	_	
1		
+		

Topics in Logic and Complexity Handout 2

Anuj Dawar

MPhil Advanced Computer Science, Lent 2012

Enumerating Queries

For a given structure \mathbb{A} with *n* elements, there may be as many as n! distinct strings $[\mathbb{A}]_{<}$ encoding it.

Given $(M_0, p_0), \ldots, (M_i, p_i), \ldots$ —an enumeration of polynomially-clocked Turing machines.

Can we enumerate a subsequence of those that compute graph properties, i.e. are *encoding invariant*, while including all such properties?

The major open question in *Descriptive Complexity* (first asked by Chandra and Harel in 1982) is whether there is a logic \mathcal{L} such that

for any class of finite structures \mathcal{C} , \mathcal{C} is definable by a sentence of \mathcal{L} if, and only if, \mathcal{C} is decidable by a deterministic machine running in polynomial time.

Formally, we require \mathcal{L} to be a *recursively enumerable* set of sentences, with a computable map taking each sentence to a Turing machine M and a polynomial time bound p such that (M, p) accepts a *class of structures*.

(Gurevich 1988)

Recursive Indexability

We say that P is *recursively indexable*, if there is a recursive set \mathcal{I} and a Turing machine M such that:

- on input $i \in \mathcal{I}$, M produces the code for a machine M(i) and a polynomial p_i
- M(i), accepts a class of structures in P.
- M(i) runs in time bounded by p_i
- for each class of structures $C \in \mathsf{P}$, there is an *i* such that M(i) accepts C.

4

7

Canonical Labelling

We say that a machine M canonically labels graphs, if

- on any input $[G]_{<}$, the output of M is $[G]_{<'}$ for some ordering <'; and
- if $[G]_{<_1}$ and $[G]_{<_2}$ are two encodings of the same graph, then $M([G]_{<_1}) = M([G]_{<_2}).$

It is an open question whether such a polynomial-time machine exists.

If so, then P is recursively indexable, by enumerating machines $M \to M_i$. If not, $P \neq NP$.

Interpretations II

An interpretation of τ in σ maps σ -structures to τ -structures.

- If \mathbb{A} is a σ -structure with universe A, then
- $\pi(\mathbb{A})$ is a structure (B, R_1, \ldots, R_r) with
- $B \subseteq A^k$ is the relation defined by π_U .
- for each i, R_i is the relation on B defined by π_i .

Interpretations

Given two relational signatures σ and τ , where $\tau = \langle R_1, \ldots, R_r \rangle$, and arity of R_i is n_i

A first-order interpretation of τ in σ is a sequence:

 $\langle \pi_U, \pi_1, \ldots, \pi_r \rangle$

of first-order σ -formulas, such that, for some k,:

- the free variables of π_U are among x_1, \ldots, x_k ,
- and the free variables of π_i (for each *i*) are among $x_1, \ldots, x_{k \cdot n_i}$.

k is the width of the interpretation.

Reductions

Given:

- C_1 a class of structures over σ ; and
- C_2 a class of structures over τ
- π is a *first-order reduction* of C_1 to C_2 if, and only if,

 $\mathbb{A} \in C_1 \Leftrightarrow \pi(\mathbb{A}) \in C_2.$

If such a π exists, we say that C_1 is first-order reducible to C_2 .

8

NP-complete Problems

First-order reductions are, in general, much weaker than *polynomial-time reductions*.

Still, there are NP-complete problems under such reductions.

Every problem in NP is first-order reducible to *SAT* (Lovàsz and Gàcs 1977)

CNF-SAT, *Hamiltonicity* and *Clique* are NP-complete via first-order reductions

(Dahlhaus 1984)

But, *3-colourability* is not NP-complete via first-order reductions. (D.-Grädel 1995)

and the question is open for 3SAT.

11

NP-completeness

Consider any ESO sentence ϕ . It can be transformed (by Skolemization) to a sentence

$$\exists R_1 \cdots \exists R_k \, \exists F_1 \cdots \exists F_l (\bigwedge_{i=1}^l \forall \mathbf{x}_i \exists y \, F_i(\mathbf{x}_i, y)) \land \forall \mathbf{y} \, \theta$$

where θ is quantifier-free (in *CNF*).

Now, given a finite structure \mathbb{A} , we construct a *CNF* Boolean formula $\phi_{\mathbb{A}}$ which is satisfiable if, and only if,

 $\mathbb{A} \models \phi$.

CNF-SAT

We formulate the problem CNF-SAT (of deciding whether a Boolean formula in CNF is satisfiable) as a class of structures.

