
Mobile and Sensor Systems  
 

Lecture 8:  
Sensor Networking

Reprogramming""
"

Dr. Cecilia Mascolo"
"

Whatʼs in this lecture"

•  We will describe techniques to reprogram a sensor network while
deployed

•  We describe briefly mobile sensor networks and mobile sensor network
reprogramming

Sensor Network  
Programming/Reprogramming"

•  Long Lifetime requires retasking the sensors"
•  However programming each node separately may not be feasible"
•  What is reprogramming?"

–  Send function parameters [“wake up every X seconds”]"
–  Sending binaries or code to compile"

•  Checking that each node has the right code can be quite costly too"

Idea"
•  The first step is to detect when nodes need updates (continuous

process) "
•  When there is no new code"

–  Maintenance cost should approach zero"
•  When there is new code"

–  Propagation should be rapid"

Trickle"
•  Simple, “polite gossip” algorithm"

•  “Every once in a while, broadcast what code you have, unless
youʼve heard some other nodes broadcast the same thing, in which
case, stay silent for a while.”"

Trickle"
•  Within a node time period"

–  If a node hears older metadata, it broadcasts the new data"
–  If a node hears newer metadata, it broadcasts its own metadata

(which will cause other nodes to send the new code)"
–  If a node hears the same metadata, it increases a counter"

•  If a threshold is reached, the node does not transmit its
metadata"

•  Otherwise, it transmits its metadata"

Trickle – Main Parameters"
•  Counter c: Count how many times identical metadata has been

heard"
•  k: threshold to determine how many times identical metadata must

be heard before suppressing transmission of a nodeʼs metadata"
•  t: the time at which a node will transmit its metadata. t is in the range

of [0, τ]"

Example Trickle Execution"

!"#$
!"

%$

&$

'()*+",++,-*$ +.//(#++#0$'()*+",++,-*$ (#1#/!-*$

2$

k!"#c#

$#

$#

$#

Example Trickle Execution"

!2)$

!"#$
!"

%$

&$

'()*+",++,-*$ +.//(#++#0$'()*+",++,-*$ (#1#/!-*$

2$

k!"#c#

$#

$#

$#

Example Trickle Execution"

!2)$

!"#$
!"

%$

&$

'()*+",++,-*$ +.//(#++#0$'()*+",++,-*$ (#1#/!-*$

2$

k!"#c#

$#

"#

$#

Example Trickle Execution"

!2)$

!"#$
!"

!&)$

%$

&$

'()*+",++,-*$ +.//(#++#0$'()*+",++,-*$ (#1#/!-*$

2$

k!"#c#

$#

"#

$#

Example Trickle Execution"

!2)$

!"#$
!"

!&)$

%$

&$

'()*+",++,-*$ +.//(#++#0$'()*+",++,-*$ (#1#/!-*$

2$

k!"#c#

$#

%#

$#

Example Trickle Execution"

!2)$

!"#$

!%)$

!"
!&)$

%$

&$

'()*+",++,-*$ +.//(#++#0$'()*+",++,-*$ (#1#/!-*$

2$

k!"#c#

$#

%#

$#

Example Trickle Execution"

!2)$

!"#$

!%)$

!"
!&)$

%$

&$

'()*+",++,-*$ +.//(#++#0$'()*+",++,-*$ (#1#/!-*$

2$

k!"#c#

$#

$#

$#

Example Trickle Execution"

!2)$

!"#$

!%)$!%3$

!"
!&)$

%$

&$

'()*+",++,-*$ +.//(#++#0$'()*+",++,-*$ (#1#/!-*$

2$

k!"#c#

"#

$#

"#

Example Trickle Execution"

!2)$

!"#$

!%)$!%3$

!"
!&)$!&3$

%$

&$

'()*+",++,-*$ +.//(#++#0$'()*+",++,-*$ (#1#/!-*$

2$

k!"#c#

"#

$#

"#

Example Trickle Execution"

!2)$!23$

!"#$

!%)$!%3$

!"
!&)$!&3$

%$

&$

'()*+",++,-*$ +.//(#++#0$'()*+",++,-*$ (#1#/!-*$

2$

k!"#c#

"#

$#

"#

Assumptions"
•  Precise node synchronization"
•  No packet Loss"

•  Impact of these assumption?"

