Section: Lifecycle of an Object

Constructors

MyObject m = new MyObject();

———

\

= You will have noticed that the RHS looks rather like a
function call, and that's exactly what it is.

* |t's a method that gets called when the object is
constructed, and it goes by the name of a constructor
(it's not rocket science).

= We use constructors to initialise the state of the class in a
convenient way.

= A constructor has the same name as the class
= A constructor has no return type

Constructor Examples

Java C++
public class Person { class Person {
private String mName; private:

std::string mName;
// Constructor

public Person(String name) { | public:
mName=name; Person(std::string (&name){
;o mName=name;
public static void main(}: I
String[] args) {
Person p =

. . int main (int argc,
_ nhew Person(“Bob”); (char*?* argv) {

} Person p (“Bob”);
} }

Default Constructor

public class Person {
private String mName;

public static void main(String[] args) {
Person p = new Person();

}
}

" |f you specify no constructor at all, Java fills in an
empty one for you

" Here it creates Person() for us

" The default constructor takes no arguments
(since it wouldn't know what to do with them!)

Multiple Constructors

public class Student { You can specify as many

orivate String mName: constructors as you like.
private int mScore; " Each constructor must have
public Student(String s) { a different S!QHOTUre
mName=s; (argument list)
mScore=0;
) a8
public Student(String s, int sc) {
MName=s;
MmScore=sc;
}

public static void main(String[] args) {
Student s1 = new Student("Bob");
Student s2 = new Student("Bob",55);
}

Constructor Chaining

* When you construct an object of a type with
parent classes, we call the constructors of all of
the parents in sequence

(;udent S = new Student();j §

A alll 1. Call Animal() /(
A iz,
N

Person f
g 2. Call Person()

T

C Student 3. Call Student()
/

Chaining without Default Constructors

" What if your classes have explicit constructors that take
argumentse You need to explicitly chain:

Person

-mName : String
+Person(String name)

N\

Student

public Person (String name) {
mName=name;

+Student() -

}
| N CA.((e
public Student () { I,.
} super(“Bob”); ()(/\/*!p//\
e o

ConN

= Most OO languages have a notion of a destructor too
= Gets run when the object is destroyed

= Allows us to release any resources (open files, etc) or
memory that we might have created especially for the

object
class FileReader { int main(int argc, char ** argv) {
public:
// Construct a FileReader Object
// Constructor FileReader *f = new FileReader();
FileReader() {
f = fopen(“myfile”,”r"); // Use object here
C++ }
// Destructor // Destruct the object
~FileReader() { delete f;
fclose(f); | /
} }
private : '
FILE W, %t

}

Cleaning Up

= A typical program creates lots of objects, not all of which need
to stick around all the fime

= Approach 1:

= Allow the programmer to specify when objects should be
deleted from memory

= Lots of control, but what if they forget to delete an object?
= A “memory leak”

C— .,

= Approach 2:
= Delete the objects automatically (Garbage collection)

= But how do you know when an object will never be used
again and can be deletede?

Cleaning Up (Java) |

= Javareference counts. i.e. it keeps track of how many
references point to a given object. If there are none,
the programmer can't access that object ever again so
it can be deleted

Person object

Person object
Deletabl
pret o [ref =0 | Deletable

rl = null;
r2 = null;

rl ri

r2 r2

Cleaning Up (Java) |l

= Actual delefion occurs through a garbage collector

" A separate process that periodically scans the
objects in memory for any with a reference count of
zero, which it then deletes.

* Running the garbage collector is obviously not free. If
your program creates a lot of short-term objects, you
will soon notice the collector running

* Gives noticeable pauses to your application while
It runs.

* But minimises memory leaks (it does not prevent
them...)

Cleaning Up (Java) lli

* One problem with GC is we have no idea when an
object will actually be deleted. The GC may even
decide to defer the delefion until a future run.

" This causes issues for destructors — it might be ages
before aresource is closed and available again!

* Therefore Java doesn't have destructors

* |t does have finalizers that gets run when the GC
deletes an object

= BUT there's no guarantee an object will ever get
garbage collected in Java...

* Garbage Collection |= Destfruction

Section: Class Variables

Class-Level Data and Functionality |

oublic class Shopltem { This is one solution to incorporafing VAT

private float price; info a shop application

private float VATRate = 0.2; = Bad: Every instance will contain a float

public float GetSalesPrice() { with the same number

) return price*(1.0+VATRate); = Bad: If the VAT rate changes, how can
we be sure every single object with

public void SetVATRate(float rate) { such a float is properly changed?!

} VATRate=rate;

}

= |t can be useful to have class variables a.k.a. static variables. These
are variables that exist per class and not per object

" Create them in Java using the static keyword:

public class Shopltem {

private float price; Variable created only once
private static float VATRate; = and has the lifetime of the

program, not the object

Class-Level Data and Functionality |

0.2 = = We now have one place to update
" More efficient memory usage

| =)

Can also make methods static too
= A static method must be instance independent i.e. it can't rely

0N Member variables in any way
Sometimes a static method is obviously needed. E.g

. Must be able to run this
DUbI'C.CIaSS _/Vhat_ever { : function without creating
public static void main(String[] args) { g— 55, object of type
Whatever (which we
} would have to do in the

} main()..!)

Why use other static methodse

= A stafic function is like a function in ML — it can depend only
onits arguments + dller shkkc dekar

" Easier to debug (not dependent on any state)

= Self documenting

= Allows us to group related methods in a Class, but does not
require us to create an object to run them

* The compiler can produce more efficient code since no
specific object is involved

public class Math { public class Math {
public float sgrt(float x) {...} public static float sqgrt(float x) {...}
public double sin(float x) {...} public static float sin(float x) {...}
public double cos(float x) {...} public static float cos(float x) {...}
} }
VS
Math mathobject = new Math(); Math.sqrt(9.0);

—————

mathobject.sqrt(9.0);

e

Section: Exceptions

Error Handling

* You do a lot on this in your practicals, so we'll just touch on it
here

» The traditional way to handle errors is to return a value that
indicates success/failure/error

public int divide(double a, double b) {

if (b==0)return -1; // error
doub = a/b;
return O; // success

}

if (divide(x,y)<0) System.out.println(“Failure!!”);
= Problems:
» Couldignore the return value

» Have to keep checking what the return values are meant to
signify, eftc.

* The actual result offen can't be returned in the same way

Exceptions |

" An exception is an object that can be thrown or raised

by a method when an error occurs and caught by the
calling code

2 st A

public double divide(double a, double b) 67‘@‘(‘“0\/\
throws DivideByZeroException {
if (b==0) throw DivideByZeroException();
else return a/b —

}

try {
double z = divide(x,y);

}

catch(DivideByZeroException d) {
// Handle error here

}

Exceptions |l

= Advantages:

Class name can be descriptive (no need to look up error
codes)

Doesn't interrupt the natural flow of the code by requiring
constant tests

The exception object itself can contain state that gives
lots of detail on the error that caused the exception

Can't be ignored, only handled

