Interactive Formal Verification
Course Handouts

Lawrence C Paulson

Interactive Formal Verification consists of 12 lectures and 4 practical
sessions. The handouts for the first two practical sessions will not be as-
sessed. Both handouts contain much more work than can be completed
in an hour. You are not required to do all (indeed any) of the problems
on these handouts, but please do as many of them as you find benefi-
cial for learning. Many more exercises can be found on the Internet, at
http://isabelle.in.tum.de/exercises/. You may use the terminals in SW02
whenever the room has not been booked for another course.

The handouts for the last two practical sessions will be assessed to deter-
mine your final mark (50% each). For each assessed exercise, please complete
the indicated tasks and write a brief document explaining your work. You
may prepare these documents using Isabelle’s theory presentation facility,
but this is not required. A very simple way to print a theory file legibly
is to use the Proof General command Isabelle > Commands > Display
draft. You can combine the resulting output with a document produced
using your favourite word processing package. A clear write-up describing
elegant, clearly structured proofs of all tasks will receive maximum credit.
The document can be quite brief, around two pages, and should explain
strategic decisions that affected the shape of your proof, including some
notes about your experience in completing it.

Isabelle theory files for all four sessions can be downloaded from the
course materials website. These files contain necessary Isabelle declarations
that you can use as a basis for your own work.

The first assessed exercise will be due on Friday, 25 May 2012 and the
second assessed exercise will be due on Friday, 15 June 2012, both at 12
noon. You must work on these assignments as an individual: collaboration
is not permitted.

Please deliver a printed copy of each completed exercise to student ad-
ministration by that deadline, and also send the corresponding theory file
to Ip15Q@Qcam.ac.uk.

http://isabelle.in.tum.de/exercises/
lp15@cam.ac.uk

1 Replace, Reverse and Delete

Define a function replace, such that replace x y zs yields zs with every
occurrence of x replaced by y.

consts replace :: "’a = ’a = ’a list = ’a list"
Prove or disprove (by counterexample) the following theorems. You may
have to prove some lemmas first.

theorem "rev(replace x y zs) = replace x y (rev zs)"
theorem "replace x y (replace u v zs) = replace u v (replace x y zs)"
theorem "replace y z (replace x y zs) = replace x z zs"

Define two functions for removing elements from a list: dell x xs deletes
the first occurrence (from the left) of x in xs, delall x xs all of them.

consts dell :: "’a = ’a list = ’a list"
delall :: "’a = ’a list = ’a list"

Prove or disprove (by counterexample) the following theorems.

theorem "dell x (delall x xs) = delall x xs"

theorem "delall x (delall x xs) = delall x xs"

theorem "delall x (dell x xs) = delall x xs"

theorem "dell x (dell y zs) = dell y (dell x zs)"
theorem "delall x (dell y zs) = dell y (delall x zs)"
theorem "delall x (delall y zs) = delall y (delall x zs)"
theorem "dell y (replace x y xs) = dell x xs"

theorem "delall y (replace x y xs) = delall x xs"
theorem "replace x y (delall x zs) = delall x zs"
theorem "replace x y (delall z zs) = delall z (replace x y zs)"
theorem "rev(dell x xs) = dell x (rev xs)"

theorem "rev(delall x xs) = delall x (rev xs)"

2 Power, Sum

2.1 Power

Define a primitive recursive function pow x n that computes z™ on natural
numbers.

consts
pow :: "nat => nat => nat"

Prove the well known equation z™" = (z")™:

theorem pow_mult: "pow x (m * n) = pow (pow x m) n"

Hint: prove a suitable lemma first. If you need to appeal to associativity
and commutativity of multiplication: the corresponding simplification rules
are named mult_ac.

2.2 Summation

Define a (primitive recursive) function sum ns that sums a list of natural

numbers: sum(ny,...,ng] =ny + - + ng.
consts
sum :: "nat list => nat"

Show that sum is compatible with rev. You may need a lemma.

theorem sum_rev: "sum (rev ns) = sum ns"

Define a function Sum f k that sums f from 0 up to k — 1: Sum f k =
FO+-+ flk—1).
consts
Sum :: "(nat => nat) => nat => nat"
Show the following equations for the pointwise summation of functions. De-

termine first what the expression whatever should be.

theorem "Sum (%i. f i + g i) k = Sum f k + Sum g k"
theorem "Sum f (k + 1) = Sum f k + Sum whatever 1"

What is the relationship between sum and Sum? Prove the following equation,
suitably instantiated.
theorem "Sum f k = sum whatever"

Hint: familiarize yourself with the predefined functions map and [i..<j] on
lists in theory List.

3 Assessed Exercise I:
Verifying a CNF Conversion Function

Many theorem-proving algorithms are based on conjunctive normal form
(CNF). The objective of this exercise is to formalise propositional formu-
las and their semantics, and then to prove that translating a propositional
formula into CNF preserves its semantics while yielding a CNF formula.

More details on these concepts are presented in my Logic and Proof
lecture notes, sections 2.5-2.6 (http://www.cl.cam.ac.uk/teaching/current/
LogicProof/logic-notes.pdf). They are also discussed in ML for the Working
Programmer, and ML code relevant to the solution of this exercise is online
(http://www.cl.cam.ac.uk/~lp15/MLbook /programs/sample4.sml.gz).

