
Object Oriented Programming
Dr Robert Harle

IA CST, PPS (CS) and NST (CS)
Lent 2011/12

The OOP Course

 Last term you studied functional programming (ML)
 This term you are looking at imperative programming

(Java primarily).
 You already have a few weeks of Java experience
 This course is hopefully going to let you separate

the fundamental software design principles from
Java's quirks and specifics

 Four Parts
 From Functional to Imperative

 Object-Oriented Concepts

 The Java Platform

 Design Patterns and OOP design examples

Java Practicals

 This course is meant to complement your
practicals in Java
 Some material appears only here
 Some material appears only in the practicals
 Some material appears in both:

deliberately*!

* Some material may be repeated unintentionally. If so I will claim it was deliberate.

Books and Resources I

 OOP Concepts
 Look for books for those learning to first program in an OOP

language (Java, C++, Python)

 Java: How to Program by Deitel & Deitel (also C++)

 Thinking in Java by Eckels

 Java in a Nutshell (O' Reilly) if you already know another OOP
language

 Java specification book: http://java.sun.com/docs/books/jls/

 Lots of good resources on the web

 Design Patterns

 Design Patterns by Gamma et al.

 Lots of good resources on the web

Books and Resources II

 Also check the course web page

 Updated notes (with annotations where possible)
 Code from the lectures
 Sample tripos questions

http://www.cl.cam.ac.uk/teaching/1112/OOProg/

Section: From Functional to Imperative Programming

Explicit Start Points

Java: Java: public static void main(String args[])

C/C++: C/C++: int main(int argc, char **argv)

python: def main():
 # main code here

 if __name__ == "__main__":
 main()

Immutable to Mutable Data

- val x=5;
> val x = 5 : int
- x=7;
> val it = false : bool
- val x=9;
> val x = 9 : int

int x=5;
x=7;

int x=9;

Java

ML

Types and Variables

 We write code like:

 The high-level language has a series of primitive
(built-in) types that we use to signify what’s in the
memory
 The compiler then knows what to do with them
 E.g. An “int” is a primitive type in C, C++, Java and many

languages. It’s usually a 32-bit signed integer

 A variable is a name used in the code to refer to a
specific instance of a type
 x,y,z are variables above
 They are all of type int

int x = 512;
int y = 200;
int z = x+y;

E.g. Primitive Types in Java

 “Primitive” types are the built in ones.
 They are building blocks for more complicated types

that we will be looking at soon.

 boolean – 1 bit (true, false)
 char – 16 bits
 byte – 8 bits as a signed integer (-128 to 127)
 short – 16 bits as a signed integer
 int – 32 bits as a signed integer
 long – 64 bits as a signed integer
 float – 32 bits as a floating point number
 double – 64 bits as a floating point number

See Workbook 1

Arrays

byte[] arraydemo = new byte[6];
byte arraydemo2[] = new byte[6];

0
x
1
A

C
5
9
4

0
x
1
A

C
5
9
5

0
x
1
A

C
5
9
6

0
x
1
A

C
5
9
7

0
x
1
A

C
5
9
8

0
x
1
A

C
5
9
9

0
x
1
A

C
5
A

0

0
x
1
A

C
5
A

1

0
x
1
A

C
5
A

2

0
x
1
A

C
5
A

3

0
x
1
A

C
5
A

4

0
x
1
A

C
5
A

5

Functions to Procedures

Maths: m(x,y) = xy

ML: fun m(x,y) = x*y;

Java: public int m(int x, int y) = x*y;

int y = 7;
public int m(x) {

y=y+1;
return x*y;

}

The Call Stack

The Call Stack: Example

1 int double(int d) return 2*d;
2 int triple(int d) return 3*d;
3 int a=50;
4 int b = double(a);
5 int c = triple(a);
6 ...

0 0

a=50

0

a=50

d=50

5

100

0

a=50

b=100

0

a=50

b=100

d=50

6

150

0

a=50

b=100

c=150

Nested Functions

0 0
a=50

0
a=50

d=50
5

0
a=50

d=50
5

d=50
2

100

0
a=50

d=50
5

d=100
2

200

0
a=50

d=50
5

a=200

0
a=50

b=200

1 int double(int d) return 2*d;
2 int quadruple(int d) return double(double(d));
3 int a=50;
4 int b = quadruple(a);
5 ...

