
Motivation

Intermediate code in normal form permits maximum 
flexibility in allocating temporary variables to physical 

registers.

This flexibility is not extended to user variables, and 
sometimes more registers than necessary will be used.

Register allocation can do a better job with user 
variables if we first translate code into SSA form.



Live ranges

User variables are often reassigned and reused 
many times over the course of a program, so that 

they become live in many different places.

Our intermediate code generation scheme assumes 
that each user variable is kept in a single virtual 

register throughout the entire program.

This results in each virtual register having a large 
live range, which is likely to cause clashes. 



Live ranges

extern int f(int);
extern void h(int,int);
void g()
{
  int a,b,c;
  a = f(1); b = f(2); h(a,b);
  b = f(3); c = f(4); h(b,c);
  c = f(5); a = f(6); h(c,a);
}



Live ranges
a = f(1);
b = f(2);
h(a,b);

b = f(3);
c = f(4);
h(b,c);

c = f(5);
a = f(6);
h(c,a);

a = f(1);
b = f(2);
h(a,b);

b = f(3);
c = f(4);
h(b,c);

c = f(5);
a = f(6);
h(c,a);

a = f(1);
b = f(2);
h(a,b);

b = f(3);
c = f(4);
h(b,c);

c = f(5);
a = f(6);
h(c,a);

a = f(1);
b = f(2);
h(a,b);

b = f(3);
c = f(4);
h(b,c);

c = f(5);
a = f(6);
h(c,a);
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3 registers needed



Live ranges

We may remedy this situation by performing a 
transformation called live range splitting, in which live 
ranges are made smaller by using a different virtual 
register to store a variable’s value at different times, 

thus reducing the potential for clashes.



extern int f(int);
extern void h(int,int);
void g()
{
  int a,b,c;
  a = f(1); b = f(2); h(a,b);
  b = f(3); c = f(4); h(b,c);
  c = f(5); a = f(6); h(c,a);
}

extern int f(int);
extern void h(int,int);
void g()
{
  int a1,a2, b1,b2, c1,c2;
  a1 = f(1); b2 = f(2); h(a1,b2);
  b1 = f(3); c2 = f(4); h(b1,c2);
  c1 = f(5); a2 = f(6); h(c1,a2);
}

Live ranges



Live ranges
a1 = f(1);
b2 = f(2);
h(a1,b2);

b1 = f(3);
c2 = f(4);
h(b1,c2);

c1 = f(5);
a2 = f(6);
h(c1,a2);

2 registers needed

a1 = f(1);
b2 = f(2);
h(a1,b2);

b1 = f(3);
c2 = f(4);
h(b1,c2);

c1 = f(5);
a2 = f(6);
h(c1,a2);

a1 = f(1);
b2 = f(2);
h(a1,b2);

b1 = f(3);
c2 = f(4);
h(b1,c2);

c1 = f(5);
a2 = f(6);
h(c1,a2);

a1 = f(1);
b2 = f(2);
h(a1,b2);

b1 = f(3);
c2 = f(4);
h(b1,c2);

c1 = f(5);
a2 = f(6);
h(c1,a2);

a1 = f(1);
b2 = f(2);
h(a1,b2);

b1 = f(3);
c2 = f(4);
h(b1,c2);

c1 = f(5);
a2 = f(6);
h(c1,a2);

a1 = f(1);
b2 = f(2);
h(a1,b2);

b1 = f(3);
c2 = f(4);
h(b1,c2);

c1 = f(5);
a2 = f(6);
h(c1,a2);

a1 = f(1);
b2 = f(2);
h(a1,b2);

b1 = f(3);
c2 = f(4);
h(b1,c2);

c1 = f(5);
a2 = f(6);
h(c1,a2);

c1 a2

b1 c2

a1 b2



Static single-assignment

Live range splitting is a useful transformation: it gives the 
same benefits for user variables as normal form gives 

for temporary variables.

However, if each virtual register is only ever assigned to 
once (statically), we needn’t perform live range splitting, 

since the live ranges are already as small as possible.

Code in static single-assignment (SSA) form has this 
important property.



Static single-assignment
It is straightforward to transform straight-line 

code into SSA form: each variable is renamed by 
being given a subscript, which is incremented 

every time that variable is assigned to.

v = 3;
v = v + 1;
v = v + w;
w = v + 2;
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Static single-assignment

When the program’s control flow is more 
complex, extra effort is required to retain the 

original data-flow behaviour.

Where control-flow edges meet, two (or 
more) differently-named variables must now 

be merged together.



Static single-assignment

v = v + 1;
v = v + w;

v = v - 1;

w = v * 2;

v = 3;1

12
23

14

?



Static single-assignment

v = v + 1;
v = v + w;

v = v - 1;

v = ϕ(v ,v );
w = v * 2;

v = 3;1
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Static single-assignment

The ϕ-functions in SSA keep track of which 
variables are merged at control-flow join points.

They are not executable since they do not record 
which variable to choose (cf. gated SSA form).



