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L Overview of the course

Outline of today’s lecture

Lecture 1: Introduction
Overview of the course
Why NLP is hard
Scope of NLP
A sample application: sentiment classification
More NLP applications
NLP components

NLP and linguistics

NLP: the computational modelling of human language.

1. Morphology — the structure of words: lecture 2.

2. Syntax — the way words are used to form phrases:
lectures 3, 4 and 5.

3. Semantics

» Compositional semantics — the construction of meaning
based on syntax: lecture 6.

» Lexical semantics — the meaning of individual words:
lecture 6.

4. Pragmatics — meaning in context: lecture 7.
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|—Overview of the course

Also note:

» Exercises: pre-lecture and post-lecture
» Glossary
» Recommended Book: Jurafsky and Martin (2008).
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Querying a knowledge base

User query :
» Has my order number 4291 been shipped yet?
Database:
ORDER
Order number Date ordered Date shipped
4290 2/2/09 2/2/09
4291 2/2/09 2/2/09
4292 2/2/09

USER: Has my order number 4291 been shipped yet?
DB QUERY: order(number=4291,date_shipped=?)
RESPONSE: Order number 4291 was shipped on 2/2/09
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Why is this difficult?

Similar strings mean different things, different strings mean the
same thing:

1. How fastis the TZ?

Why is this difficult?

Similar strings mean different things, different strings mean the
same thing:

1. How fast is the TZ?
2. How fast will my TZ arrive?
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same thing:
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3. Please tell me when | can expect the TZ | ordered.
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Why is this difficult?

Similar strings mean different things, different strings mean the
same thing:

1. How fast is the TZ?

2. How fast will my TZ arrive?

3. Please tell me when | can expect the TZ | ordered.
Ambiguity:

» Do you sell Sony laptops and disk drives?
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Why is this difficult?

Similar strings mean different things, different strings mean the
same thing:

1. How fast is the TZ?

2. How fast will my TZ arrive?

3. Please tell me when | can expect the TZ | ordered.
Ambiguity:

» Do you sell Sony laptops and disk drives?

» Do you sell (Sony (laptops and disk drives))?

» Do you sell (Sony laptops) and disk drives)?
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Why is this difficult?

Similar strings mean different things, different strings mean the
same thing:

1. How fast is the TZ?

2. How fast will my TZ arrive?

3. Please tell me when | can expect the TZ | ordered.
Ambiguity:

» Do you sell Sony laptops and disk drives?

» Do you sell (Sony (laptops and disk drives))?
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Wouldn't it be better if...?

The properties which make natural language difficult to process
are essential to human communication:

» Flexible
» Learnable but compact
» Emergent, evolving systems
Synonymy and ambiguity go along with these properties.
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Wouldn't it be better if ... ?

The properties which make natural language difficult to process
are essential to human communication:

» Flexible
» Learnable but compact
» Emergent, evolving systems

Synonymy and ambiguity go along with these properties.
Natural language communication can be indefinitely precise:

» Ambiguity is mostly local (for humans)
» Semi-formal additions and conventions for different genres
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Sentiment classification: finding out what people think
about you

» Task: scan documents for positive and negative opinions
on people, products etc.

» Find all references to entity in some document collection:
list as positive, negative (possibly with strength) or neutral.

» Summaries plus text snippets.

» Fine-grained classification:
e.g., for phone, opinions about: overall design, keypad,
camera.

» Still often done by humans ...
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Some NLP applications

>

spelling and grammar
checking

optical character
recognition (OCR)
screen readers

augmentative and
alternative communication

machine aided translation
lexicographers’ tools
information retrieval
document classification
document clustering
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Motorola KRZR (from the Guardian)

information extraction
guestion answering
summarization

text segmentation
exam marking

report generation
machine translation

natural language interfaces
to databases

email understanding
dialogue systems

Motorola has struggled to come up with a worthy
successor to the RAZR, arguably the most influential
phone of the past few years. Its latest attempt is the
KRZR, which has the same clamshell design but has
some additional features. It has a striking blue finish
on the front and the back of the handset is very tactile
brushed rubber. Like its predecessors, the KRZR has
a laser-etched keypad, but in this instance Motorola
has included ridges to make it easier to use.

... Overall there’s not much to dislike about the phone,
but its slightly quirky design means that it probably
won't be as huge or as hot as the RAZR.
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Sentiment classification: the research task

» Full task: information retrieval, cleaning up text structure,
named entity recognition, identification of relevant parts of
text. Evaluation by humans.

» Research task: preclassified documents, topic known,
opinion in text along with some straightforwardly
extractable score.

» Movie review corpus, with ratings.
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Bag of words technique

» Treat the reviews as collections of individual words.
» Classify reviews according to positive or negative words.

» Could use word lists prepared by humans, but machine
learning based on a portion of the corpus (training set) is
preferable.

» Use star rankings for training and evaluation.

» Pang et al, 2002: Chance success is 50% (movie database

was artifically balanced), bag-of-words gives 80%.
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IMDb: An American Werewolf in London (1981)
Rating: 9/10

0Oo0000. Scary.

The old adage of the simplest ideas being the best is
once again demonstrated in this, one of the most
entertaining films of the early 80’s, and almost
certainly Jon Landis’ best work to date. The script is
light and witty, the visuals are great and the
atmosphere is top class. Plus there are some great
freeze-frame moments to enjoy again and again. Not
forgetting, of course, the great transformation scene
which still impresses to this day.

In Summary: Top banana
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Sentiment words

thanks
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Sentiment words

thanks

J shape: ‘thanks’
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Sentiment words

never

Reverse-J shape: ‘never'
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Sentiment words

Natural Language Processing

never

DA

LLer:tur(—: 1: Introduction

|—A sample application: sentiment classification

Sentiment words

quite
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Sentiment words

quite

Turned-U shape: ‘quite

Sentiment words: ever
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Sentiment words: ever Some sources of errors for bag-of-words

ever
U shape: 'ever
o ! » Negation:
. h\ .-“J Ridley Scott has never directed a bad film.
1. \ f.f’f » Overfitting the training data:
E‘ H A

e.g., if training set includes a lot of films from before 2005,

Ridley may be a strong positive indicator, but then we test
on reviews for ‘Kingdom of Heaven'?

» Comparisons and contrasts.
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Contrasts in the discourse More contrasts

AN AMERICAN WEREWOLF IN PARIS is a failed
attempt .. . Julie Delpy is far too good for this movie.
She imbues Serafine with spirit, spunk, and humanity.

ThIS film Should be br|”|ant It SOUﬂdS I|ke a great p|0t, Th|s isn't necessarily a good th|ng, Since it prevents us
the actors are first grade, and the supporting cast is from relaxing and enjoying AN AMERICAN

good as well, and Stallone is attempting to deliver a WEREWOLF IN PARIS as a completely mindless,
good performance. However, it can’t hold up. campy entertainment experience. Delpy’s injection of

class into an otherwise classless production raises the
specter of what this film could have been with a better
script and a better cast ... She was radiant,
charismatic, and effective ...
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S le dat Doi ti t classification ly’”?
ample data oing sentiment classification ‘properly’”

» Morphology, syntax and compositional semantics:
who is talking about what, what terms are associated with
what, tense ...

» Lexical semantics:
are words positive or negative in this context? Word
senses (e.g., spirit)?

http://ww. cl.cam ac. uk/ ~sht 25/ senti ment/
(linked from

http://ww.cl.cam ac. uk/ ~sht 25/ stuff. htnl)
See test data texts in:

http://ww. cl . cam ac. uk/ ~sht 25/ senti nent/t est/ » Pragmatics and discourse structure:
classified into positive/negative. what is the topic of this section of text? Pronouns and

definite references.
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Doing sentiment classification ‘properly’?

Morphology, syntax and compositional semantics:
who is talking about what, what terms are associated with

what, tense ...
Lexical semantics:

are words positive or negative in this context? Word

senses (e.g., spirit)?
Pragmatics and discourse structure:

what is the topic of this section of text? Pronouns and

definite references.

But getting all this to work well on arbitrary text is very hard.
Ultimately the problem is Al-complete, but can we do well

enough for NLP to be useful?

IR, IE and QA

» Information retrieval: return documents in response to a
user query (Internet Search is a special case)

» Information extraction: discover specific information from a
set of documents (e.g. company joint ventures)

» Question answering: answer a specific user question by
returning a section of a document:

What is the capital of France?
Paris has been the French capital for many centuries.

Much more about these in the IR course.
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MT

v

v

v

v

v

Earliest attempted NLP application
Quality depends on restricting the domain

Utility greatly increased with increase in availability of

electronic text
Good applications for bad MT ...

Spoken language translation is viable for limited domains

Human translation?

No entry for heavy
goods vehicles.
Residential site only

_
Nid wyf yn y swyddfa
ar hyn o bryd. Anfonwch

unrhyw waith i'w gyfieithu. [




Natural Language Processing Natural Language Processing

|—Le(:ture 1: Introduction LLecture 1: Introduction
|—More NLP applications |—More NLP applications
Human translation? Natural language interfaces and dialogue systems

No entry for heavy

Regfdlf't I\:t;iii:ezn b " All rely on a limited domain:
e » LUNAR: classic example of a natural language interface to
a,”ﬂﬂ.l" 4 fl:i'r';;":llir R:fffézh ! a database (NLID): 1970-1975
unrhyw waith iw gyfieithu__J » SHRDLU: (text-based) dialogue system: 1973

» Current spoken dialogue systems

Limited domain allows disambiguation: e.g., in LUNAR, rock
had one sense.

| am not in the office at the moment. Please send any work to
be translated.
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Siri Example Dialogues Siri Example Dialogues
Man: What does my day look like?

Man (jogging) : Move my meeting with Kelly Altek to 12. Siri: Not too bad, only two meetings (shows them on screen)
Siri: You already have a meeting about budgets at 12. Shall | i
schedule it anyway? Woman: Do | need an umbrella tonight?
Man: Move it to 2. ... Play my running mix. Siri: There is no rain in the forecast for tonight.

**%
*kk

Woman: | am locked out.

Siri: | found three locksmiths fairly close to you (shows them on And more requests to Siri:

screen . . .
) Man: How do | tie a bowtie again?

Child: What does a weasel look like?
Woman: We have a flat tire.
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Generic NLP modules Natural language interface to a knowledge base

» input preprocessing: speech recogniser, text preprocessor KB
or gesture recogniser.