Trickle:
Impact of Packet Loss Rates

[Dissemination_1]: Figure 5

Trickle Maintenance without
Synchronization – Short Listen Problem"

•  Mote B selects a small t on each of its three intervals"
–  Although other motes transmit, mote Bʼs transmissions are never

suppressed"
•  The number of transmissions per intervals increases significantly"

Figure 4: Number of Transmissions as Density In-

creases for Different Packet Loss Rates.

Figure 5: The Short Listen Problem For Motes A, B,

C, and D. Dark bars represent transmissions, light bars

suppressed transmissions, and dashed lines are recep-

tions. Tick marks indicate interval boundaries. Mote B

transmits in all three intervals.

This logarithmic behavior represents the probability

that a single mote misses a number of transmissions. For

example, with a 10% loss rate, there is a 10% chance a

mote will miss a single packet. If a mote misses a packet,

it will transmit, resulting in two transmissions. There is

correspondingly a 1% chance it will miss two, leading to

three transmissions, and a 0.1% chance it will miss three,

leading to four. In the extreme case of a 100% loss rate,

each mote is by itself: transmissions scale linearly.

Unfortunately, to maintain a per-interval minimum com-

munication rate, this logarithmic scaling is inescapable:

O(log(n)) is the best-case behavior. The increase in

communication represents satisfying the requirements of

the worst case mote; in order to do so, the expected case

must transmit a little bit more. Some motes don’t hear

the gossip the first time someone says it, and need it re-

peated. In the rest of this work, we consider O(log(n))
to be the desired scalability.

4.2 Maintenance without Synchronization

The above results assume that all motes have synchro-

nized intervals. Inevitably, time synchronization imposes

a communication, and therefore energy, overhead. While

some networks can provide time synchronization to Trickle,

others cannot. Therefore, Trickle should be able to work

in the absence of this primitive.

Unfortunately, without synchronization, Trickle can suf-

fer from the short-listen problem. Some subset of motes

Figure 6: The Short Listen Problem’s Effect on Scal-

ability, k = 1. Without synchronization, Trickle scales
with O(

√
n). A listening period restores this to asymp-

totically bounded by a constant.

gossip soon after the beginning of their interval, listening

for only a short time, before anyone else has a chance to

speak up. If all of the intervals are synchronized, the first

gossip will quiet everyone else. However, if not synchro-

nized, it might be that a mote’s interval begins just after

the broadcast, and it too has chosen a short listening pe-

riod. This results in redundant transmissions.

Figure 5 shows an instance of this phenomenon. In

this example, mote B selects a small t on each of its

three intervals. Although other motes transmit, mote B

never hears those transmissions before its own, and its

transmissions are never suppressed. Figure 6 shows how

the short-listen problem effects the transmission rate in

a lossless network with k = 1. A perfectly synchro-

nized single-hop network scales perfectly, with a con-

stant number of transmissions. In a network without any

synchronization between intervals, however, the number

of transmissions per interval increases significantly.

The short-listen problem causes the number of trans-

missions to scale as O(
√

n) with network density. 2 Un-
like loss, where extraO(log(n)) transmissions are sent to
keep the worst case mote up to date, the additional trans-

missions due to a lack of synchronization are completely

redundant, and represent avoidable inefficiency.

To remove the short-listen effect, we modified Trickle

slightly. Instead of picking a t in the range [0, τ], t is se-
lected in the range [τ

2 , τ], defining a “listen-only” period
of the first half of an interval. Figure 7 depicts the mod-

ified algorithm. A listening period improves scalability

by enforcing a simple constraint. If sending a message

guarantees a silent period of some time T that is inde-

2To see this, assume the network of n motes with an interval
τ is in a steady state. If interval skew is uniformly distributed,
then the expectation is that one mote will start its interval ev-

ery τ
n . For time t after a transmission, nt

τ will have start their

intervals. From this, we can compute the expected time after a
transmission that another transmission will occur. This is when�n

t=0 (1− t
n) <

1
2

which is when t ≈
√

n, that is, when
√

n
τ time has passed.