Universe $V \cup C$ where V is the set of variables and C the set of clauses.

Unary Relation V for the set of variables

Binary Relations P(v, c) to indicate that variable v occurs positively in c and N(v, c) to indicate that v occurs negatively in c.

Boolean Formula

The formula $\phi_{\mathbb{A}}$ contains variables $R_i^{\mathbf{a}}$ and $F_j^{\mathbf{a}}$ for every $1 \leq i \leq k$, every $1 \leq j \leq l$ and every tuple **a** of the appropriate length.

$$(\bigwedge_{i=1}^{\iota}\bigwedge_{\mathbf{a}}\bigvee_{a}F_{i}^{\mathbf{a}a})\wedge\bigwedge_{\mathbf{a}}\theta^{\mathbf{a}}$$

The translation $\mathbb{A} \mapsto \phi_{\mathbb{A}}$ can be given by a first-order interpretation.

15

P-complete Problems

If there is any problem that is complete for P with respect to first-order reductions, then there is a logic for P.

If Q is such a problem, we form, for each k, a quantifier Q^k .

The sentence

```
Q^k(\pi_U,\pi_1,\ldots,\pi_s)
```

for a k-ary interpretation $\pi = (\pi_U, \pi_1, \dots, \pi_s)$ is defined to be true on a structure A just in case

 $\pi(\mathbb{A}) \in Q.$

The collection of such sentences is then a logic for P.

Constructing the Complete Problem

Suppose M is a machine which on input $i \in \omega$ gives a pair (M_i, p_i) as in the definition of recursive indexing. Let g a recursive bound on the running time of M.

Q is a class of structures over the signature (V, E, \leq, I) .

 $\mathbb{A} = (A, V, E, \leq, I)$ is in Q if, and only if,

- 1. \leq is a linear pre-order on A;
- 2. if $a, b \in I$, $a \leq b$ and $b \leq a$, i.e. I picks out one equivalence class from the pre-order (say the i^{th});
- 3. $|A| \ge p_i(|V|);$
- 4. the graph (V, E) is accepted by M_i ; and

5. $g(i) \le |A|$.

16

Conversely,

Theorem

If the polynomial time properties of graphs are recursively indexable, there is a problem complete for ${\sf P}$ under first-order reductions.

(D. 1995)

Proof Idea:

Given a recursive indexing $((M_i, p_i)|i \in \omega)$ of P

Encode the following problem into a class of finite structures:

 $\{(i, x) | M_i \text{ accepts } x \text{ in time bounded by } p_i(|x|) \}$

To ensure that this problem is still in P, we need to pad the input to have length $p_i(|x|)$.

Finite Variable Logic

We write L^k for the first order formulas using only the variables x_1, \ldots, x_k .

