
Section: Lifecycle of an Object

Constructors

 You will have noticed that the RHS looks rather like a
function call, and that's exactly what it is.

 It's a method that gets called when the object is
constructed, and it goes by the name of a constructor
(it's not rocket science).

 We use constructors to initialise the state of the class in a
convenient way.
 A constructor has the same name as the class
 A constructor has no return type

MyObject m = new MyObject();

Constructor Examples

public class Person {
 private String mName;

 // Constructor
 public Person(String name) {
 mName=name;
 }

 public static void main(
String[] args) {

 Person p =
 new Person(“Bob”);
 }

}

class Person {
 private:
 std::string mName;

 public:
 Person(std::string &name){
 mName=name;
 }
};

int main (int argc,
 char ** argv) {
 Person p (“Bob”);
}

Java C++

Default Constructor

public class Person {
 private String mName;

 public static void main(String[] args) {
 Person p = new Person();
 }

}

 If you specify no constructor at all, Java fills in an
empty one for you

 Here it creates Person() for us
 The default constructor takes no arguments

(since it wouldn't know what to do with them!)

Multiple Constructors

public class Student {
 private String mName;
 private int mScore;

 public Student(String s) {
 mName=s;
 mScore=0;
 }
 public Student(String s, int sc) {
 mName=s;
 mScore=sc;
 }

 public static void main(String[] args) {
 Student s1 = new Student("Bob");
 Student s2 = new Student("Bob",55);
 }
 }

 You can specify as many
constructors as you like.

 Each constructor must have
a different signature
(argument list)

Constructor Chaining

 When you construct an object of a type with
parent classes, we call the constructors of all of
the parents in sequence

Student s = new Student();

Animal

Person

Student

1. Call Animal()

2. Call Person()

3. Call Student()

Chaining without Default Constructors

 What if your classes have explicit constructors that take
arguments? You need to explicitly chain:

Person

Student

-mName : String
+Person(String name)

+Student()

public Person (String name) {
 mName=name;
}

public Student () {
 super(“Bob”);
}

Destructors

 Most OO languages have a notion of a destructor too
 Gets run when the object is destroyed
 Allows us to release any resources (open files, etc) or

memory that we might have created especially for the
object

class FileReader {
 public:

 // Constructor
 FileReader() {
 f = fopen(“myfile”,”r”);
 }

 // Destructor
 ~FileReader() {
 fclose(f);
 }

 private :
 FILE *file;
}

int main(int argc, char ** argv) {

 // Construct a FileReader Object
 FileReader *f = new FileReader();

 // Use object here
 ...

 // Destruct the object
 delete f;

}

C++

Cleaning Up

 A typical program creates lots of objects, not all of which need
to stick around all the time

 Approach 1:
 Allow the programmer to specify when objects should be

deleted from memory

 Lots of control, but what if they forget to delete an object?
 A “memory leak”

 Approach 2:

 Delete the objects automatically (Garbage collection)

 But how do you know when an object will never be used
again and can be deleted??

Cleaning Up (Java) I

 Java reference counts. i.e. it keeps track of how many
references point to a given object. If there are none,
the programmer can't access that object ever again so
it can be deleted

Person object
#ref = 2

r2

r1

r1 = null;
r2 = null;

Person object
#ref = 0

r2

r1

Deletable

Cleaning Up (Java) II

 Actual deletion occurs through a garbage collector
 A separate process that periodically scans the

objects in memory for any with a reference count of
zero, which it then deletes.

 Running the garbage collector is obviously not free. If
your program creates a lot of short-term objects, you
will soon notice the collector running
 Gives noticeable pauses to your application while

it runs.
 But minimises memory leaks (it does not prevent

them...)

Cleaning Up (Java) III

 One problem with GC is we have no idea when an
object will actually be deleted. The GC may even
decide to defer the deletion until a future run.

 This causes issues for destructors – it might be ages
before a resource is closed and available again!

 Therefore Java doesn't have destructors
 It does have finalizers that gets run when the GC

deletes an object
 BUT there's no guarantee an object will ever get

garbage collected in Java...
 Garbage Collection != Destruction

Section: Class Variables

Class-Level Data and Functionality I

 This is one solution to incorporating VAT
into a shop application

 Bad: Every instance will contain a float
with the same number

 Bad: If the VAT rate changes, how can
we be sure every single object with
such a float is properly changed?!

public class ShopItem {
 private float price;
 private float VATRate = 0.2;

 public float GetSalesPrice() {
 return price*(1.0+VATRate);
 }

 public void SetVATRate(float rate) {
 VATRate=rate;
 }

}

 It can be useful to have class variables a.k.a. static variables. These
are variables that exist per class and not per object

 Create them in Java using the static keyword:

public class ShopItem {
 private float price;
 private static float VATRate;

}

Variable created only once
and has the lifetime of the
program, not the object

Class-Level Data and Functionality II
 We now have one place to update

 More efficient memory usage

17.5

0.2

0.2

0.2

17.5

0.2



 Can also make methods static too



 A static method must be instance independent i.e. it can't rely
on member variables in any way



Sometimes a static method is obviously needed. E.g

public class Whatever {
 public static void main(String[] args) {
 ...
 }
}

Must be able to run this
function without creating
an object of type
Whatever (which we
would have to do in the
main()..!)

Why use other static methods?
 A static function is like a function in ML – it can depend only

on its arguments
 Easier to debug (not dependent on any state)
 Self documenting
 Allows us to group related methods in a Class, but does not

require us to create an object to run them
 The compiler can produce more efficient code since no

specific object is involved

public class Math {
 public float sqrt(float x) {…}
 public double sin(float x) {…}
 public double cos(float x) {…}
}

…
Math mathobject = new Math();
mathobject.sqrt(9.0);
...

public class Math {
 public static float sqrt(float x) {…}
 public static float sin(float x) {…}
 public static float cos(float x) {…}
}

…
Math.sqrt(9.0);
...

vs

Section: Exceptions

Error Handling

 You do a lot on this in your practicals, so we'll just touch on it
here

 The traditional way to handle errors is to return a value that
indicates success/failure/error

 Problems:
 Could ignore the return value
 Have to keep checking what the return values are meant to

signify, etc.
 The actual result often can't be returned in the same way

public int divide(double a, double b) {
 if (b==0) return -1; // error
 double result = a/b;
 return 0; // success
}

…

if (divide(x,y)<0) System.out.println(“Failure!!”);

Exceptions I

 An exception is an object that can be thrown or raised
by a method when an error occurs and caught by the
calling code

public double divide(double a, double b)
throws DivideByZeroException {

 if (b==0) throw DivideByZeroException();
 else return a/b
}

…

try {
 double z = divide(x,y);
}
catch(DivideByZeroException d) {
 // Handle error here
}

Exceptions II

 Advantages:
 Class name can be descriptive (no need to look up error

codes)
 Doesn't interrupt the natural flow of the code by requiring

constant tests
 The exception object itself can contain state that gives

lots of detail on the error that caused the exception
 Can't be ignored, only handled

