
Section: Lifecycle of an Object

Constructors

 You will have noticed that the RHS looks rather like a
function call, and that's exactly what it is.

 It's a method that gets called when the object is
constructed, and it goes by the name of a constructor
(it's not rocket science).

 We use constructors to initialise the state of the class in a
convenient way.
 A constructor has the same name as the class
 A constructor has no return type

MyObject m = new MyObject();

Constructor Examples

public class Person {
 private String mName;

 // Constructor
 public Person(String name) {
 mName=name;
 }

 public static void main(
String[] args) {

 Person p =
 new Person(“Bob”);
 }

}

class Person {
 private:
 std::string mName;

 public:
 Person(std::string &name){
 mName=name;
 }
};

int main (int argc,
 char ** argv) {
 Person p (“Bob”);
}

Java C++

Default Constructor

public class Person {
 private String mName;

 public static void main(String[] args) {
 Person p = new Person();
 }

}

 If you specify no constructor at all, Java fills in an
empty one for you

 Here it creates Person() for us
 The default constructor takes no arguments

(since it wouldn't know what to do with them!)

Multiple Constructors

public class Student {
 private String mName;
 private int mScore;

 public Student(String s) {
 mName=s;
 mScore=0;
 }
 public Student(String s, int sc) {
 mName=s;
 mScore=sc;
 }

 public static void main(String[] args) {
 Student s1 = new Student("Bob");
 Student s2 = new Student("Bob",55);
 }
 }

 You can specify as many
constructors as you like.

 Each constructor must have
a different signature
(argument list)

Constructor Chaining

 When you construct an object of a type with
parent classes, we call the constructors of all of
the parents in sequence

Student s = new Student();

Animal

Person

Student

1. Call Animal()

2. Call Person()

3. Call Student()

Chaining without Default Constructors

 What if your classes have explicit constructors that take
arguments? You need to explicitly chain:

Person

Student

-mName : String
+Person(String name)

+Student()

public Person (String name) {
 mName=name;
}

public Student () {
 super(“Bob”);
}

Destructors

 Most OO languages have a notion of a destructor too
 Gets run when the object is destroyed
 Allows us to release any resources (open files, etc) or

memory that we might have created especially for the
object

class FileReader {
 public:

 // Constructor
 FileReader() {
 f = fopen(“myfile”,”r”);
 }

 // Destructor
 ~FileReader() {
 fclose(f);
 }

 private :
 FILE *file;
}

int main(int argc, char ** argv) {

 // Construct a FileReader Object
 FileReader *f = new FileReader();

 // Use object here
 ...

 // Destruct the object
 delete f;

}

C++

Cleaning Up

 A typical program creates lots of objects, not all of which need
to stick around all the time

 Approach 1:
 Allow the programmer to specify when objects should be

deleted from memory

 Lots of control, but what if they forget to delete an object?
 A “memory leak”

 Approach 2:

 Delete the objects automatically (Garbage collection)

 But how do you know when an object will never be used
again and can be deleted??

Cleaning Up (Java) I

 Java reference counts. i.e. it keeps track of how many
references point to a given object. If there are none,
the programmer can't access that object ever again so
it can be deleted

Person object
#ref = 2

r2

r1

r1 = null;
r2 = null;

Person object
#ref = 0

r2

r1

Deletable

Cleaning Up (Java) II

 Actual deletion occurs through a garbage collector
 A separate process that periodically scans the

objects in memory for any with a reference count of
zero, which it then deletes.

 Running the garbage collector is obviously not free. If
your program creates a lot of short-term objects, you
will soon notice the collector running
 Gives noticeable pauses to your application while

it runs.
 But minimises memory leaks (it does not prevent

them...)

Cleaning Up (Java) III

 One problem with GC is we have no idea when an
object will actually be deleted. The GC may even
decide to defer the deletion until a future run.

 This causes issues for destructors – it might be ages
before a resource is closed and available again!

 Therefore Java doesn't have destructors
 It does have finalizers that gets run when the GC

deletes an object
 BUT there's no guarantee an object will ever get

garbage collected in Java...
 Garbage Collection != Destruction

Section: Class Variables

Class-Level Data and Functionality I

 This is one solution to incorporating VAT
into a shop application

 Bad: Every instance will contain a float
with the same number

 Bad: If the VAT rate changes, how can
we be sure every single object with
such a float is properly changed?!

public class ShopItem {
 private float price;
 private float VATRate = 0.2;

 public float GetSalesPrice() {
 return price*(1.0+VATRate);
 }

 public void SetVATRate(float rate) {
 VATRate=rate;
 }

}

 It can be useful to have class variables a.k.a. static variables. These
are variables that exist per class and not per object

 Create them in Java using the static keyword:

public class ShopItem {
 private float price;
 private static float VATRate;

}

Variable created only once
and has the lifetime of the
program, not the object

Class-Level Data and Functionality II
 We now have one place to update

 More efficient memory usage

17.5

0.2

0.2

0.2

17.5

0.2

 Can also make methods static too

 A static method must be instance independent i.e. it can't rely
on member variables in any way

Sometimes a static method is obviously needed. E.g

public class Whatever {
 public static void main(String[] args) {
 ...
 }
}

Must be able to run this
function without creating
an object of type
Whatever (which we
would have to do in the
main()..!)

Why use other static methods?
 A static function is like a function in ML – it can depend only

on its arguments
 Easier to debug (not dependent on any state)
 Self documenting
 Allows us to group related methods in a Class, but does not

require us to create an object to run them
 The compiler can produce more efficient code since no

specific object is involved

public class Math {
 public float sqrt(float x) {…}
 public double sin(float x) {…}
 public double cos(float x) {…}
}

…
Math mathobject = new Math();
mathobject.sqrt(9.0);
...

public class Math {
 public static float sqrt(float x) {…}
 public static float sin(float x) {…}
 public static float cos(float x) {…}
}

…
Math.sqrt(9.0);
...

vs

Section: Exceptions

Error Handling

 You do a lot on this in your practicals, so we'll just touch on it
here

 The traditional way to handle errors is to return a value that
indicates success/failure/error

 Problems:
 Could ignore the return value
 Have to keep checking what the return values are meant to

signify, etc.
 The actual result often can't be returned in the same way

public int divide(double a, double b) {
 if (b==0) return -1; // error
 double result = a/b;
 return 0; // success
}

…

if (divide(x,y)<0) System.out.println(“Failure!!”);

Exceptions I

 An exception is an object that can be thrown or raised
by a method when an error occurs and caught by the
calling code

public double divide(double a, double b)
throws DivideByZeroException {

 if (b==0) throw DivideByZeroException();
 else return a/b
}

…

try {
 double z = divide(x,y);
}
catch(DivideByZeroException d) {
 // Handle error here
}

Exceptions II

 Advantages:
 Class name can be descriptive (no need to look up error

codes)
 Doesn't interrupt the natural flow of the code by requiring

constant tests
 The exception object itself can contain state that gives

lots of detail on the error that caused the exception
 Can't be ignored, only handled