Note: This exercise does not require long, complicated proofs. It does
require definitions to be made carefully. Some of the recursive functions are
a little tricky.

Task 1 Declare a datatype pfm of propositional formulas, including a symbol
for false, propositional variables and the connectives of implication, disjunc-
tion, conjunction and negation:

@w :=FALSE | VAR n | ¢ = ¢’ | o V@ | o A9’ | —p

The type of natural numbers can be used to represent the names of proposi-
tional variables.

Task 2 A propositional formula is evaluated with respect to a truth table
(or interpretation) mapping propositional variables to true or false. Define
a function eval to evaluate propositional formulas according to the obvious
semantics of the logical connectives.

consts eval :: "[nat=bool, pfm] => bool"

Task 3 Write a function to convert a propositional formula into negation
normal form (NNF). Prove the following theorem, which states that it pre-
serves the meaning of a formula.

consts nnf :: "pfm = pfm"
lemma eval_nnf: "eval ttab (nnf p) = eval ttab p"

Task 4 Write a function to convert a formula (assumed already to be in
NNF) into CNF. Then, prove that it preserves the meaning of a formula.

http://www.cl.cam.ac.uk/teaching/current/LogicProof/logic-notes.pdf
http://www.cl.cam.ac.uk/teaching/current/LogicProof/logic-notes.pdf
http://www.cl.cam.ac.uk/~lp15/MLbook/programs/sample4.sml.gz

consts nnf2cnf :: "pfm = pfm"
lemma eval_nnf2cnf: "eval ttab (nnf2cnf p) = eval ttab p"

The following steps are then trivial.
definition cnf :: "pfm => pfm"

where "cnf p = nnf2cnf (nnf p)"
theorem eval_cnf: "eval ttab (cnf p) = eval ttab p"
Task 5 Define Isabelle/HOL predicates for the concepts of atoms, literals,

clauses (disjunctions of literals) and CNF' formulas. You could use either
recursion or inductive definitions.

consts
atom :: "pfm = bool"
literal :: "pfm = bool"
clause "pfm = bool"
cnfprop :: "pfm = bool"

Task 6 Prove that your CNF conversion function actually delivers a CNF
formula.

theorem cnfprop_cnf: "cnfprop (cnf p)"

4 Assessed Exercise II: Hereditarily Finite Sets

The hereditarily finite sets are built up recursively, starting with the empty
set, using an operator which inserts an element into a set. Note that sets
and elements have the same type!

definition hempty :: "hf"
definition hinsert :: "hf = hf = hf"

There is also a membership relation on these strange sets.

definition hmem :: "hf = hf = bool"

The membership relation satisfies the following natural properties.

lemma hmem_hempty: "— hmem a hempty"
lemma hmem_hinsert: "hmem a (hinsert b c) «— a =b V hmem a c"

Two sets are equal if and only if they have the same elements.

lemma hf_ext: "a = b «— (Vx. hmem x a «+—— hmem x b)"

Using that crucial property (which is called extensionality), one can easily
prove that the primitive set operators can be characterised by their elements.
lemma hempty_iff:

"z = hempty «— (Vx. — hmem x z)"
by (simp add: hf_ext)

lemma hinsert_iff:
"z = hinsert x y «— (Vu. hmem u z +— hmem u y | u=x)"
by (auto simp add: hf_ext)

Many properties of the hereditarily finite sets can be proved using the fol-
lowing induction rule. (This rule also tells us that every such set is a finite
construction.)
lemma hf_induct [induct type: hf, case_names hempty hinsert]:
assumes [simp]: "P hempty"
"Ax y. [P x; P y; - hmem x y] = P (hinsert x y)"
shows "P z"

You are likely to need this induction rule to prove the existence results below.
Task 1 Prove that insertion operations can be exchanged, as shown below.

lemma hinsert_commute:
"hinsert x (hinsert y z) = hinsert y (hinsert x z)"

Ordered pairs can be defined as shown, where {a, bf} abbreviates hinsert a
(hinsert b hempty).

definition hpair :: "hf = hf = hf"
where "hpair a b = {{a,a},{a,b}}"

Task 2 Prove that ordered pairing is injective.

lemma "hpair a b = hpair a’ b’ «— a=a’ & b=b’"

Task 3 Prove that it is always possible to delete a given element x from
a given set z. (That is, there exists a set u standing for the result of this
deletion.)

lemma deletel:
"hmem x z ==> Ju. hinsert x u = z & — hmem x u"

Task 4 Prove the existence of the union of two given sets x and y.

lemma binary_union: "Jz. Vu. hmem u z «— hmem u x | hmem u y"

Task 5 Prove the existence of the union of given a set X of sets.

lemma union_of_set: "Jz. Vu. hmem u z «— (Jy. hmem y X & hmem u y)"

Task 6 Define the subset relation as shown, and prove the following theo-
rem. (It is useful for proving the existence of power sets.)

definition hsubset :: "hf = hf = bool"
where "hsubset a b «— (Vx. hmem x a — hmem x b)"

lemma hsubset_insert2_iff:
"hsubset z (hinsert x y) «—
hsubset z y V (Ju. hinsert x u = z A — hmem x u A hsubset u y)"

	Replace, Reverse and Delete
	Power, Sum
	Power
	Summation

	Assessed Exercise I: Verifying a CNF Conversion Function
	Assessed Exercise II: Hereditarily Finite Sets