» morphological analysis

. KB INTERFACE KB OUTPUT
» part of speech tagging I\
» parsing: this includes syntax and compositional semantics
» disambiguation PARSING TACTICAL GENERATION
A
» context module
» text planning MORPHOLOGY MORPHOLOGY GENERATION
A
» tactical generation
» morphological generation INPUT PROCESSING OUTPUT PROCESSING
» output processing: text-to-speech, text formatter, etc.
user input output
Natural Language Processing Natural Language Processing
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General comments Outline of the next lecture
» Even ‘simple’ applications might need complex knowledge
sources
» Applications cannot be 100% perfect Lecture 2: Morphology and finite state techniques
» Applications that are < 100% perfect can be useful A brief introduction to morphology

Using morphology
Spelling rules
Finite state techniques

» Shallow processing on arbitrary input or deep processing More applications for finite state techniques
on narrow domains

» Aids to humans are easier than replacements for humans
» NLP interfaces compete with non-language approaches

» Limited domain systems require extensive and expensive
expertise to port
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Morphology and finite state techniques

Outline of today’s lecture

Lecture 2: Morphology and finite state techniques

A brief introduction to morphology

Using morphology

Spelling rules

Finite state techniques

More applications for finite state techniques
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Morphology and finite state techniques

ntroduction to morphology

Inflectional morphology

v

v

v

v

e.g., plural suffix +s, past participle +ed

sets slots in some paradigm

e.g., tense, aspect, number, person, gender, case
inflectional affixes are not combined in English
generally fully productive (modulo irregular forms)
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Some terminology

morpheme: the minimal information carrying unit

affix: morpheme which only occurs in conjunction with
other morphemes

words are made up of a stem (more than one in the case
of compounds) and zero or more affixes. e.g., dog plus
plural suffix +s

affixes: prefixes, suffixes, infixes and circumfixes

in English: prefixes and suffixes (prefixes only for
derivational morphology)

productivity: whether affix applies generally, whether it
applies to new words

Natural Language Processing
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Derivational morphology

e.g., un-, re-, anti-, -ism, -ist etc

broad range of semantic possibilities, may change part of
speech

indefinite combinations

e.g., antiantidisestablishmentarianism
anti-anti-dis-establish-ment-arian-ism

The case of inflammable

generally semi-productive

zero-derivation (e.g. tango, waltz)
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Internal structure and ambiguity

Morpheme ambiguity: stems and affixes may be individually
ambiguous: e.g. dog (noun or verb), +s (plural or 3persg-verb)
Structural ambiguity: e.g., shorts/short -s
unionised could be union -ise -ed or un- ion -ise -ed
Bracketing:
» un-ion is not a possible form
» un- is ambiguous:
» with verbs: means ‘reversal’ (e.g., untie)
» with adjectives: means ‘not’ (e.g., unwise)

» internal structure of un- ion -ise -ed
has to be (un- ((ion -ise) -ed))

Natural Language Processing
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Applications of morphological processing

» compiling a full-form lexicon

» stemming for IR (not linguistic stem)

» lemmatization (often inflections only): finding stems and
affixes as a precursor to parsing
NB: may use parsing to filter results (see lecture 5)
e.g., feed analysed as fee-ed (as well as feed)

but parser blocks (assuming lexicon does not have fee as a

verb)

» generation
Morphological processing may be bidirectional: i.e.,
parsing and generation.

sl eep + PAST_VERB <-> s| ept
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|—A brief introduction to morphology

Internal structure and ambiguity

Morpheme ambiguity: stems and affixes may be individually
ambiguous: e.g. dog (noun or verb), +s (plural or 3persg-verb)
Structural ambiguity: e.g., shorts/short -s

unionised could be union -ise -ed or un- ion -ise -ed
Bracketing:

» un-ion is not a possible form

» un- is ambiguous:

» with verbs: means ‘reversal’ (e.g., untie)
» with adjectives: means ‘not’ (e.g., unwise)

» internal structure of un- ion -ise -ed
has to be (un- ((ion -ise) -ed))
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Morphology in a deep processing system
KB

KB INTERFACE KB OUTPUT

A

PARSING TACTICAL GENERATION

A

MORPHOLOGY MORPHOLOGY GENERATION

A

INPUT PROCESSING OUTPUT PROCESSING

user input output
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Lexical requirements for morphological processing

» affixes, plus the associated information conveyed by the

affix
ed PAST_VERB
ed PSP_VERB

s PLURAL_NOUN

» irregular forms, with associated information similar to that
for affixes

began PAST_VERB begi n
begun PSP_VERB begin

» stems with syntactic categories (plus more)
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Mongoose

A zookeeper was ordering extra animals for his zoo. He started
the letter:

“Dear Sir, | need two mongeese.”

This didn’t sound right, so he tried again:
“Dear Sir, | need two mongooses.”

But this sounded terrible too.
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A zookeeper was ordering extra animals for his zoo. He started
the letter:

“Dear Sir, | need two mongeese.”
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Mongoose

A zookeeper was ordering extra animals for his zoo. He started
the letter:

“Dear Sir, | need two mongeese.”

This didn’t sound right, so he tried again:
“Dear Sir, | need two mongooses.”

But this sounded terrible too. Finally, he ended up with:

“Dear Sir, | need a mongoose, and while you're at it,
send me another one as well.”



Natural Language Processing
|—Lecture 2: Morphology and finite state techniques

|—Spelling rules

Spelling rules

» English morphology is essentially concatenative
» irregular morphology — inflectional forms have to be listed
» regular phonological and spelling changes associated with
affixation, e.g.
» -sis pronounced differently with stem ending in' s, x or z
» spelling reflects this with the addition of an e (boxes etc)
» in English, description is independent of particular
stems/affixes
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e-insertion
e.g. box”s to boxes
S
e—e/ ¢ X " _s
z

v

map ‘underlying’ form to surface form
» mapping is left of the slash, context to the right

» notation:
_ position of mapping
€ empty string
- affix boundary — stem " affix

v

same rule for plural and 3sg verb
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|—Spelling rules

e-insertion
e.g. box"s to boxes

>

>

>

s
e—~>e/ ¢ X _S
z
map ‘underlying’ form to surface form
mapping is left of the slash, context to the right

notation:

_ position of mapping

€ empty string

" affix boundary — stem " affix
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|—Spelling rules

e-insertion

e.g.

v

v

v

v

box"s to boxes
S
e—e/ ¢ X 2" _s
z
map ‘underlying’ form to surface form
mapping is left of the slash, context to the right
notation:

_ position of mapping

€ empty string

- affix boundary — stem " affix
same rule for plural and 3sg verb

formalisable/implementable as a finite state transducer
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Finite state automata for recognition
day/month pairs:

0,1,2,3 digit / 0,1

No

digit digit

double circle indicates accept state
accepts e.g., 11/3 and 3/12
also accepts 37/00 — overgeneration

v vyYyy

non-deterministic — after input of ‘2’, in state 2 and state 3.

Recursive FSA
comma-separated list of day/month pairs:

0,1,2,3 digit / 0.1 0,1,2

RoloRoRoRo

» list of indefinite length
» e.g., 11/3, 5/6, 12/04

Natural Language Processing
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|—Finite state techniques

Finite state transducer

e:e
other : other

e:e
other : other

o
1
@D
~
N X O0n
7))

surface : underlying

cakes«<cake s
boxes<box”s

Analysingboxes

Input: b
Output: b
(Plus: €. ")
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Analysingboxes

Input: b

Output: b
(Plus: €. ")
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Analysingboxes

Input: b o x
Output: b o x

Natural Language Processing
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Analysingboxes

0.0

Input: b o
Output: b o
=] =
Natural Language Processing
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Analysingboxes

Input: boxe
Output: box *
Output: boxe
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Analysingboxees Analysingboxes
: .S

Input: boxes
Output: box " s
Output: boxes
Input: boxees
Output: boxe " s

Input: boxe
Output: box ”
Output: boxe
Input: boxee
Output: boxe "
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L Finite state techniques L Finite state techniques

Analysingboxes Using FSTs

e:e
other : other
S:s » FSTs assume tokenization (word boundaries) and words

split into characters. One character pair per transition!
» Analysis: return character list with affix boundaries, so
enabling lexical lookup.

e e INpUt bo x € s » Generation: input comes from stem and affix lexicons.
other . othe ) Accept output: b o X ~ s » One FST per spelling rule: either compile to big FST or run
Accept output: box e s in parallel.
Input: boxees » FSTs do not allow for internal structure:
Acceptoutput: boxe ~ s » can’t model un- ion -ize -d bracketing.

» can’t condition on prior transitions, so potential redundancy
(cf 2006/7 exam q)
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|—More applications for finite state techniques

Some other uses of finite state techniques in NLP

» Grammars for simple spoken dialogue systems (directly
written or compiled)

» Partial grammars for named entity recognition

» Dialogue models for spoken dialogue systems (SDS)
e.g. obtaining a date:
1. No information. System prompts for month and day.
2. Month only is known. System prompts for day.
3. Day only is known. System prompts for month.
4. Month and day known.

Example FSA for dialogue

Natural Language Processing
L Lecture 2: Morphology and finite state techniques

|—More applications for finite state techniques
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|—More applications for finite state techniques

Example of probabilistic FSA for dialogue

Next lecture

Lecture 3: Prediction and part-of-speech tagging
Corporain NLP
Word prediction
Part-of-speech (POS) tagging
Evaluation in general, evaluation of POS tagging
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Outline of today’s lecture

Lecture 3: Prediction and part-of-speech tagging
Corporain NLP
Word prediction
Part-of-speech (POS) tagging
Evaluation in general, evaluation of POS tagging

First of three lectures that concern syntax (i.e., how words fit
together). This lecture: ‘shallow’ syntax: word sequences and
POS tags. Next lectures: more detailed syntactic structures.

Natural Language Processing
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|—Corp0ra in NLP

Statistical techniques: NLP and linguistics

But it must be recognized that the notion ‘probability of
a sentence’ is an entirely useless one, under any
known interpretation of this term. (Chomsky 1969)

Natural Language Processing
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|—Ccrpora in NLP

Corpora

Changes in NLP research over the last 15-20 years are largely

due to increased availability of electronic corpora.
» corpus: text that has been collected for some purpose.
» balanced corpus: texts representing different genres
genre is a type of text (vs domain)
» tagged corpus: a corpus annotated with POS tags

» treebank: a corpus annotated with parse trees
» specialist corpora — e.g., collected to train or evaluate
particular applications

» Movie reviews for sentiment classification
» Data collected from simulation of a dialogue system

Natural Language Processing
LLecture 3: Prediction and part-of-speech tagging
|—Corpora in NLP

Statistical techniques: NLP and linguistics

But it must be recognized that the notion ‘probability of
a sentence’ is an entirely useless one, under any
known interpretation of this term. (Chomsky 1969)

Whenever | fire a linguist our system performance
improves. (Jelinek, 19887)
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Prediction Prediction
Guess the missing words: Guess the missing words:
lllustrations produced by any package can be transferred with Illustrations produced by any package can be transferred with
consummate to another. consummate to another.
Wright tells her story with great . Wright tells her story with great .
Natural Language Processing Natural Language Processing
|—Lecture 3: Prediction and part-of-speech tagging LLecture 3: Prediction and part-of-speech tagging
|—Word prediction |—Word prediction
Prediction Prediction

Prediction is relevant for:

» language modelling for speech recognition to disambiguate
results from signal processing: e.g., using n-grams.
(Alternative to finite state grammars, suitable for
large-scale recognition.)

