
1

Topics in Logic and Complexity

Handout 2

Anuj Dawar

MPhil Advanced Computer Science, Lent 2012

2

Is there a logic for P?

The major open question in Descriptive Complexity (first asked by

Chandra and Harel in 1982) is whether there is a logic L such that

for any class of finite structures C, C is definable by a

sentence of L if, and only if, C is decidable by a

deterministic machine running in polynomial time.

Formally, we require L to be a recursively enumerable set of

sentences, with a computable map taking each sentence to a Turing

machine M and a polynomial time bound p such that (M, p)

accepts a class of structures.

(Gurevich 1988)
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Enumerating Queries

For a given structure A with n elements, there may be as many as

n! distinct strings [A]< encoding it.

Given (M0, p0), . . . , (Mi, pi), . . .—an enumeration of

polynomially-clocked Turing machines.

Can we enumerate a subsequence of those that compute graph

properties, i.e. are encoding invariant, while including all such

properties?
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Recursive Indexability

We say that P is recursively indexable, if there is a recursive set I

and a Turing machine M such that:

• on input i ∈ I, M produces the code for a machine M(i) and a

polynomial pi

• M(i), accepts a class of structures in P.

• M(i) runs in time bounded by pi

• for each class of structures C ∈ P, there is an i such that M(i)

accepts C.
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Canonical Labelling

We say that a machine M canonically labels graphs, if

• on any input [G]<, the output of M is [G]<′ for some ordering

<′; and

• if [G]<1
and [G]<2

are two encodings of the same graph, then

M([G]<1
) = M([G]<2

).

It is an open question whether such a polynomial-time machine

exists.

If so, then P is recursively indexable, by enumerating

machines M →Mi.

If not, P 6= NP.
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Interpretations

Given two relational signatures σ and τ , where τ = 〈R1, . . . , Rr〉,

and arity of Ri is ni

A first-order interpretation of τ in σ is a sequence:

〈πU , π1, . . . , πr〉

of first-order σ-formulas, such that, for some k,:

• the free variables of πU are among x1, . . . , xk,

• and the free variables of πi (for each i) are among x1, . . . , xk·ni
.

k is the width of the interpretation.
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Interpretations II

An interpretation of τ in σ maps σ-structures to τ -structures.

If A is a σ-structure with universe A, then

π(A) is a structure (B,R1, . . . , Rr) with

• B ⊆ Ak is the relation defined by πU .

• for each i, Ri is the relation on B defined by πi.
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Reductions

Given:

• C1 – a class of structures over σ; and

• C2 – a class of structures over τ

π is a first-order reduction of C1 to C2 if, and only if,

A ∈ C1 ⇔ π(A) ∈ C2.

If such a π exists, we say that C1 is first-order reducible to C2.
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NP-complete Problems

First-order reductions are, in general, much weaker than

polynomial-time reductions.

Still, there are NP-complete problems under such reductions.

Every problem in NP is first-order reducible to SAT

(Lovàsz and Gàcs 1977)

CNF-SAT, Hamiltonicity and Clique are NP-complete via

first-order reductions

(Dahlhaus 1984)

But, 3-colourability is not NP-complete via first-order reductions.

(D.-Grädel 1995)

and the question is open for 3SAT.
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CNF-SAT

We formulate the problem CNF-SAT (of deciding whether a

Boolean formula in CNF is satisfiable) as a class of structures.

Universe V ∪ C where V is the set of variables and C the set of

clauses.

Unary Relation V for the set of variables

Binary Relations P (v, c) to indicate that variable v occurs

positively in c and N(v, c) to indicate that v occurs negatively

in c.
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NP-completeness

Consider any ESO sentence φ. It can be transformed (by

Skolemization) to a sentence

∃R1 · · · ∃Rk ∃F1 · · · ∃Fl(
l∧

i=1

∀xi∃y Fi(xi, y)) ∧ ∀y θ

where θ is quantifier-free (in CNF).

Now, given a finite structure A, we construct a CNF Boolean

formula φA which is satisfiable if, and only if,

A |= φ.
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Boolean Formula

The formula φA contains variables Ra

i and F a

j for every 1 ≤ i ≤ k,

every 1 ≤ j ≤ l and every tuple a of the appropriate length.

(
l∧

i=1

∧

a

∨

a

F aa
i ) ∧

∧

a

θa

The translation A 7→ φA can be given by a first-order interpretation.
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P-complete Problems

If there is any problem that is complete for P with respect to

first-order reductions, then there is a logic for P.

If Q is such a problem, we form, for each k, a quantifier Qk.

