . ,Fn as spam if

P(C = spam)
n

∏
i=1

P(Fi |C = spam)>P(C = ham)
n

∏
i=1

P(Fi |C = ham) .

This decision rule is known as the maximum a posteriori (MAP)
rule.
Surveys and a training set of manually classified emails are needed
to estimate the values of P(C ) and P(Fi |C ).
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