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Is there a logic for P?

The major open question in Descriptive Complezity (first asked by
Chandra and Harel in 1982) is whether there is a logic £ such that

for any class of finite structures C, C is definable by a
sentence of L if, and only if, C is decidable by a
deterministic machine running in polynomial time.

Formally, we require £ to be a recursively enumerable set of
sentences, with a computable map taking each sentence to a Turing
machine M and a polynomial time bound p such that (M, p)

accepts a class of structures.

(Gurevich 1988)

Enumerating Queries

For a given structure A with n elements, there may be as many as
n! distinct strings [A]< encoding it.

Given (Mo, po), ..., (M, p;),...—an enumeration of
polynomially-clocked Turing machines.

Can we enumerate a subsequence of those that compute graph
properties, i.e. are encoding invariant, while including all such
properties?

Recursive Indexability

We say that P is recursively indezable, if there is a recursive set 7

and a Turing machine M such that:

e on input i € Z, M produces the code for a machine M (i) and a
polynomial p;

e M (i), accepts a class of structures in P.
e M (i) runs in time bounded by p;

e for each class of structures C' € P, there is an ¢ such that M (7)

accepts C.




Canonical Labelling

We say that a machine M canonically labels graphs, if

e on any input [G]., the output of M is [G]: for some ordering
<’s and

o if [G]<, and [G]<, are two encodings of the same graph, then
M([Gl<,) = M([G]<,).

It is an open question whether such a polynomial-time machine

exists.

If so, then P is recursively indexable, by enumerating
machines M — M;.

If not, P # NP.

Interpretations

Given two relational signatures o and 7, where 7 = (Ry,..., R;),
and arity of R; is n;
A first-order interpretation of T in o is a sequence:

<7TU77T1>"'77T7’>
of first-order o-formulas, such that, for some k,:
e the free variables of 7y are among x4, ..., Tk,

e and the free variables of 7; (for each i) are among x1, ..., Zg.pn,-

k is the width of the interpretation.

Interpretations Il

An interpretation of 7 in o maps o-structures to T-structures.

If A is a o-structure with universe A, then
m(A) is a structure (B, Ry, ..., R,) with
e B C AF is the relation defined by 7.

e for each i, R; is the relation on B defined by ;.

Reductions

Given:
e (| — a class of structures over o; and
o (9 — a class of structures over 7

m is a first-order reduction of C7 to Cy if, and only if|

AeCyen(A)els.

If such a 7 exists, we say that C is first-order reducible to Cs.
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NP-complete Problems CNF-SAT
First-order reductions are, in general, much weaker than We formulate the problem CNF-SAT (of deciding whether a
polynomial-time reductions. Boolean formula in CNF is satisfiable) as a class of structures.
Uni V UC where V is the set of variabl d C the set of
Still, there are NP-complete problems under such reductions. niverse WHERE V15 The 56t Of vattables atl ¢sero
clauses.
Every problem in NP is first-order reducible to SAT Unary Relation V' for the set of variables
(Lovasz and Gacs 1977)
_ . _ ) Binary Relations P(v,c¢) to indicate that variable v occurs
CNF-SAT, Hamiltonicity and Clique are NP-complete via . . - .
. positively in ¢ and N (v, ¢) to indicate that v occurs negatively
first-order reductions .
(Dahlhaus 1984) '
But, 3-colourability is not NP-complete via first-order reductions.
(D.-Gradel 1995)
and the question is open for 3SAT.
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NP-completeness

Consider any ESO sentence ¢. It can be transformed (by
Skolemization) to a sentence

l
IRy -+-3R, 3F, - 3F( J\ ¥x:Jy Fi(xi,)) AVy 0
i=1

where 6 is quantifier-free (in CNF).

Now, given a finite structure A, we construct a CNF Boolean
formula ¢, which is satisfiable if, and only if,

Al g

Boolean Formula

The formula ¢, contains variables R? and F Jf“ for every 1 <i <k,

every 1 < j <[ and every tuple a of the appropriate length.