There will therefore be O(
√

n) transmissions.

Trickle –
Impact of Short Listen Problem

Solution to Short Listen  
Problem"

•  Instead of picking a t in the range [0, τ], t is selected in the range [τ/
2, τ]"

Figure 7: Trickle Maintenance with a k of 1 and

a Listen-Only Period. Dark boxes are transmissions,

gray boxes are suppressed transmissions, and dotted

lines are heard transmissions.

pendent of density, then the send rate is bounded above

(independent of the density). When a mote transmits, it

suppresses all other motes for at least the length of the

listening period. With a listen period of τ
2 , it bounds the

total sends in a lossless single-hop network to be 2k, and

with loss scales as 2k · log(n), returning scalability to the
O(log(n)) goal.
The “Listening” line in Figure 6 shows the number of

transmissions in a single-hop network with no synchro-

nization when Trickle uses this listening period. As the

network density increases, the number of transmissions

per interval asymptotically approaches two. The listen-

ing period does not harm performance when the network

is synchronized: there are k transmissions, but they are

all in the second half of the interval.

To work properly, Trickle needs a source of random-

ness; this can come from either the selection of t or from

a lack of synchronization. By using both sources, Trickle

works in either circumstance, or any point between the

two (e.g., partial or loose synchronization).

4.3 Maintenance in a Multi-hop Network

To understand Trickle’s behavior in a multi-hop net-

work, we used TOSSIM, randomly placing motes in a

50’x50’ area with a uniform distribution, a τ of one sec-
ond, and a k of 1. To discern the effect of packet col-

lisions, we used both TOSSIM-bit and TOSSIM-packet

(the former models collisions, and the latter does not).

Drawing from the loss distributions in Figure 1, a 50’x50’

grid is a few hops wide. Figure 8 shows the results of this

experiment.

Figure 8(a) shows how the number of transmissions

per interval scales as the number of motes increases. In

the absence of collisions, Trickle scales as expected, at

O(log(n)). This is also true in the more accurate TOSSIM-
bit simulations for low to medium densities; however,

once there is over 128 motes, the number of transmis-

sions increases significantly.

This result is troubling – it suggests that Trickle can-

not scale to very dense networks. However, this turns out

to be a limitation of TinyOS’s CSMA as network utiliza-

Figure 9: The Effect of Proximity on the Hidden Terminal Prob-

lem. When C is within range of both A and B, CSMA will prevent C

from interfering with transmissions between A and B. But when C is in

range of A but not B, B might start transmitting without knowing that C

is already transmitting, corrupting B’s transmission. Note that when A

and B are farther apart, the region where C might cause this “hidden

terminal” problem is larger.

tion increases, and not Trickle itself. Figure 8(b) shows

the average number of receptions per transmission for

the same experiments. Without packet collisions, as net-

work density increases exponentially, so does the recep-

tion/transmission ratio. Packet collisions increase loss,

and therefore the base of the logarithm in Trickle’sO(log(n))
scalability. The increase is so great that Trickle’s aggre-

gate transmission count begins to scale linearly. As the

number of transmissions over space increases, so does

the probability that two will collide.

As the network becomes very dense, it succumbs to

the hidden terminal problem, a known issue with CSMA

protocols. In the classic hidden terminal situation, there

are three nodes, a, b, and c, with effective carrier sense

between a and b and a and c. However, as b and c do not

hear one another, a CSMA protocol will let them transmit

at the same time, colliding at b, who will hear neither. In

this situation, c is a hidden terminal to b and vice versa.

Figure 9 shows an instance of this phenomenon in a sim-

plistic disk model.

In TOSSIM-bit, the reception/transmission ratio plateaus

around seventy-five: each mote thinks it has about seventy-

five one-hop network neighbors. At high densities, many

packets are being lost due to collisions due to the hid-

den terminal problem. In the perfect scaling model, the

number of transmissions form isolated and independent

single-hop networks ismk. In a network, there is a phys-

ical density (defined by the radio range), but the hidden

terminal problem causes motes to lose packets; hearing

less traffic, they are aware of a smaller observed density.