Guess the missing words:

Illustrations produced by any package can be transferred with

consummate to another. » word prediction for communication aids (augmentative and
alternative communication). e.g., to help enter text that's
Wright tells her story with great . input to a synthesiser

» text entry on mobile phones and similar devices
» OCR, spelling correction, text segmentation
» estimation of entropy
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bigrams (n-gram with N=2) Calculating bigrams
A probability is assigned to a word based on the previous word:
P (Wn|Wn_1)
where wj, is the nth word in a sentence. _ -
Probability of a sequence of words (assuming independence): sequence count _bigram probability
(s) 5
n
P(WM) ~ P (we lwe (s) good 3 .6
(W1') klill (Wi [wi—1) (<) it ) P
Probability is estimated f ts in a traini : good >
robability is estimated from counts in a training corpus: good morming 1 >
C(Wn_1Wn)  C(wp_1wn) good afternoon 2 4
ZW C(Wn—lw) - C(Wn—l) gOOd </S> 2 4
i.e. count of a particular bigram in the corpus divided by the gzi (s) i 1
count of all bigrams starting with the prior word.
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Sentence probabilities Shakespeare, re-generated
Probability of is estimated as: Unigram : To him swallowed confess hear both. Which. Of save
=4x1x.5x.4x1=.08 Bigram : What means, sir. | confess she? then all sorts, he is
Problems because of sparse data (cf Chomsky comment): trim, captain. What dost stand forth they canopy, forsooth; ...

» smoothing: distribute ‘extra’ probability between rare and

Trigram : Sweet prince, Falstaff shall die. Harry of Monmouth’s
unseen events

grave. This shall forbid it should be branded, if renown ...
» backoff: approximate unseen probabilities by a more _ _ _ _
general probability, e.g. unigrams Quadrigram : King Henry. What! | will go seek the traitor

Gloucester. Exeunt some of the watch. It cannot be but so.
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Practical application

» Word prediction: guess the word from initial letters. User

confirms each word, so we predict on the basis of
individual bigrams consistent with letters.

» Speech recognition: given an input which is a lattice of

possible words, we find the sequence with maximum
likelihood.

Implemented efficiently using dynamic programming
(Viterbi algorithm).
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L Part-of-speech (POS) tagging

Part of speech tagging

» They PNP can_VMO fish_VVI. PUN
» They_PNP can_VVB fish_NN2 . PUN
» They PNP can_VMO fish_NN2 . PUN no full parse

POS lexicon fragment:
they PNP
can VMO VVB VVINN1
fish  NN1 NN2 VVB VVI

Natural Language Processing
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L Part-of-speech (POS) tagging

Part of speech tagging

They can fish .
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L Part-of-speech (POS) tagging

Part of speech tagging

» They PNP can_VMO fish_VVI. PUN
» They_PNP can_VVB fish_NN2 . PUN
» They PNP can_VMO fish_NN2 . PUN no full parse

POS lexicon fragment:
they PNP
can VMO VVB VVINN1
fish  NN1 NN2 VVB VVI

tagset (CLAWS 5) includes:
NN1 singular noun NN2 plural noun
PNP personal pronoun | VMO modal auxiliary verb
VVB Dbase form of verb | VVI infinitive form of verb
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Why POS tag?

» Coarse-grained syntax / word sense disambiguation: fast,
so applicable to very large corpora.

» Some linguistic research and lexicography: e.g., how often
is tango used as a verb? dog?

» Named entity recognition and similar tasks (finite state
patterns over POS tagged data).

» Features for machine learning e.g., sentiment
classification. (e.g., stink_V vs stink_N)

» Preliminary processing for full parsing: cut down search
space or provide guesses at unknown words.

Note: tags are more fine-grained than conventional part of
speech. Different possible tagsets.
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L Part-of-speech (POS) tagging

Training stochastic POS tagging

They_PNP used_VVD to_TQ0 can_WVI fish_NN2 in_PRP
those_DTO towns_NN2 . PUN But _CJC now_AVO few DTO
peopl e_NN2 fish_VWVB i n_PRP these_DTO areas_NN2

. _PUN
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L Part-of-speech (POS) tagging

Stochastic part of speech tagging using Hidden
Markov Models (HMM)

1. Start with untagged text.

2. Assign all possible tags to each word in the text on the
basis of a lexicon that associates words and tags.

3. Find the most probable sequence (or n-best sequences) of
tags, based on probabilities from the training data.

» lexical probability: e.g., is can most likely to be VMO, VVB,
VVI or NN1?

» and tag sequence probabilities: e.g., is VMO or NN1 more
likely after PNP?
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LLecture 3: Prediction and part-of-speech tagging
L Part-of-speech (POS) tagging

Training stochastic POS tagging

They_PNP used_VVD to_TQ0 can_WVI fish_NN2 in_PRP
those_DTO towns_NN2 . PUN But _CJC now_AVO few DTO
peopl e_NN2 fish_VWVB in_PRP these_DTO areas_NN2

. _PUN

sequence count bigram probability

NN2 4

NN2 PRP 1 0.25
NN2 PUN 2 0.5
NN2VVB 1 0.25
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Training stochastic POS tagging

They PNP used VWD to TQO can_VWVI fish NN2 in_PRP
those DTO towns_NN2 . PUN But_ CJC now AVO few DTO
peopl e NN2 fish VWB in_PRP these DTO areas_NN2

. _PUN

sequence count bigram probability

NN2 4

NN2 PRP 1 0.25
NN2 PUN 2 0.5
NN2VVB 1 0.25

Also lexicon: fish NN2 VVB
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Assigning probabilities, continued

Bigram assumption: probability of a tag depends on the
previous tag, hence approximate by the product of bigrams:

n

P)) ~ [[P(tilti-a)

i=1

Probability of the word estimated on the basis of its own tag

alone:
n

Pwit)) ~ [TP(wilt)
i=1

Hence:
n

tf = argmax [ [ P (wi[t )P (ti[ti 1)
v iz
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L Part-of-speech (POS) tagging

Assigning probabilities
Our estimate of the sequence of n tags is the sequence of n

tags with the maximum probability, given the sequence of n
words:
t7 = argmax P (t]'|wy')
i)

By Bayes theorem:

P(wrt)P(ty)

P =

We're tagging a particular sequence of words so P(wy') is
constant, giving:

t! = argmax P (wt])P(t])
t
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Example

Tagging: they fish

Assume PNP is the only tag for they, and that fish could be
NN2 or VVB.

Then the estimate for PNP NN2 will be:

P(they|PNP) P(NN2|PNP) P(fish|[NN2)
and for PNP VVB:

P (they|PNP) P(VVB|PNP) P(fish|VVB)
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Natural Language Processing

LLecture 3: Prediction and part-of-speech tagging
|—Part-of—speech (POS) tagging

Assigning probabilities, more details

» Maximise the overall tag sequence probability — e.g., use

Viterbi.

» Actual systems use trigrams — smoothing and backoff are

critical.

» Unseen words: these are not in the lexicon, so use all
possible open class tags, possibly restricted by
morphology.

A Hidden Markov Model

Natural Language Processing
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|—Part-of—spee(:h (POS) tagging

Natural Language Processing

L Lecture 3: Prediction and part-of-speech tagging

|—Evaluation in general, evaluation of POS tagging

A Hidden Markov Model

b("in"|TO

b("as' |l;I' 'I)

b("walk"|TO)
//,7)\

a(2,end)

b("house"| NN)
b("mill"] NN)
b("book"| NN)

b("walk"|\VB)
b("house"|VB)

Evaluation of POS tagging

» percentage of correct tags

» one tag per word (some systems give multiple tags when
uncertain)

» over 95% for English on normal corpora (but note
punctuation is unambiguous)

» baseline of taking the most common tag gives 90%
accuracy

» different tagsets give slightly different results: utility of tag
to end users vs predictive power (an open research issue)
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Evaluation in general Representative corpora and data sparsity

» Training data and test data Test data must be kept unseen,
often 90% training and 10% test data.

» Baseline

» Ceiling Human performance on the task, where the ceiling
is the percentage agreement found between two
annotators (interannotator agreement)

» test corpora have to be representative of the actual
application

» POS tagging and similar techniques are not always very
robust to differences in genre

» balanced corpora may be better, but still don’t cover all text

. types
g cfirsrt?irbi?:cliygs Error rates are nearly always unevenly » communication aids: extreme difficulty in obtaining data,

o text corpora don't give good prediction for real data
» Reproducibility
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|—Evaluation in general, evaluation of POS tagging

Outline of next lecture Parsing (and generation)

Syntactic structure in analysis:
» as a step in assigning semantics

Lecture 4: Parsing and generation > checking grammaticality
Generative grammar » corpus-based investigations, lexical acquisition etc
Simple context free grammars
Random generation with a CFG
Simple chart parsing with CFGs
More advanced chart parsing
Formalism power requirements

Lecture 4: Parsing and generation
Generative grammar
Simple context free grammars
Random generation with a CFG
Simple chart parsing with CFGs
More advanced chart parsing
Formalism power requirements

Next lecture — beyond simple CFGs
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L Generative grammar

Generative grammar

a formally specified grammar that can generate all and only the
acceptable sentences of a natural language
Internal structure:

the big dog slept
can be bracketed
((the (big dog)) slept)

constituent a phrase whose components ‘go together’ ...
weak equivalence grammars generate the same strings

strong equivalence grammars generate the same strings with
same brackets
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|—Simple context free grammars
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|—Lecture 4: Parsing and generation

|—Simple context free grammars

Context free grammars

1. a set of non-terminal symbols (e.g., S, VP);
2. aset of terminal symbols (i.e., the words);

3. aset of rules (productions), where the LHS (mother) is a
single non-terminal and the RHS is a sequence of one or
more non-terminal or terminal symbols (daughters);

S -> NP VP
V -> fish

4. a start symbol, conventionally S, which is a non-terminal.

Exclude empty productions, NOT e.g.:
NP -> ¢

A simple CFG for a fragment of English

lexicon
rules V -> can
S -> NP VP NP > f1eh
VP -> VP PP .