(AAVE A A

=1 a a a

The translation A — ¢4 can be given by a first-order interpretation.
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P-complete Problems Conversely,
If there is any problem that is complete for P with respect to Theorem
first-order reductions, then there is a logic for P. If the polynomial time properties of graphs are recursively
indexable, there is a problem complete for P under first-order
If Q is such a problem, we form, for each k, a quantifier Q. reductions.
The sentence (D. 1995)
Qk(ﬂ-U7ﬂ-17 ey 7T5)
) ) ) Proof Idea:
for a k-ary interpretation m = (7y, 71,...,7s) is defined to be true
on a structure A just in case Given a recursive indexing ((M;, p;)|i € w) of P
Encode the following problem into a class of finite structures:
m(A) € Q.
{(i, )| M; accepts x in time bounded by p;(|z|)}
To ensure that this problem is still in P, we need to pad the input
The collection of such sentences is then a logic for P. to have length p;(|z]).
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Constructing the Complete Problem

Suppose M is a machine which on input i € w gives a pair (M;, p;)
as in the definition of recursive indexing. Let ¢ a recursive bound
on the running time of M.

Q is a class of structures over the signature (V, E, <, I).
A=(AV,E < I)isin Q if, and only if,
1. < is a linear pre-order on A;

2. ifa,be I, a=<band b= a,i.e. I picks out one equivalence class
from the pre-order (say the i*");

3. [Al = pi(IV]);
4. the graph (V| E) is accepted by M;; and
5. g(i) < [A]

Finite Variable Logic

We write L* for the first order formulas using only the variables

Tlyeoey L.

A="B

denotes that A and B agree on all sentences of L*.

(A,a) =" (B,b)
denotes that there is no formula ¢ of L* such that A |= ¢[a] and
B % ¢[b]

For a tuple a in A, Type® (A, a) denotes the collection of all
formulas ¢ € L* such that A = ¢[a].
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Finite Variable Logic Stages
For any £k, For every formula ¢ of LFP, there is a k such that the query defined
A=FB = A=,B by ¢ is closed under =*.
Consider a formula (R, x) defining an operator.
However, for any ¢, there are A and B such that
5 Let the variables occurring in ¥ be z1,...,x, with
A=,B and A#"B.
x = (x1,...,27), and y1, ...,y be new.
Take A and B to be linear orders longer than 29.
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Stages LFP

Define, by induction, the formulas ¢™.

Y =3rr#a

1™+ is obtained from (R, x) by replacing all sub-formulas
R(ty,...,t;) with

Fyi -3 N\ v =t) A" (y)

Note that each ¥ has at most k + 1 variables.

If (A,a) =K (B, b), then for all m:
A=¢™al if, and only if, B ¢™[b].

So, (A,a) and (B,b) are not distinguished by Ifpp 1.
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Pebble Games Using Pebble Games
The k-pebble game is played on two structures A and B, by two To show that a class of structures S is not definable in first-order
players—Spoiler and Duplicator—using k pairs of pebbles logic:
{(a1,b1),..., (ap,bx)}. VkVqIAB (A€ SABEZSAA=B)
Spoiler moves by picking a pebble and placing it on an
element (a; on anelement of A or b; on an element of B). Since A = B = A =, B, we can ignore the parameter &
Duplicator responds by picking the matching pebble and
. To show that S is not closed under any =* (and hence not
placing it on an element of the other structure
definable in LFP):
Spoiler wins at any stage if the partial map from A to B i
definedby the pebble pairs is not a partial isomorphism VEIABYg (A SABZSAA =q B)
If Duplicator has a winning strategy for ¢ moves, then A
and BB agree on all sentences of L* of quantifier rank at If A Elg B holds for all ¢, then Duplicator actually wins an infinite
most g. (Barwise) game. That is, she has a strategy to play forever.
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Evenness Hamiltonicity

To show that Evenness is not definable in LFP, it suffices to show
that:

for every k, there are structures Ay and By such that Ay
has an even number of elements, By has an odd number of
elements and

A =FB.

It is easily seen that Duplicator has a strategy to play forever when
one structure is a set containing k elements (and no other relations)
and the other structure has k + 1 elements.

Take K}, ,—the complete bipartite graph on two sets of k vertices.

and K}, +1—the complete bipartite graph on two sets, one of k
vertices, the other of £+ 1.

These two graphs are =" equivalent, yet one has a Hamiltonian

cycle, and the other does not.