Static single-assignment

“Slight lie”: SSA is useful for much more than register 
allocation!

In fact, the main advantage of SSA form is that, by 
representing data dependencies as precisely as 

possible, it makes many optimising transformations 
simpler and more effective, e.g. constant propagation, 

loop-invariant code motion, partial-redundancy 
elimination, and strength reduction.



Phase ordering
We now have many optimisations which we can 

perform on intermediate code.

It is generally a difficult problem to decide in which 
order to perform these optimisations; different orders 

may be more appropriate for different programs.

Certain optimisations are antagonistic: for example, 
CSE may superficially improve a program at the 
expense of making the register allocation phase 
more difficult (resulting in spills to memory).



Higher-level optimisations

intermediate code

parse tree

token stream

character stream

target code

optimisation

optimisation

optimisation

decompilation



Higher-level optimisations

• More modern optimisations than those in Part A

• Part A was mostly imperative

• Part B is mostly functional

• Now operating on syntax of source language vs. an 
intermediate representation

• Functional languages make the presentation clearer, 
but many optimisations will also be applicable to 
imperative programs



Algebraic identities

The idea behind peephole optimisation of intermediate 
code can also be applied to abstract syntax trees.

There are many trivial examples where one piece of 
syntax is always (algebraically) equivalent to another 
piece of syntax which may be smaller or otherwise 
“better”; simple rewriting of syntax trees with these 

rules may yield a smaller or faster program.



Algebraic identities
... e + 0 ...

... e ...

... (e + n) + m ...

... e + (n + m) ...



Algebraic identities

These optimisations are boring, however, since they are 
always applicable to any syntax tree.

We’re interested in more powerful transformations 
which may only be applied when some analysis has 

confirmed that they are safe.



if e′ then let x = e in ... x ... else e′′

Algebraic identities

let x = e in if e′ then ... x ... else e′′

provided e′ and e′′ do not contain x.

In a lazy functional language,

This is still quite boring.



Strength reduction

More interesting analyses (i.e. ones that aren’t purely 
syntactic) enable more interesting transformations.

Strength reduction is an optimisation which replaces 
expensive operations (e.g. multiplication and division) 

with less expensive ones (e.g. addition and subtraction).

It is most interesting and useful when done inside loops.



Strength reduction

For example, it may be advantageous to 
replace multiplication (2*e) with addition 

(let x = e in x + x) as before.

Multiplication may happen a lot inside loops 
(e.g. using the loop variable as an index into 

an array), so if we can spot a recurring 
multiplication and replace it with an addition 

we should get a faster program.



int i;
for (i = 0; i < 100; i++)
{
  v[i] = 0;
}

Strength reduction



Strength reduction

int i; char *p;
for (i = 0; i < 100; i++)
{
  p = (char *)v + 4*i;
  p[0] = 0; p[1] = 0;
  p[2] = 0; p[3] = 0;
}



Strength reduction

int i; char *p;
for (i = 0; i < 100; i++)
{
  p = (char *)v + 4*i;
  p[0] = 0; p[1] = 0;
  p[2] = 0; p[3] = 0;
}



Strength reduction

int i; char *p;
p = (char *)v;
for (i = 0; i < 100; i++)
{
  p[0] = 0; p[1] = 0;
  p[2] = 0; p[3] = 0;
  p += 4;
}



Strength reduction

int i; char *p;
p = (char *)v;
for (i = 0; p < (char *)v + 400; i++)
{
  p[0] = 0; p[1] = 0;
  p[2] = 0; p[3] = 0;
  p += 4;
}



Strength reduction

int i; int *p;
p = v;
for (i = 0; p < v + 100; i++)
{
  *p = 0;
  p++;
}



Strength reduction

int i; int *p;
p = v;
for (i = 0; p < v + 100; i++)
{
  *p = 0;
  p++;
}



Strength reduction

int *p;
for (p = v; p < v + 100; p++)
{
  *p = 0;
}

Multiplication has been replaced with addition.



Strength reduction

Note that, while this code is now almost optimal, it 
has obfuscated the intent of the original program.

Don’t be tempted to write code like this!

For example, when targeting a 64-bit architecture, 
the compiler may be able to transform the original 
loop into fifty 64-bit stores, but will have trouble 

with our more efficient version.



Strength reduction

for some operations ⊕ and ⊗ such that

x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z)

• induction variable: i = i ⊕ c

• another variable: j = c2 ⊕ (c1 ⊗ i)

We are not restricted to replacing multiplication 
with addition, as long as we have



Strength reduction

It might be easier to perform strength reduction on the 
intermediate code, but only if annotations have been 
placed on the flowchart to indicate loop structure.

At the syntax tree level, all loop structure is apparent.



Summary

• Live range splitting reduces register pressure

• In SSA form, each variable is assigned to only once

• SSA uses ϕ-functions to handle control-flow merges

• SSA aids register allocation and many optimisations

• Optimal ordering of compiler phases is difficult

• Algebraic identities enable code improvements

• Strength reduction uses them to improve loops