NP -> rivers
VP>V NP -> pool s
VP -> VNP NP -> Decenber
VP -> v VP NP -> Scot | and
NP -> NP PP NP -> it
PP -> P NP NP - > they

P->1in

Natural Language Processing
LLer:tur(—: 4: Parsing and generation

|—Simple context free grammars

Analyses in the simple CFG
they fish
(S (NP they) (VP (V fish)))
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|—Simple context free grammars

Analyses in the simple CFG
they fish

(S (NP they) (VP (V fish)))

they can fish
(S (NP they) (VP (V can) (VP (V fish))))

(S (NP they) (VP (V can) (NP fish)))
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|—Simple context free grammars
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|—Simple context free grammars

Analyses in the simple CFG
they fish

(S (NP they) (VP (V fish)))

they can fish

(S (NP they) (VP (V can) (VP (V fish))))
(S (NP they) (VP (V can) (NP fish)))
they fish in rivers

(S (NP they) (VP (VP (V fish))
(PP (P in) (NP rivers))))

Structural ambiguity without lexical ambiguity

they fish in rivers in December

(S (NP they)
(VP (VP (V fish))
(PP (P in) (NP rivers)
(PP (P in) (NP December)))))
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|—Simple context free grammars

Structural ambiguity without lexical ambiguity

they fish in rivers in December

(S (NP they)
(VP (VP (V fish))
(PP (P in) (NP rivers)
(PP (P in) (NP December)))))

(S (NP they)
(VP (VP (VP (V fish))
(PP (P in) (NP rivers)))
(PP (P in) (NP December))))
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Parse trees
S

¥ )

P
N
they P
can le)/ >P\

P NP

fish in December

(S (NP they)

(VP (V can)
(VP (VP (V fish))
(PP (P in)

(NP Decenber)))))
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|—Simple chart parsing with CFGs

Chart parsing
A dynamic programming algorithm (memoisation):
chart store partial results of parsing in a vector
edge representation of a rule application
Edge data structure:

[id,left_vtx, right_vtx,mother_category, dtrs]

they . can . fish .
0 1 2 3

Fragment of chart:

id I r no dtrs
e 2 3 \% (fish)
f 2 3 VP (e)
g 1 3 VP (c f)
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|—Random generation with a CFG

Using a grammar as a random generator

Expand cat category sentence-record:

Let possibilities be all lexical items matching category

and all rules with LHS category
If possibilities is empty,

then fail

else

Randomly select a possibility chosen from possibilities

If chosen is lexical,
then append it to sentence-record
else

expand cat on each rhs category in chosen
(left to right) with the updated sentence-record

return sentence-record
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|—Simple chart parsing with CFGs

A bottom-up passive chart parser

Parse:

Initialize the chart
For each word word, let from be left vtx,
to right vtx and dtrs be (word)

For each category category

lexically associated with word

Add new edge from, to, category, dtrs

Output results for all spanning edges
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|—Simple chart parsing with CFGs

Inner function

Natural Language Processing

Add new edge from, to, category, dtrs:

Put edge in chart: [id,from,to, category,dtrs]
For each rule lhs — cat; ...cat, 1,category
Find sets of contiguous edges
[idy,fromq,toq, caty,dtrs,] ...
[i[dh—1,from,_q,from, cat,_q1,dtrs,_q]
(such that to; = from, etc)
For each set of edges,

Add new edge from,, to, Ihs, (id; ...id)

= = = ©ac
Natural Language Processing
L Lecture 4: Parsing and generation
|—Simple chart parsing with CFGs
Bottom up parsing: edges
a:NP b:v \
they can fish

LLecture 4: Parsing and generation

|—Simple chart parsing with CFGs

Bottom up parsing: edges

ﬂm‘
[ 9
they can fish
=] =] = = = Q ¢~
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Bottom up parsing: edges
c:V
a:NP b:v
they can

fish
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Bottom up parsing: edges
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|—Simple chart parsing with CFGs

Bottom up parsing: edges

can

9
fish

Natural Language Processing

L Lecture 4: Parsing and generation

o = = = = 9wacx o = = = = 9wacx
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|—Simple chart parsing with CFGs |—Simple chart parsing with CFGs
Bottom up parsing: edges Bottom up parsing: edges

IV

IV
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Bottom up parsing: edges
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|—Simple chart parsing with CFGs

Bottom up parsing: edges
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|—Simple chart parsing with CFGs

Bottom up parsing: edges
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|—Simple chart parsing with CFGs

Bottom up parsing: edges
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|—Simple chart parsing with CFGs

Parse construction Parse construction

. aNP~_ . X a:NP b:V ™~ \
they can fish they can fish
word = they, categories = {NP}
Add new edge a 0, 1, NP, (they)
Matching grammar rules: {VP—V NP, PP—P NP}
No matching edges corresponding to V or P

word = can, categories = {V}
Add new edge b 1, 2,V, (can)
Matching grammar rules: {VP—V}
recurse on edges {(b)}

Natural Language Processing
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|—Simple chart parsing with CFGs

Parse construction Parse construction

c.V
a:NP b:V
9 9
they can fish

fish
Add new edgec 1, 2, VP, (b)

Matching grammar rules: {S—NP VP, VP—V VP}
recurse on edges {(a,c)}

Add new edged 0,2, S, (a, ¢)
No matching grammar rules for S

Matching grammar rules: {S—NP VP, VP—V VP}
No edges for V VP
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Parse construction

they can fish

word = fish, categories = {V, NP}

Add new edge e 2, 3,V, (fish) NB: fish as V
Matching grammar rules: {VP—V}

recurse on edges {(e)}
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|—Simple chart parsing with CFGs
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|—Simple chart parsing with CFGs

Parse construction

they can fish

Add new edge f 2, 3, VP, (e)

Matching grammar rules: {S —NP VP, VP —V VP}
No edges match NP

recurse on edges for V VP: {(b,f)}

Parse construction

eV

they can fish

Add new edgeg 1,3, VP, (b, f)
Matching grammar rules: {S—NP VP, VP—V VP}
recurse on edges for NP VP: {(a,g)}
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|—Simple chart parsing with CFGs

Parse construction

they can fish

Add newedgeh 0,3,S, (a Q)
No matching grammar rules for S

Matching grammar rules: {S—NP VP, VP —V VP}
No edges matching V
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Parse construction

Add new edge i 2, 3, NP, (fish) NB: fish as NP
Matching grammar rules: {VP—V NP, PP—P NP}
recurse on edges for V NP {(b,i)}

Natural Language Processing
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|—Simple chart parsing with CFGs

Parse construction

a:NP

they can fish

Add new edgej 1, 3, VP, (b))
Matching grammar rules: {S—NP VP, VP—V VP}
recurse on edges for NP VP: {(a,j)}

Parse construction

Add new edge k 0, 3, S, (a,)
No matching grammar rules for S
Matching grammar rules: {S—NP VP, VP—V VP}
No edges corresponding to V VP
Matching grammar rules: {VP—V NP, PP—P NP}
No edges corresponding to P NP
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|—Simple chart parsing with CFGs

Output results for spanning edges

Spanning edges are h and k:
Output results for h

(S (NP they) (VP (V can) (VP (V fish))))
Output results for k
(S (NP they) (VP (V can) (NP fish)))

Note: sample chart parsing code in Java is downloadable from
the course web page.
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Packing Packing example

» exponential number of parses means exponential time a o 1 NP {(they)}

» body can be cubic time: don’t add equivalent edges as b 1 2 V {(can)}

whole new edges c 1 2 VP {(b)}

» dtrs is a set of lists of edges (to allow for alternatives) d 0 2 S {(a c)}
about to add: [id,|_vtx, right_vtx,ma_cat, dtrs] ]? 3 2 xP {(fish)}
and there is an existing edge: g 1 3 \p E E g) i )}
[id-old,l_vtx, right_vtx,ma_cat, dtrs-old] h 0 3 S {(a 9)}

i 2 3 NP {(fish)}

we simply modify the old edge to record the new dtrs:

[id-old,|_vtx, right_vtx,ma_cat, dtrs-old U dtrs] Instead ofedgej 1 3 VP {(b,i)}

and do not recurse on it: never need to continue computation 9 o3 v b ), (b))}

with a packable edge. and we're done
Natural Language Processing Natural Language Processing
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|—More advanced chart parsing |—More advanced chart parsing

Packing example Packing example
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|—More advanced chart parsing

Packing example

they fish

Both spanning results can now be extracted from edge h.
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|—More advanced chart parsing
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|—Formalism power requirements

Ordering the search space

» agenda: order edges in chart by priority
» top-down parsing: predict possible edges

Producing n-best parses:

» manual weight assignment
» probabilistic CFG — trained on a treebank

» automatic grammar induction
» automatic weight assignment to existing grammar

» beam-search

Why not FSA?

centre-embedding:
A — aAB

generate grammars of the form a"b".
For instance:

the students the police arrested complained
However, limits on human memory / processing ability:

? the students the police the journalists criticised arrested
complained
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|—Formalism power requirements

Why not FSA?

centre-embedding:
A — aAB

generate grammars of the form a"b".
For instance:

the students the police arrested complained
However, limits on human memory / processing ability:

? the students the police the journalists criticised arrested
complained

More importantly:
1. FSM grammars are extremely redundant
2. FSM grammars don't support composition of semantics
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Natural Language Processing
LLecture 4: Parsing and generation

|—Formalism power requirements

Overgeneration in atomic category CFGs

» agreement: subject verb agreement. e.g., they fish, it
fishes, *it fish, *they fishes. * means ungrammatical

» case: pronouns (and maybe who/whom) e.g., they like
them, *they like they

Overgeneration in atomic category CFGs

» agreement: subject verb agreement. e.g., they fish, it
fishes, *it fish, *they fishes. * means ungrammatical

» case: pronouns (and maybe who/whom) e.g., they like
them, *they like they

S -> NP-sg-nom VP-sg NP- sg- nom - > he

S -> NP-pl - nom VP- pl NP-sg-acc -> him
VP-sg -> V-sg NP-sg-acc NP- sg-nom -> fish
VP-sg -> V-sg NP-pl-acc NP-pl -nom -> fish
VP-pl -> V-pl NP-sg-acc NP-sg-acc -> fish
VP-pl -> V-pl NP-pl-acc NP- pl -acc -> fish

BUT: very large grammar, misses generalizations, no way of
saying when we don’t care about agreement.
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|—Formalism power requirements
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|—Formalism power requirements

Subcategorization

» intransitive vs transitive etc

» verbs (and other types of words) have different numbers
and types of syntactic arguments:

*Kim adored

*Kim gave Sandy
*Kim adored to sleep
Kim liked to sleep
*Kim devoured

Kim ate

» Subcategorization is correlated with semantics, but not
determined by it.

Overgeneration because of missing subcategorization

Overgeneration:

they fish fish it
(S (NP they) (VP (V fish) (VP (V fish) (NP it))))

» Informally: need slots on the verbs for their syntactic
arguments.
» intransitive takes no following arguments (complements)
» simple transitive takes one NP complement
» like may be a simple transitive or take an infinitival
complement, etc
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L Formalism power requirements

Outline of next lecture Outline of today’s lecture

Providing a more adequate treatment of syntax than simple
CFGs: replacing the atomic categories by more complex data

structures. Lecture 5: Parsing with constraint-based grammars
_ _ _ Beyond simple CFGs
Lecture 5: Parsing with constraint-based grammars Feature structures
Beyond simple CFGs Encoding agreement
Feature structures Parsing with feature structures
Encoding agreement Encoding subcategorisation
Parsing with feature structures Interface to morphology

Encoding subcategorisation
Interface to morphology

Natural Language Processing Natural Language Processing
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Long-distance dependencies Context-free grammar and language phenomena

1. which problem did you say you don'’t understand?
2. who do you think Kim asked Sandy to hit?
3. which kids did you say were making all that noise? » CFGs can encode long-distance dependencies
‘gaps’ (underscores below) » Language phenomena that CFGs cannot model (without a
1. which problem did you say you don’t understand _? bound) are unusual — probably none in English.

2. who do you think Kim asked Sandy to hit _? » BUT: CFG modelling for English or another NL could be

3. which kids did you say _ were making all that noise? trillions of rules

In 3, the verb were shows plural agreement. » Enriched formalisms: CFG equivalent (tOday) or greater
power (more usual)

* what kid did you say _ were making all that noise? . S o
» Human processing vs linguistic generalisations.