Physical density represents the number of motes who can

hear a transmission in the absence of any other traffic,

while observed density is a function of other, possibly

conflicting, traffic in the network. Increasing physical

density also make collision more likely; observed den-

sity does not necessarily increase at the same rate.

Propagation"

•  Tradeoff between different values of τ"
–  A large τ"

•  Low communication overhead"
•  Slowly propagates information"

–  A small τ"
•  High communication overhead"
•  Propagate more quickly"

•  How to improve?"
–  Dynamically adjust τ"

•  Lower Bound τl"
•  Upper Bound τh"

Trickle Complete Algorithm"
(a) Transmissions (b) Receptions

Figure 10: Communication topography of a simu-

lated 400 mote network in a 20x20 grid with 5 foot

spacing (95’x95’), running for twenty minutes with a

τ of one minute. The x and y axes represent space, with
motes being at line intersections. Color denotes the num-

ber of transmissions or receptions at a given mote.

butions in Figure 1, a five foot spacing forms a six hop

network from grid corner to corner. This simulation was

run with a τ of one minute, and ran for twenty minutes of
virtual time. The topology shows that some motes send

more than others, in a mostly random pattern. Given that

the predominant range is one, two, or three packets, this

non-uniformity is easily attributed to statistical variation.

A few motes show markedly more transmissions, for ex-

ample, six. This is the result of some motes being poor

receivers. If many of their incoming links have high loss

rates (drawn from the distribution in Figure 1), they will

have a small observed density, as they receive few pack-

ets.

Figure 10(b) shows the reception distribution. Unlike

the transmission distribution, this shows clear patterns.

motes toward the edges and corners of the grid receive

fewer packets than those in the center. This is due to

the non-uniform network density; a mote at a corner has

one quarter the neighbors as one in the center. Addition-

ally, a mote in the center has many more neighbors that

cannot hear one another; so that a transmission in one

will not suppress a transmission in another. In contrast,

almost all of the neighbors of a corner mote can hear

one another. Although the transmission topology is quite

noisy, the reception topography is smooth. The number

of transmissions is very small compared to the number of

receptions: the communication rate across the network is

fairly uniform.

4.5 Empirical Study

To evaluate Trickle’s scalability in a real network, we

recreated, as best we could, the experiments shown in

Figures 6 and 8. We placed motes on a small table, with

their transmission signal strength set very low, making

Figure 11: Empirical and Simulated over Density.

The simulated data is the same as Figure 8.

Event Action

τ Expires Double τ , up to τh. Reset c, pick a new t.
t Expires If c < k, transmit.
Receive same metadata Increment c.
Receive newer metadata Set τ to τl. Reset c, pick a new t.
Receive newer code Set τ to τl. Reset c, pick a new t.
Receive older metadata Send updates.

t is picked from the range [τ
2 , τ]

Figure 12: Trickle Pseudocode.

the table a small multi-hop network. With a τ of one
minute, we measured Trickle redundancy over a twenty

minute period for increasing numbers of motes. Fig-

ure 11 shows the results. They show similar scaling to the

results from TOSSIM-bit. For example, the TOSSIM-bit

results in Figure 8(c) show a 64 mote network having

an redundancy of 1.1; the empirical results show 1.35.

The empirical results show that maintenance scales as

the simulation results indicate it should: logarithmically.

The above results quantified the maintenance overhead.

Evaluating propagation requires an implementation; among

other things, there must be code to propagate. In the next

section, we present an implementation of Trickle, evalu-

ating it in simulation and empirically.

5. PROPAGATION

A large τ (gossiping interval) has a low communica-
tion overhead, but slowly propagates information. Con-

versely, a small τ has a higher communication overhead,
but propagates more quickly. These two goals, rapid

propagation and low overhead, are fundamentally at odds:

the former requires communication to be frequent, while

the latter requires it to be infrequent.