The sentence

Qk(πU , π1, . . . , πs)

for a k-ary interpretation π = (πU , π1, . . . , πs) is defined to be true

on a structure A just in case

π(A) ∈ Q.

The collection of such sentences is then a logic for P.
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Conversely,

Theorem

If the polynomial time properties of graphs are recursively

indexable, there is a problem complete for P under first-order

reductions.

(D. 1995)

Proof Idea:

Given a recursive indexing ((Mi, pi)|i ∈ ω) of P

Encode the following problem into a class of finite structures:

{(i, x)|Mi accepts x in time bounded by pi(|x|)}

To ensure that this problem is still in P, we need to pad the input

to have length pi(|x|).
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Constructing the Complete Problem

Suppose M is a machine which on input i ∈ ω gives a pair (Mi, pi)

as in the definition of recursive indexing. Let g a recursive bound

on the running time of M .

Q is a class of structures over the signature (V,E,�, I).

A = (A, V,E,�, I) is in Q if, and only if,

1. � is a linear pre-order on A;

2. if a, b ∈ I, a � b and b � a, i.e. I picks out one equivalence class

from the pre-order (say the ith);

3. |A| ≥ pi(|V |);

4. the graph (V,E) is accepted by Mi; and

5. g(i) ≤ |A|.
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Finite Variable Logic

We write Lk for the first order formulas using only the variables

x1, . . . , xk.

A ≡k
B

denotes that A and B agree on all sentences of Lk.

(A, a) ≡k (B,b)

denotes that there is no formula φ of Lk such that A |= φ[a] and

B 6|= φ[b]

For a tuple a in A, Typek(A, a) denotes the collection of all

formulas φ ∈ Lk such that A |= φ[a].
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Finite Variable Logic

For any k,

A ≡k
B ⇒ A ≡k B

However, for any q, there are A and B such that

A ≡q B and A 6≡2
B.

Take A and B to be linear orders longer than 2q.
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Stages

For every formula φ of LFP, there is a k such that the query defined

by φ is closed under ≡k.

Consider a formula ψ(R,x) defining an operator.

Let the variables occurring in ψ be x1, . . . , xk, with

x = (x1, . . . , xl), and y1, . . . , yl be new.
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Stages

Define, by induction, the formulas ψm.

ψ0 = ∃xx 6= x

ψm+1 is obtained from ψ(R,x) by replacing all sub-formulas

R(t1, . . . , tl) with

∃y1 . . .∃yl (
∧

1≤i≤l

yi = ti) ∧ φ
m(y)

Note that each ψm has at most k + 1 variables.
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LFP

If (A, a) ≡k+l (B,b), then for all m:

A |= ψm[a] if, and only if, B |= ψm[b].

So, (A, a) and (B,b) are not distinguished by lfpR,xψ.
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Pebble Games

The k-pebble game is played on two structures A and B, by two

players—Spoiler and Duplicator—using k pairs of pebbles

{(a1, b1), . . . , (ak, bk)}.

Spoiler moves by picking a pebble and placing it on an

element (ai on anelement of A or bi on an element of B).

Duplicator responds by picking the matching pebble and

placing it on an element of the other structure

Spoiler wins at any stage if the partial map from A to B

definedby the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for q moves, then A

and B agree on all sentences of Lk of quantifier rank at

most q. (Barwise)

22

Using Pebble Games

To show that a class of structures S is not definable in first-order

logic:

∀k ∀q ∃A,B (A ∈ S ∧ B 6∈ S ∧ A ≡k
q B)

Since A ≡q
q B ⇒ A ≡q B, we can ignore the parameter k

To show that S is not closed under any ≡k (and hence not

definable in LFP):

∀k ∃A,B ∀q (A ∈ S ∧ B 6∈ S ∧ A ≡k
q B)

If A ≡k
q B holds for all q, then Duplicator actually wins an infinite

game. That is, she has a strategy to play forever.

23

Evenness

To show that Evenness is not definable in LFP, it suffices to show

that:

for every k, there are structures Ak and Bk such that Ak

has an even number of elements, Bk has an odd number of

elements and

A ≡k
B.

It is easily seen that Duplicator has a strategy to play forever when

one structure is a set containing k elements (and no other relations)

and the other structure has k + 1 elements.
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Hamiltonicity

Take Kk,k—the complete bipartite graph on two sets of k vertices.

and Kk,k+1—the complete bipartite graph on two sets, one of k

vertices, the other of k + 1.

These two graphs are ≡k equivalent, yet one has a Hamiltonian

cycle, and the other does not.