The gap filler has to be plural.

» Informally: need a ‘gap’ slot which is to be filled by
something that itself has features.
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L Lecture 5: Parsing with constraint-based grammars

Constraint-based grammar (feature structures)

Providing a more adequate treatment of syntax than simple
CFGs by replacing the atomic categories by more complex data
structures.

» Feature structure formalisms give good linguistic accounts
for many languages

» Reasonably computationally tractable

» Bidirectional (parse and generate)

» Used in LFG and HPSG formalisms

Natural Language Processing
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L Beyond simple CFGs

Intuitive solution for case and agreement

» Separate slots (features) for CASE and AGR

» Slot values for CASE may be nom (e.g., they), acc (e.g.,
them) or unspecified (i.e., don't care)

» Slot values for AGR may be sg, pl or unspecified
» Subjects have the same value for AGR as their verbs
» Subjects have CASE nom, objects have CASE acc

CASE _ CASE
can (n) [] fish (n) L]
AGR sg AGR []
CASE nom CASE acc
she them
AGR sg AGR pl
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|—Beyond simple CFGs

Expanded CFG (from last time)

S -> NP-sg-nom VP-sg NP-sg-nom - > he

S -> NP-pl -nom VP- pl NP-sg-acc -> him
VP-sg -> V-sg NP-sg-acc NP-sg-nom -> fish
VP-sg -> V-sg NP-pl-acc NP-pl -nom -> fish
VP-pl -> V-pl NP-sg-acc NP-sg-acc -> fish
VP-pl -> V-pl NP-pl-acc NP-pl -acc -> fish

Natural Language Processing
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|_ Feature structures

Feature structures

CASE []
AGR sg

1. Features like AGR with simple values: atomic-valued

2. Unspecified values possible on features: compatible with
any value.

3. Values for features for subcat and gap themselves have
features: complex-valued

4. path: a sequence of features
5. Method of specifying two paths are the same: reentrancy
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L Feature structures

Feature structures, continued

» Feature structures are singly-rooted directed acyclic
graphs, with arcs labelled by features and terminal nodes
associated with values.

CASE
>~ o
CASE []
AGR sg AGR
sg
°

» In grammars, rules relate FSs — i.e. lexical entries and
phrases are represented as FSs

» Rule application by unification
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|_ Feature structures

Reentrancy
/ ®a [
F a
G G a
([ J > @ a -
E F O a
[ ® a -

Reentrancy indicated by boxed integer in AVM diagram:
indicates path goes to the same node.
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L Feature structures

Graphs and AVMs

Example 1: caT NP
* _° CAT NP
AGR
Sg AGR SgO

Here, CAT and AGR are atomic-valued features. NP and sg are
values.

Example 2:
HEAD _ CAT NP
> > CAT NP

AGR HEAD
\ AGR []
[ )

HEAD is complex-valued, AGR is unspecified.

Natural Language Processing
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|_ Feature structures

Properties of FSs

Connectedness and unique root A FS must have a unique root
node: apart from the root node, all nodes have
one or more parent nodes.

Unique features Any node may have zero or more arcs leading
out of it, but the label on each (that is, the feature)
must be unique.

No cycles No node may have an arc that points back to the
root node or to a node that intervenes between it
and the root node.

Values A node which does not have any arcs leading out
of it may have an associated atomic value.

Finiteness A FS must have a finite number of nodes.
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L Feature structures

Unification

Unification is an operation that combines two feature structures,
retaining all information from each, or failing if information is
incompatible.

Some simple examples:

1 CASE [] - CASE nom | | CASE nom
" | AGR sg AGR [] AGR Sg
CASE CASE
2. L] M [AGR []} = U
AGR sg AGR sg
CASE CASE .
3. [] M nom = fail
AGR sg AGR pl
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|—Encoding agreement

CFG with agreement

S -> NP-sg VP-sg

S -> NP-pl VP-pl
VP-sg -> V-sg NP-sg
VP-sg -> V-sg NP-pl
VP-pl -> V-pl NP-sg
VP-pl -> V-pl NP-pl
V-pl -> like

V-sg -> likes
NP-sg -> it

NP-pl -> they
NP-sg -> fish
NP-pl -> fish
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L Feature structures

Subsumption and Unification

Feature structures are ordered by information content — FS1
subsumes FS2 if FS2 carries extra information.
FS1 subsumes FS2 if and only if the following conditions hold:

Path values For every path P in FS1 there is a path P in FS2. If
P has a value tin FS1, then P also has value t in
FS2.

Path equivalences Every pair of paths P and Q which are
reentrant in FS1 (i.e., which lead to the same node
in the graph) are also reentrant in FS2.

The unification of two FSs FS1 and FS2 is then defined as the
most general FS which is subsumed by both FS1 and FS2, if it
exists.
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|—Encoding agreement

FS grammar fragment encoding agreement

. CAT S CAT NP CAT VP
subj-verb rule — ,
AGR AGR AGR
. CAT VP CAT V CAT NP
verb-obj rule — ;
AGR AGR AGR []

Root structure: [ CAT S }

CAT NP ) CAT NP CAT V
they it likes
AGR pl AGR sg AGR sg
! cAT NP ) CAT V
fish like

AGR [] AGR pl
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L Parsing with feature structures
Parsing ‘they like it’

» The lexical structures for like and it are unified with the
corresponding structures on the right hand side of the
verb-obj rule (unifications succeed).

» The structure corresponding to the mother of the rule is
then:
CAT VP
AGR pl

» This unifies with the rightmost daughter position of the
subj-verb rule.

» The structure for they is unified with the leftmost daughter.

» The result unifies with root structure.
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L Parsing with feature structures

Verb-obj rule application
Feature structure for like unified with the value of DTR1:

i cAaT VP 1]
AGR !Ipl}
CAT V
DTR1 AGR
CAT NP

DTR2
AGR [ ]

MOTHER {

Feature structure for it unified with the value for DTR2:

i CAT VP }_

AGR [1] pl
CAT V

AGR
CAT NP
AGR sg

MOTHER [
DTR1

DTR2
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L Parsing with feature structures

Rules as FSs

But what does the coindexation of parts of the rule mean? Treat
rule as a FS: e.qg., rule features MOTHER, DTR1, DTR2 ...DTRN.

. CAT VP CAT V CAT NP
informally: — ,
AGR AGR AGR []
CAT VP
MOTHER
AGR
CAT V
actually: | DTR1
AGR
cAT NP
DTR2
AGR []
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L Parsing with feature structures

Subject-verb rule application 1

MOTHER value from the verb-object rule acts as the DTR2 of the
subject-verb rule:

MOTHER [CAT S ]
AGR
[CAT VP} unified with the pTR2 of: | oTr1 | AT NP
AGR pl AGR
DTR? CAT VP
AGR
Gives: )
i CAT S i
MOTHER {AGR pl}
CAT NP
DTR1 AGR
5 CAT VP
_DTR AGR
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|—Palrsing with feature structures |—Encoding subcategorisation
Subject rule application 2 Grammar with subcategorisation
FS for they: [CAT Nﬂ
AGR p HEAD HEAD
Unification of this with the value of DTR1 succeeds (but adds no Verb-obj rule: | osy filled | — | 0By , @[ oy filled |
new information): SUBJ SUBJ
i CAT S
MOTHER CAT verb
[AGR pl] HEAD [ ]
AGR pl
CAT NP ..
DTR1 can (transitive verb): HEAD [CAT noun |
AGR o !
oBJ filled
otr2 | AT VP SUBJ [HEAD [cAT noun ||
i AGR
Final structure unifies with the root structure: [cat S|
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|—Encoding subcategorisation |—Encoding subcategorisation
Grammar with subcategorisation (abbrev for slides) Concepts for subcategorisation
Verb-obi rule: HEADﬂ HEAD ; » HEAD: information shared between a lexical entry and the
erb-objrule: | oes fld | — | 0B ' [OBJ d] dominating phrases of the same category
SUBJ SUBJ / \
NP P
HEAD CAT V / \
AGR pl V P
can (transitive verb): HEAD [CAT n| /V N
OBJ
osJ fid VP PP

SUBJ [HEAD [CAT n| |
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|—Encoding subcategorisation

Concepts for subcategorisation

» HEAD: information shared between a lexical entry and the
dominating phrases of the same category

Natural Language Processing
L Lecture 5: Parsing with constraint-based grammars

|—Encoding subcategorisation

Natural Language Processing
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|—Encoding subcategorisation

Concepts for subcategorisation

» HEAD: information shared between a lexical entry and the
dominating phrases of the same category

Concepts for subcategorisation

» HEAD: information shared between a lexical entry and the
dominating phrases of the same category

e >/P\
' VP*/P\PP
N\

V P
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|—Encoding subcategorisation

Concepts for subcategorisation

» HEAD: information shared between a lexical entry and the
dominating phrases of the same category

N\

N

"
\%
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|—Encoding subcategorisation

Concepts for subcategorisation

» HEAD: information shared between a lexical entry and the
dominating phrases of the same category

e >/P
Y >V'°\

VP pP*

A

V P NP
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|—Encoding subcategorisation

Concepts for subcategorisation

» HEAD: information shared between a lexical entry and the
dominating phrases of the same category

» SUBJ:
The subject-verb rule unifies the first daughter of the rule
with the SUBJ value of the second. (‘the first dtr fills the
SUBJ slot of the second dtr in the rule’)

» OBJ:
The verb-object rule unifies the second dtr with the OBJ
value of the first. (‘the second dtr fills the OBJ slot of the
first dtr in the rule’)
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|—Encoding subcategorisation

Concepts for subcategorisation

» HEAD: information shared between a lexical entry and the
dominating phrases of the same category

» SUBJ:
The subject-verb rule unifies the first daughter of the rule
with the SUBJ value of the second. (‘the first dtr fills the
SUBJ slot of the second dtr in the rule’)

Natural Language Processing
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|—Encoding subcategorisation

Example rule application: they fish 1
CAT Vv ]

HEAD
[AGR pl

Lexical entry for fish: oBJ fld

SUBJ [HEAD [CAT n]]

subject-verb rule:

[HEAD [1] ] HEAD [AGR [3] | HEAD [AGr 3]
o) fld | — osJ fid , | oBJ fld
| susy fld | suBJ fld SUBJ

unification with second dtr position gives:

i [caT CAT n
HEAD v HEAD HEAD
AGR [3] pl AGR
ogy fid 9 oy fid » | 08 fid
SUBJ

| susJ fid suBJ fld
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CAT n
HEAD AGR pl
Lexical entry for they:
y y osJ fld

suBJ fld

unify this with first dtr position:

CAT V CAT n
HEAD [AGR pl] R HEAD [AGR }
oBJ fld osJ fld ’
suBJ fld suBJ fld

HEAD [CAT V]|
Rootis: | oBJ fld
suBJ fld

Mother structure unifies with root, so valid.
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|—Interface to morphology

Templates

Capture generalizations in the lexicon:

fish INTRANS_VERB
sleep INTRANS_VERB
snore INTRANS_VERB

CAT Vv
AGR pl

HEAD

INTRANS VERB
- oy fld

SUBJ |:HEAD [CAT n”

HEAD
oBJ fld
SUBJ
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|—Encoding subcategorisation

Parsing with feature structure grammars

» Naive algorithm: standard chart parser with modified rule
application
Rule application:

1. copy rule

2. copy daughters (lexical entries or FSs associated with
edges)

3. unify rule and daughters

4. if successful, add new edge to chart with rule FS as
category

Efficient algorithms reduce copying.
Packing involves subsumption.
Probabilistic FS grammars are complex.

v

v

v

v
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|—Interface to morphology

Interface to morphology: inflectional affixes as FSs

CAT n
S HEAD
AGR pl
CAT n
HEAD
. . AGR []
if stem is: J
oBJ fld
suBJy fid

stem unifies with affix template.