By dynamically scaling τ , Trickle can use its mainte-
nance algorithm to rapidly propagate updates with a very

small cost. τ has a lower bound, τl, and an upper bound

τh. When τ expires, it doubles, up to τh. When a mote

hears a summary with newer data than it has, it resets τ
to be τl. When a mote hears a summary with older code

than it has, it sends the code, to bring the other mote up

to date. When a mote installs new code, it resets τ to τl,

to make sure that it spreads quickly. This is necessary

Mobile Sensor Networks"
•  We have considered [until now] sensor networks which are fixed."

•  There are however examples in which the sensor networks are
mobile, i.e., the nodes of the networks do not have a fixed position"

•  Example of this are"
–  When sensors are moved through controlled movement "

•  E.g. a sensor robot " " " ""
–  When sensors are attached to moving entities and the mobility is

independent from the sensing activity"
•  E.g. animals or vehicles or humans "

Impact of Mobility"

•  MAC Layer protocols: ""
–  Mobility impacts the protocol of duty cycling as the neighbours of

the nodes are not the same all the time"
–  Adaptation of low power listening protocols are reasonably

suitable"
–  Alternatively, approaches which keep into account periodic

encounter patterns!
•  Routing protocols:"

–  All of a sudden establishing a tree structure does not make
sense any longer"

–  Delay tolerant routing protocols are applicable (on top of duty
cycling approaches)"

Impact of Mobility contʼd"

•  Reprogramming:"
–  Existing solutions target connected fixed networks"
–  Delay tolerant solutions could be applied however some

attention to targeted set of nodes should be applied (eg
reprogram only nodes which go to certain areas) and attention to
avoid useless code broadcasts should be paid."

Mobile WSN  
Reprogramming"

!
"!#$%&!&'!()&$*+!
,-!%)&#'(+!

.)&#'(+!'/!$%0,$1*!#)$(0%2!
)%'(*!'%!&3)0(!4'11$(*!

Whatʼs the best way to distribute
the update?"

•  Flooding? No too expensive

•  These animals are social!
•  These social groups

tend to be stable
over time, and more
importantly, they spend a lot
of time together, regularly

Social Dissemination"
•  Dissemination:

–  use social
characteristics
of the network!

•  Selective update:
–  use the network to

figure
out whom to update

Social Dissemination"

•  Instead of flooding the network, let us try to use the social
characteristics: social groups, social links between nodes, as well as
group leaders;

•  Groups tend to stay connected - perfect for maintenance!
•  Animals do not behave all in the same way - some are more active

than others
–  group leaders: identify leaders, and spread code among them"
–  identify clusters: wait until they come together"
–  let leaders disseminate code using smart broadcasts to their group"

Basic Dissemination"

•  The protocol identifies the social groups, and differentiates
between group leaders and group members based on contact-
history/change degree of connectivity

•  Leaders form the backbone, and deliver the code to the group
•  They then wait until the group becomes connected, and broadcast

the update

5)$6)(*!
7('89*!

:!

;!

<!

=!>!

?!

2-tier network"
Programming Model &

Dissemination"

•  Characterize nodes with attributes describing some changing
environmental condition (eg. temperature)

•  let the user define constraints on the attributes to limit the
dissemination of new code

–  i.e. only update nodes sensing a daily average temperature
below 10 C

•  use social dissemination to disseminate only to target nodes

Summary ""

•  We have illustrated an example of sensor network reprogramming"

•  We have described the differences and challenges of mobile sensor
networks"

References"
•  Levis P., Patel L., Shenker S., Culler D. 2004. Trickle: A Self-Regulating

Algorithm for Code Propagation and Maintenance in Wireless Sensor
Networks. In Proceedings of the First USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI 2004). Pages 15-28."

•  B. Pasztor, L. Mottola, C. Mascolo, G. P. Picco, S. Ellwood and D.
Macdonald. Selective Reprogramming of Mobile Sensor Networks through
Social Community Detection. In Proceedings of 7th European Conference on
Wireless Sensor Networks (EWSN2010). Coimbra, Portugal. February 2010.
Springer."