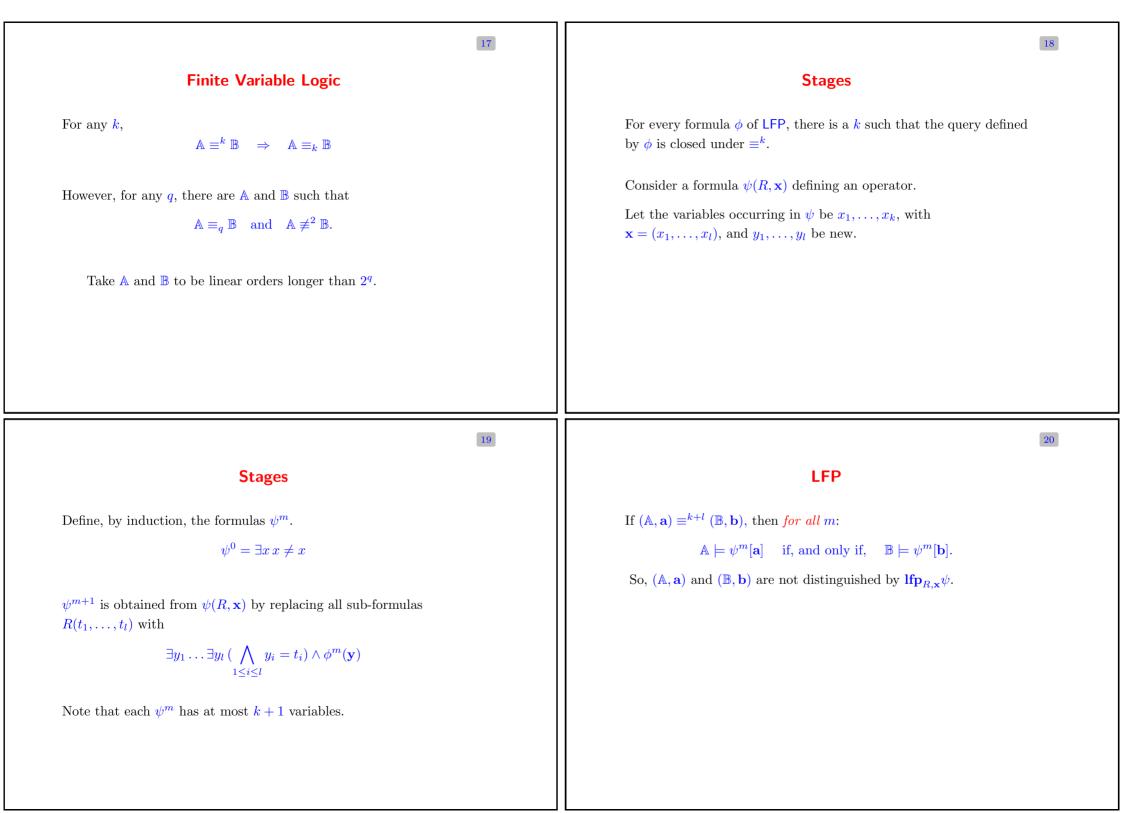
$\mathbb{A}\equiv^k\mathbb{B}$

denotes that A and B agree on all sentences of L^k .

$(\mathbb{A},\mathbf{a})\equiv^k (\mathbb{B},\mathbf{b})$

denotes that there is no formula ϕ of L^k such that $\mathbb{A} \models \phi[\mathbf{a}]$ and $\mathbb{B} \not\models \phi[\mathbf{b}]$

For a tuple **a** in \mathbb{A} , Type^k(\mathbb{A} , **a**) denotes the collection of all formulas $\phi \in L^k$ such that $\mathbb{A} \models \phi[\mathbf{a}]$.



Pebble Games

The k-pebble game is played on two structures \mathbb{A} and \mathbb{B} , by two players—*Spoiler* and *Duplicator*—using k pairs of pebbles $\{(a_1, b_1), \ldots, (a_k, b_k)\}.$

Spoiler moves by picking a pebble and placing it on an element $(a_i \text{ on an element of } \mathbb{A} \text{ or } b_i \text{ on an element of } \mathbb{B}).$

Duplicator responds by picking the matching pebble and placing it on an element of the other structure

Spoiler wins at any stage if the partial map from \mathbb{A} to \mathbb{B} defined by the pebble pairs is not a partial isomorphism

If *Duplicator* has a winning strategy for q moves, then A and B agree on all sentences of L^k of quantifier rank at most q. (Barwise)

Evenness

To show that *Evenness* is not definable in LFP, it suffices to show that:

for every k, there are structures \mathbb{A}_k and \mathbb{B}_k such that \mathbb{A}_k has an even number of elements, \mathbb{B}_k has an odd number of elements and

 $\mathbb{A} \equiv^k \mathbb{B}.$

It is easily seen that *Duplicator* has a strategy to play forever when one structure is a set containing k elements (and no other relations) and the other structure has k + 1 elements.

Using Pebble Games

To show that a class of structures S is not definable in first-order logic:

 $\forall k \; \forall q \; \exists \mathbb{A}, \mathbb{B} \; (\mathbb{A} \in S \land \mathbb{B} \notin S \land \mathbb{A} \equiv_{q}^{k} \mathbb{B})$

Since $\mathbb{A} \equiv_q^q \mathbb{B} \Rightarrow \mathbb{A} \equiv_q \mathbb{B}$, we can ignore the parameter k

To show that S is not closed under any \equiv^k (and hence not definable in LFP):

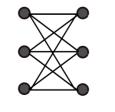
 $\forall k \exists \mathbb{A}, \mathbb{B} \forall q \ (\mathbb{A} \in S \land \mathbb{B} \notin S \land \mathbb{A} \equiv_a^k \mathbb{B})$

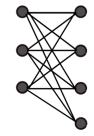
If $\mathbb{A} \equiv_q^k \mathbb{B}$ holds for all q, then *Duplicator* actually wins an *infinite* game. That is, she has a strategy to play forever.

23

Hamiltonicity

Take $K_{k,k}$ —the complete bipartite graph on two sets of k vertices. and $K_{k,k+1}$ —the complete bipartite graph on two sets, one of k vertices, the other of k + 1.





These two graphs are \equiv^k equivalent, yet one has a Hamiltonian cycle, and the other does not.