But unification failure would occur with verbs etc, so we get
filtering (lecture 2).
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|—Interface to morphology

Outline of next lecture Outline of today’s lecture
Compositional semantics: the construction of meaning Compositional semantics: the construction of meaning
(generally expressed as logic) based on syntax. (generally expressed as logic) based on syntax.
Lexical semantics: the meaning of individual words. Lexical semantics: the meaning of individual words.
Lecture 6: Compositional and lexical semantics Lecture 6: Compositional and lexical semantics
Compositional semantics in feature structures Compositional semantics in feature structures
Logical forms Logical forms
Meaning postulates Meaning postulates
Lexical semantics: semantic relations Lexical semantics: semantic relations
Polysemy Polysemy
Word sense disambiguation Word sense disambiguation
Natural Language Processing Natural Language Processing
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|—Compositional semantics in feature structures |—Compositional semantics in feature structures
Simple compositional semantics in feature structures Feature structure encoding of semantics
[ PrRED and ]
PRED pron
» Semantics is built up along with syntax ARG1 ARG1
» Subcategorization ‘slot’ filling instantiates syntax 3 -
. . . PRED and
» Formally equivalent to logical representations (below: - _
predicate calculus with no quantifiers) PRED like_v
» Alternative FS encodings possible ARGL | ARG1
o . . . L ARG2 ARG2
Objective: obtain the following semantics for they like fish: L
pron(x) A (like_v(x,y) A fish_n(y)) PRED fish_n
ARG2
ARG1

pron(x) A (like_v(x,y) A fish_n(y))
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|—Compositional semantics in feature structures

Noun entry )
HEAD CAT n
AGR []
oBJ fld
fish susy fld
INDEX
SEM | PRED fish_n
ARG1

» Corresponds to fish(x) where the INDEX points to the
characteristic variable of the noun (that is x).

Natural Language Processing
LLecture 6: Compositional and lexical semantics

|—Compositional semantics in feature structures

Natural Language Processing
|—Lecture 6: Compositional and lexical semantics

|—Compositional semantics in feature structures

Noun entry .
HEAD CAT n
AGR []
oBJ fld
fish susy fld
INDEX
SEM | PRED fish_n
ARG1

» Corresponds to fish(x) where the INDEX points to the
characteristic variable of the noun (that is x).
The INDEX is unambiguous here, but
e.g., picture(x,y) A sheep(y)
picture of sheep

Verb entry .
CAT V
HEAD
AGR pl
HEAD [CAT n]
oBJ | oBJ fld
SEM PNDEX !}
like

HEAD [CAT n]
SUBJ
SEM [INDEX ]

PRED like v
SEM | ARG1
ARG2

Natural Language Processing
LLer:tur(—: 6: Compositional and lexical semantics

|—Compositional semantics in feature structures

Verb-object rule

-HEAD ]
oJ fid HEAD
SUBJ | o8 5 | 083 fid
PRED and SUBJ ’ SEM
SEM | ARG1 SEM
ARG2

» As last time: object of the verb (DTRZ2) fills’ the OBJ slot

» New: semantics on the mother is the ‘and’ of the semantics
of the dtrs
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|—Lc:gi(:al forms

Logic in semantic representation

» Meaning representation for a sentence is called the logical
form

» Standard approach to composition in theoretical linguistics
is lambda calculus, building FOPC or higher order
representation.

» Representation in notes is quantifier-free predicate
calculus but possible to build FOPC or higher-order
representation in FSs.

» Theorem proving.
» Generation: starting point is logical form, not string.
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|—Meaning postulates

Unambiguous and logical?

IF YoU LEARNED T0 SPEAK LOTBAN,
YOUR CoMmuN)CATION WOULP BE
COMPLETELY UNAMBIG|/0US AND LOGICAL..

YEAH, BUT IT WouLD ALL BE
WITH THE KIND OF PEOPLE
WHO LEARN LOJBAN.

£
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|—Meaning postulates

Meaning postulates

> eg.,
vx[bachelor'(x) — man’(x) A unmarried’(x)]

» usable with compositional semantics and theorem provers
» e.g. from ‘Kim is a bachelor’, we can construct the LF

bachelor’(Kim)
and then deduce
unmarried’(Kim)

» OK for narrow domains or micro-worlds.

Natural Language Processing
LLecture 6: Compositional and lexical semantics

|—Lexical semantics: semantic relations

Lexical semantic relations

Hyponymy: IS-A :
» (a sense of) dog is a hyponym of (a sense of) animal
» animal is a hypernym of dog
» hyponymy relationships form a taxonomy
» works best for concrete nouns
Meronomy: PART-OF e.g., arm is a meronym of body, steering
wheel is a meronym of car (piece vs part)
Synonymy e.g., aubergine/eggplant
Antonymy e.g., big/little
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|—Lexical semantics: semantic relations

WordNet

» large scale, open source resource for English

» hand-constructed

» wordnets being built for other languages

» organized into synsets: synonym sets (near-synonyms)

Overview of adj red:

1. (43) red, reddish, ruddy, blood-red, carnine,
cerise, cherry, cherry-red, crinmson, ruby,
ruby-red, scarlet - (having any of numerous
bright or strong colors rem niscent of the color
of blood or cherries or tomatoes or rubies)

2. (8) red, reddish - ((used of hair or fur)

of a reddish brown color; "red deer";

reddi sh hair")

Natural Language Processing
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|—Lexical semantics: semantic relations
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|—Lectur(—.‘ 6: Compositional and lexical semantics

|—Lexica| semantics: semantic relations

Hyponymy in WordNet

Sense 6
bi g cat, cat
=> | eopard, Panthera pardus
=> | eopardess
=> pant her
=> snow | eopard, ounce, Panthera uncia
=> jaguar, panther, Panthera onca,
Felis onca
=> |ion, king of beasts, Panthera | eo
=> | ioness
=> |ionet
=> tiger, Panthera tigris
=> Bengal tiger
=> tigress

Natural Language Processing
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|—Lexi(:al semantics: semantic relations

Some uses of lexical semantics

» Semantic classification: e.g., for selectional restrictions
(e.g., the object of eat has to be something edible) and for
named entity recognition

» Shallow inference: ‘X murdered Y’ implies ‘X killed Y’ etc

» Back-off to semantic classes in some statistical
approaches

» Word-sense disambiguation

» Query expansion: if a search doesn’t return enough
results, one option is to replace an over-specific term with
a hypernym

Lexical Relations in Compounds

. N
I child-proofed
my house but they |
still get in. _¢
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|—Lecture 6: Compositional and lexical semantics LLecture 6: Compositional and lexical semantics
|—Le><ical semantics: semantic relations |—Polysemy
X-proofing Polysemy

acid-proof, affair-proof, air-proof, ant-proof, baby-proof, bat-proof, bear-proof,
bite-proof, bomb-proof, bullet-proof, burglar-proof, cat-proof, cannon-proof, claw-proof,
coyote-proof, crash-proof, crush-proof, deer-proof, disaster-proof, dust-proof,
dog-proof, elephant-proof, escape-proof, explosion-proof, fade-proof, fire-proof,

flame-proof, flood-proof, fool-proof, fox-proof, frost-proof, fume-proof, gas-proof, > homonymy: unrelated word senses. bank (ralsed Iand) Vs

germ-proof, glare-proof, goof-proof, gorilla-proof, grease-proof, hail-proof, heat-proof, bank (financial il’lStitUtiOl’l)

high-proof (110-proof, 80-proof), hurricane-proof, ice-proof, idiot-proof, jam-proof, . Ly L . . .

leak-proof, leopard-proof, lice-proof, light-proof, mole-proof, moth-proof, mouse-proof, » bank (financial institution) vs bank (in a casino): related but
nematode-proof, noise-proof, oil-proof, oven-proof, pet-proof, pilfer-proof, distinct senses.

porcupine-proof, possum-proof, puncture-proof, quake-proof, rabbit-proof, . .
raccoon-proof, radiation-proof, rain-proof, rat-proof, rattle-proof, recession-proof, » bank (N) (raised land) vs bank (V) (to create some raised
rip-proof, roach-proof, rub-proof, rust-proof, sand-proof, scatter-pr_oof, scratch-proof, Iand): regular p0|ysemy_ Compare piIe, heap etc
shark-proof, shatter-proof, shell-proof, shock-proof, shot-proof, skid-proof, slash-proof,

sleet-proof, slip-proof, smear-proof, smell-proof, smudge-proof, snag-proof, snail-proof, No clearcut distinctions.

snake-proof, snow-proof, sound-proof, stain-proof, steam-proof, sun-proof, .. . .

tamper-proof, tear-proof, teenager-proof, tick-proof, tornado-proof, trample-proof, Dictionaries are not consistent.

varmint-proof, veto-proof, vibration-proof, water-proof , weasel-proof, weather-proof,
wind-proof, wolf-proof, wrinkle-proof, x-ray-proof, zap-proof

source: ww. wor dni k. cont | i sts/ heres-your - proof
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|—Word sense disambiguation |—Word sense disambiguation

Word sense disambiguation WSD techniques

Needed for many applications, problematic for large domains.

Assumes that we have a standard set of word senses (e.qg., » supervised learning: cf. POS tagging from lecture 3. But

WordNet) sense-tagged corpora are difficult to construct, algorithms
» frequency: e.g., diet: the food sense (or senses) is much need far more data than POS tagging
more frequent than the parliament sense (Diet of Worms) » unsupervised learning (see below)

» collocations: e.g. striped bass (the fish) vs bass guitar: » Machine readable dictionaries (MRDs): e.g., look at

syntactically related or in a window of words (latter overlap with words in definitions and example sentences
sometimes called ‘cooccurrence’). Generally ‘one sense . ,
» selectional preferences: don’t work very well by

er collocation’. . o . .
P _ o _ themselves, useful in combination with other techniques
» selectional restrictions/preferences (e.g., Kim eats bass,

must refer to fish
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|—Wc:)rd sense disambiguation |—Wc:)rd sense disambiguation
WSD by (almost) unsupervised learning Yarowsky (1995): schematically
Initial state
Disambiguating plant (factory vs vegetation senses):
. . N 2 ?2 2
1. Find contexts in training corpus: f ?7? 5
sense | training example ? ? 5
o 2
’? H
? company said that the plant is still o_peratmg . 5o 5
? although thousands of plant and animal species 5 5 5
? zonal distribution of plant life ?2? 2 7 ? ? '
? company manufacturing plant is in Orlando ? R "0 5
etc 5 :
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|—Word sense disambiguation |—Word sense disambiguation
] ] ] Seeds
2. Identify some seeds to disambiguate a few uses. e.g., ‘plant
life’ for vegetation use (A) ‘manufacturing plant’ for factory use ? oo 3
B): ? 24
sense | training example 9 5 2 manu.
? company said that the plant is still operating ?
: ; ? 2
? aIthoug.h thou§ands of plapt and animal species 5o 5 ‘
A zonal distribution of plant life s
B company manufacturing plant is in Orlando R ?

etc
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|—Lecture 6: Compositional and lexical semantics

|—Word sense disambiguation

3. Train a decision list classifier on the Sense A/Sense B

examples.
reliability | criterion | sense
8.10 plant life A
7.58 manufacturing plant B
6.27 animal within 10 words of plant | A
etc

Decision list classifier: automatically trained if/then statements.
Experimenter decides on classes of test by providing definitions
of features of interest: system builds specific tests and provides
reliability metrics.
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Iterating:
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4. Apply the classifier to the training set and add reliable
examples to A and B sets.
sense | training example

company said that the plant is still operating
although thousands of plant and animal species
zonal distribution of plant life

company manufacturing plant is in Orlando

etc

5. lterate the previous steps 3 and 4 until convergence

W>>
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Final:
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6. Apply the classifier to the unseen test data

‘one sense per discourse’: can be used as an additional
refinement

e.g., once you've disambiguated plant one way in a particular
text/section of text, you can assign all the instances of plant to
that sense

Evaluation of WSD

» SENSEVAL competitions
» evaluate against WordNet

» baseline: pick most frequent sense — hard to beat (but
don’t always know most frequent sense)

» human ceiling varies with words

» MT task: more objective but sometimes doesn’t
correspond to polysemy in source language

Natural Language Processing
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|—Word sense disambiguation
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Outline of next lecture

Putting sentences together (in text).
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Document structure and discourse structure

» Most types of document are highly structured, implicitly or
explicitly:

» Scientific papers: conventional structure (differences
between disciplines).

» News stories: first sentence is a summary.
» Blogs, etc etc

» Topics within documents.
» Relationships between sentences.

Natural Language Processing
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Rhetorical relations

Max fell. John pushed him.

can be interpreted as:

1. Max fell because John pushed him.
EXPLANATION

or

2 Max fell and then John pushed him.
NARRATION

Implicit relationship: discourse relation or rhetorical relation
because, and then are examples of cue phrases

Coherence

Discourses have to have connectivity to be coherent:

Kim got into her car. Sandy likes apples.

Natural Language Processing
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Coherence

Discourses have to have connectivity to be coherent:
Kim got into her car. Sandy likes apples.

Can be OK in context:

Kim got into her car. Sandy likes apples, so Kim thought she’d

go to the farm shop and see if she could get some.
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Coherence in generation

Strategic generation: constructing the logical form. Tactical
generation: logical form to string.
Strategic generation needs to maintain coherence.

In trading yesterday: Dell was up 4.2%, Safeway was down
3.2%, HP was up 3.1%.

Better:

Computer manufacturers gained in trading yesterday: Dell was
up 4.2% and HP was up 3.1%. But retail stocks suffered:
Safeway was down 3.2%.

So far this has only been attempted for limited domains: e.g.
tutorial dialogues.
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Coherence in interpretation

Discourse coherence assumptions can affect interpretation:
Kim’s bike got a puncture. She phoned the AA.

Assumption of coherence (and knowledge about the AA) leads
to bike interpreted as motorbike rather than pedal cycle.

John likes Bill. He gave him an expensive Christmas present.

If EXPLANATION - ‘he’ is probably Bill.
If JUSTIFICATION (supplying evidence for first sentence), ‘he’
is John.

Factors influencing discourse interpretation

1. Cue phrases.
2. Punctuation (also prosody) and text structure.

Max fell (John pushed him) and Kim laughed.
Max fell, John pushed him and Kim laughed.

3. Real world content:

Max fell. John pushed him as he lay on the ground.
4. Tense and aspect.

Max fell. John had pushed him.

Max was falling. John pushed him.

Hard problem, but ‘surfacy techniques’ (punctuation and cue
phrases) work to some extent.
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Rhetorical relations and summarization

Analysis of text with rhetorical relations generally gives a binary
branching structure:

» nucleus and satellite: e.g., EXPLANATION,
JUSTIFICATION

» equal weight: e.g., NARRATION
Max fell because John pushed him.
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Rhetorical relations and summarization

Analysis of text with rhetorical relations generally gives a binary
branching structure:

» nucleus and satellite: e.g., EXPLANATION,
JUSTIFICATION

» equal weight: e.g., NARRATION
Max fell because John pushed him.

Summarisation by satellite removal

If we consider a discourse relation as a

relationship between two phrases, we get a binary branching
tree structure for the discourse. In many relationships,

such as Explanation, one phrase depends on the other:

e.g., the phrase being explained is the main

one and the other is subsidiary. In fact we can get rid of the
subsidiary phrases and still have a reasonably coherent
discourse.
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Referring expressions

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him — at least until he spent an hour
being charmed in the historian’s Oxford study.

referent a real world entity that some piece of text (or
speech) refers to. the actual Prof. Ferguson

referring expressions bits of language used to perform

reference by a speaker. ‘Niall Ferguson’, ‘he’, ‘him’

antecedent the text initially evoking a referent. ‘Niall Ferguson’
anaphora the phenomenon of referring to an antecedent.

Pronoun resolution

Pronouns: a type of anaphor.
Pronoun resolution:; generally only consider cases which refer
to antecedent noun phrases.

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him — at least until he spent an hour
being charmed in the historian’s Oxford study.
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Pronoun resolution

Pronouns: a type of anaphor.
Pronoun resolution: generally only consider cases which refer
to antecedent noun phrases.

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him — at least until he spent an hour
being charmed in the historian’s Oxford study.
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Hard constraints: Pronoun agreement

» My dog has hurt his foot — he is in a lot of pain.
» * My dog has hurt his foot — it is in a lot of pain.

Complications:
» The team played really well, but now they are all very tired.
» Kim and Sandy are asleep: they are very tired.

» Kim is snoring and Sandy can’t keep her eyes open: they
are both exhausted.
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Pronoun resolution

Pronouns: a type of anaphor.
Pronoun resolution: generally only consider cases which refer
to antecedent noun phrases.

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him — at least until he spent an hour
being charmed in the historian’s Oxford study.
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Hard constraints: Reflexives

» John; washes himself;. (himself = John, subscript notation
used to indicate this)

» * John; washes him;.

Reflexive pronouns must be coreferential with a preceeding
argument of the same verb, non-reflexive pronouns cannot be.
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Hard constraints: Pleonastic pronouns Soft preferences: Salience
Recency Kim has a big car. Sandy has a smaller one. Lee likes to
drive it.
] ] Grammatical role Subjects > objects > everything else:
Pleonastic pronouns are semantically empty, and don't refer: Fred went to the Grafton Centre with Bill. He bought a CD.
» Itis snowing Repeated mention Entities that have been mentioned more frequently are
. . preferred.
> Itis not easy to think of QOOd examples. George needed a new car. His previous car got totaled, and
» It is obvious that Kim snores. he had recently come into some money. Jerry went with him
. to the car dealers. He bought a Nexus. He=George
» It bothers Sandy that Kim snores. ug xu 9
Parallelism Entities which share the same role as the pronoun in the
same sort of sentence are preferred:
Bill went with Fred to the Grafton Centre. Kim went with him
to Lion Yard. Him=Fred
Coherence effects (mentioned above)
Natural Language Processing Natural Language Processing
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World knowledge World knowledge
Sometimes inference will override soft preferences: Sometimes inference will override soft preferences:
Andrew Strauss again blamed the batting after England lost to Andrew Strauss again blamed the batting after England lost to
Australia last night. They now lead the series three-nil. Australia last night. They now lead the series three-nil.
they is Australia. they is Australia.
But a discourse can be odd if strong salience effects are
violated:

The England football team won last night. Scotland lost.
? They have qualified for the World Cup with a 100% record.
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Anaphora resolution as supervised classification

» Classification: training data labelled with class and
features, derive class for test data based on features.

» For potential pronoun/antecedent pairings, class is
TRUE/FALSE.

» Assume candidate antecedents are all NPs in current
sentence and preceeding 5 sentences (excluding
pleonastic pronouns)
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Example

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him

— at least until he spent an hour being charmed in the
historian’s Oxford study.

Issues: detecting pleonastic pronouns and predicative NPs,
deciding on treatment of possessives (the historian and the
historian’s Oxford study), named entities (e.g., Stephen Moss,
not Stephen and Moss), allowing for cataphora, ...
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Example

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him

— at least until he spent an hour being charmed in the
historian’s Oxford study.

Issues: detecting pleonastic pronouns and predicative NPs,
deciding on treatment of possessives (the historian and the
historian’s Oxford study), named entities (e.g., Stephen Moss,
not Stephen and Moss), allowing for cataphora, ...
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Features

Cataphoric Binary: t if pronoun before antecedent.

Number agreement Binary: t if pronoun compatible with
antecedent.

Gender agreement Binary: t if gender agreement.

Same verb Binary: t if the pronoun and the candidate
antecedent are arguments of the same verb.

Sentence distance Discrete: {0,1,2 ...}

Grammatical role Discrete: { subject, object, other } The role of
the potential antecedent.

Parallel Binary: tif the potential antecedent and the
pronoun share the same grammatical role.

Linguistic form Discrete: { proper, definite, indefinite, pronoun }
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Feature vectors

pron ante cat num gen same dist role par form
him NiallF | f t t f 1 subj f prop
him Ste. M. | f t t t 0 subj f prop
him he t t t f 0 subj f pron
he Niall F. | f t t f 1 subj t prop
he Ste. M. | f t t f 0 subj t prop
he him f t t f 0 obj f pron
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Naive Bayes Classifier

Choose most probable class given a feature vector f:

¢ = argmax P (c|f)
ceC

Apply Bayes Theorem:

P(f)
Constant denominator:
¢ = argmaxP (f|c)P(c)
ceC
Independent feature assumption (‘naive’):

n
¢ = argmaxP(c) [[ P(filc)
ceC i=1
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Training data, from human annotation

class pron ante cat num gen same dist role par form
TRUE | him NiallF. | f t t f 1 subj f prop
FALSE | him  Ste. M. | f t t t 0 subj f prop
FALSE | him he t t t f 0 subj f pron
FALSE | he NiallF. | f t t f 1 subj t prop
TRUE | he Ste. M. | f t t f 0 subj t prop
FALSE | he him f t t f 0 obj f pron
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Problems with simple classification model

» The problem is not really described well by pairs of

“pron—ant”

» Cannot model interdependencies between features.

» Cannot implement ‘repeated mention’ effect.
» Cannot use information from previous links:

Sturt think they can perform better in Twenty20 cricket. It

requires additional skills compared with older forms of the

limited over game.

it should refer to Twenty20 cricket, but looked at in isolation

could get resolved to Sturt. If linkage between they and

Sturt, then number agreement is pl.

Would need discourse model with real world entities
corresponding to clusters of referring expressions,
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Evaluation

Simple approach is link accuracy. Assume the data is
previously marked-up with pronouns and possible antecedents,
each pronoun is linked to an antecedent, measure percentage
correct. But:

» |dentification of non-pleonastic pronouns and antecendent
NPs should be part of the evaluation.
» Binary linkages don’t allow for chains:

Sally met Andrew in town and took him to the new
restaurant. He was impressed.

Multiple evaluation metrics exist because of such problems.
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Lecture 8: An application — The FUSE project
Approach
Example case RNAI
(Some) Processing Steps
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Classification in NLP

» Also sentiment classification, word sense disambiguation
and many others. POS tagging (sequences).

» Feature sets vary in complexity and processing needed to
obtain features. Statistical classifier allows some
robustness to imperfect feature determination.

» Acquiring training data is expensive.
» Few hard rules for selecting a classifier: e.g., Naive Bayes
often works even when independence assumption is

clearly wrong (as with pronouns). Experimentation, e.g.,
with WEKA toolkit.
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The FUSE project — Foresight and Understanding
from Scientific Exposition

» Funded by IARPA

» Task: Identify emerging ideas in the literature (given a
certain time frame, and a set of scientific articles)
» Example: Genetic Algorithms
» Example: RNA interference
» Counterexample: hot fusion

» Required: objective evidence collected from the articles
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Overview

Team of 5 Universities—Columbia, Maryland, Washington
State, Michigan, Cambridge

5 years, $20 Million, roughly 30 people involved.

Columbia: Project Management, Named Entity
Recognition, Semantic Frames, Linguistic processing,
Summarisation

Maryland: Time Series Analysis, Machine Learning
Cambridge team: Discourse analysis, Sentiment Analysis
Washington: Chinese Processing

Michigan: Citation Processing

Showcase NLP technology, lower to higher level analysis
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L Example case RNAi

Example sentences, case study “RNAI”

>

>

2001 article: Researchers have been critical of RNAI technology because of the
concentration of RNAI necessary to have a therapeutic effect.

2004 article: Kits and reagents for making RNAi constructs are now widely
available.

2010 Press Release : Cellecta announces the DECIPHER project, an
open-source platform for genome-wide RNAI screening and analysis.

2001 article: RNAI is now employed routinely across phyla, systematically
analysing gene function in most organisms with complete genomic sequences.
2004 article: RNAI has quickly become one of the most powerful and
indispensable tools in the molecular biologist’s toolbox.

2003 article: cheaper and faster than knockout mice

2004 article: Previous RNA-based technologies mentioned are antisense and
ribozymes. Advantages of RNAI: greater potency; taps into already-existing
control system within the cell (i.e., is natural).

2009 article: “RNAI has repidly become a standard method for experimental and
therapeutic gene silencing, and has moved from bench to bedside at
unprecedented speed.”
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Approach

Apply Citation Analysis to find clusters of papers interested
in one topic

Process citations, surprising noun phrases around citations
Understand important relationships the noun phrases
participate in

Sentiment towards ideas

Collect Indicators: Frequency, type of statement, length of
statement

Machine learn “emergence events’’
Express justification based on indicators in a summary
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Titles expressing sentiment towards RNAI

“Unlocking the money-making potential of RNAI”

“Drugmakers’ fever for the power of RNA interference has
cooled”

“Are early clinical successes enough to bring RNAI brack
from the brink?”

“The promises and pitfalls of RNA-interference-based
therapeutics”
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Troeger’s bases obtained. The structures of the products were assigned by 1H and 13 mass spectra and elemental analysis and confirmed by X-ray
diffraction for one of the obtained compounds.

Introduction

Although the first Troeger’s base 1 was obtained more than a centus
ago from the raction of p-toluidine and formaldehyde [11], recently the
study of these compounds has gained importance due to their potentia
applications. They possess a relatively rigid chiral structure which mak{
them suitable for the development of possible synthetic enzyme and
artificial receptor systems [2], chelatmg and biomimetic systems [3] an
mel for catalytic reac—
hons [4] For these reasons, numerous Tro er's-base derivates have
repared bearing different s of substituents and structures
%2 ’ggi:heme 1), with the purpose of mcreasmg their potential applications

In an attempt to prepare the benzotnazolyl derlvahve 7a, which could be used
of new  of interest, [e],
nuxtuxe of 5-ami ethy—1-pt and benz,otri—
~O azole in 10 ml of ethanol w1th catalyhc amounts of acetic acid, weas heated at
50C for 5 minutes. A solid precipidated from the solution while it was still hot.

Scheme 1 The original Troeger's—base 1and some interesting deri—~ However, no consumption of benzotriazole was observed at TLC.
vatives and analogues.

Results and discussion

However, some of the above methodologies possess tedious work-up
procedures or include relatively strong reaction conditions, such as
treatment of the starting materials for several hours with an ethanolic
solution of conc. hydrochloric acid or TFA soluhon, with poor to
moderate yields, as is the case for analogues 4 and 5 [5].
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Synthesis of pyrazole and pyrimidine Troeger’s base—analogues ke
Rodrigo Aboria, mdﬁ:“ﬁgi%rézzu Thector Larrabondo, airo Quiroga, Braulio Tsuasty, Tenry Tsuasty, Angelina Hormaza 2 Distributional Clustering of English Words
Fernando Pereira Naftali Tishby Lillian Lee
- Loy it aee tin S e s i, s (e acT el el B B prrimeliae Abstract Statistical evidence that they tend to participate in the same events. His notion of

similarity seems to agree with our intuitions in many cases, but it s not clear how it
can be used directly to construct word classes and corresponding models of association.

We describe and experimentally evaluate a method for automatically clustering words Our research addresses some of the same questions and uses similar raw data, but
according to their distribution in particular syntactic contexts. Deterministic annealing we investigate how to factor word association tendencies into associations of words o

is used to find lowest distortion Sets of clusters. As the annealing parameter increases, certain hidden sense classes and between the classe: While it
existing clusters become unstable an subdivide, yielding a hierarchical “soft” clustering may be worthwhile to base such a model on preexisting classes (Resnik, 1992), in the work
of the data. Clusters are used as the basis for class models of word occurrence, and described here we look at how to derive the classes directly from distributional data. More

the models evaluated with respect to held-out test data. specifically, we model senses as probabilistic concepts or clusters ¢ with corresponding

cluster membership probabilties p(ciw) for each word w. Most other class-based modeling

techniques for natural language rely on "hard” Boolean classes (Brown et al., 1990). Class
ion is then ing and depends on frequency counts for

AT T T T o e A S o e

we noted above. Our approach avoids both problems.

Introduction

Methods for automatically classifying words according to their contexts of use have both

scientific and practical interest. The scientific questions arise in connection to distribution— Problem Setting

al views of linguistic (particularly lexical) structure and lso in relation to teh question of

lexical acquisition both from and learning From

e pracical pont ofview, wrd clasaficaion adaresses questions of data Sparsencss an I WIRHTOIGHSVE WilGOTSIIET 70 WAIGT WO BASSes N NyoT EVETbS Amauns

generalization in statistical language models, particularly models for deciding among in our experiments, and a single relation between them, in our experiments the relation betw(

alternatives analyses proposed by a grammar. atransitive main verbs and the head noun of ts direct object. Our raw knowledge about the
Itis well-known that a simple tabulation of frequencies of certain words participating | relation consists of the frequencies fvn of occurrence of particular pairs (v. n) in the required

in certain configurations, for example the frequencies of pairs of a transitive main verb | configuration in our corpus. Some form of text analysis is required to collect such a collectior

and the head noun of s direct object, connot be reliably used for comparing the likelihoodsof pairs. The corpus used in our first experiment was derived from newswire text automatical

of different alterative configurations. The problem is that for large enough corporathe  parsed by Hindle's parser Fiddich (Hindle, 1993). More recently, we have constructred simil

number of joint events is much larger than the number of event occurrences in the corpus, tables with the help of a statistical part-of-speech tagger (Church, 1988) and of tools for

S0 many events are seen rerely or never, making their frequency counts unreliable estimategular expression pattern matching on tagged corpora (Yarowsky, 1992). We have not yet

of their probabilities. compared the accuracy and coverage of the two methods, or what systematic biases they
introduce, although we took care to filter out certain systematic errors, for instance the mis—
Hindle (1999) proposed dealing with the sparseness problem by estimating the likeli ing of the subject of a clause as the direct object of a main verb for report

of unseen events from that of "similar” events that have been seen. For instance, one may verbs like "say".
estimate the likelihood of a particular direct object of a verb from the likelihoods of that W will consider here only the problem of classifying nouns according to their distribution
direct object for similar verbs. This requires a reasonable definition of verb similarity and ~as direct objects of verbs; the converse problem is formally similar. More generally, the
asimilarity estimation method. In Hindle's proposal, words are similar if we have strong  theoretical bias for our methods supports the use of clustering to build models for any n-ary
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Drilling down: Agents Drilling down: Verb Semantics

Action Type Example Others
(well) AFFECT we hope to improve our results | feel, trust. ...
(wefl) also ARGUMENTATION we argue against a model of advocate, defend. ..
(well) now AWARENESS we are not aware of attempts do not know of
(well) here BETTER_SOLUTION | our system outperforms ... defeat, surpass. ..

(our/my) JJ* (account/ algorithm/ analysis/ analyses/ approach/ application/ ar-
chitecture. . .)

(our/my) JJ* (article/ draft/ paper/ project/ report/ study)

(our/my) JJ* (assumption/ hypothesis/ hypotheses/ claim/ conclusion/ opinion/

CHANGE
COMPARISON
CONTINUATION

we extend CITE’s algorithm

we tested our system against. ..

we follow Sag (1976) ...

adapt, expand. ..
compete, evaluate. ..
borrow from, build on. ..

CONTRAST our approach differs from . .. distinguish, contrast. ..

view) FUTURE_INTEREST | we intend to improve ... plan, expect...
(our/my) JJ* (answer/ accomplishment/ achievement/ advantage/ benefit... .) INTEREST we are concerned with . .. focus on, be motivated by. ..
(account/ ...) (noted/ mentioned/ addressed/ illustrated . ..) (here/below) NEED this approach, however, lacks... | needs, requires, be reliant on...
(answer/ ...) given (here/below) PRESENTATION we present here a method for... | point out, recapitulate
(answer/ ...) given in this (article/ ...) PROBLEM this approach fails. . . is troubled by, degrade. ..
(first/second/third) author RESEARCH we collected our data from. .. measure, calculate. ..
one of us SIMILAR our approach resembles that of bear comparison, have much in
one of the authors common with. ..

SOLUTION we solve this problem by. .. alleviate, circumvent. . .

TEXTSTRUCTURE the paper is organized. .. begin by, outline

USE we employ Suzuki's method. .. employ, apply, make use of. ..




