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Here are the exercises for the ML Practical Classes. These classes complement the
Foundations of Computer Science Lectures given by L.C. Paulson.

Exercises 1, 2, 3, 4 and 5 are compulsory for all candidates and each of them is worth
one tick. Exercise 6 is compulsory for CST candidates but not for candidates who borrow
Paper 1. Exercises 2*, 3*, 4* (yes, it’s there!) and 5* are optional. Satisfactory solutions
to starred exercises will be recorded on the Tick List but will not count as extra ticks. Each
exercise is assessed on the basis of printouts of sessions and programs which are submitted
to a demonstrator who will comment on them. You must keep marked exercises after they
are returned to you, because every Part IA student is required to submit “a portfolio of
assessed laboratory work” (ML, Java, and Hardware if applicable) in Easter Term.

In addition to learning about the ML language and its implementation, it will be
necessary to learn how to use the current generation of workstations. All these skills
and full details of the assessment procedure will be explained at the first two Thursday-
afternoon classes.

Another point which will be explained is the style to which the submitted printouts
must conform. Thus, each printout should carry the name of the person who submitted
it, the time it took to complete the exercise, any functions which an exercise requires to
be written, and examples of such functions being tested.

No exercise requires elaborate written answers. Questions like ‘What is the purpose of
. . .?’ require a one- or two-line ML comment. Before awarding a tick, the demonstrator
will go over the printout of the session with you, to see whether you can explain ML’s
responses, and understand what is going on.

On the basis of past experience, roughly the same number of people will find the
exercises too easy as find them too hard. Likewise, roughly the same number of people
are likely to find that the exercises take a very short time as find they take too much time.
The average time spent on each weekly exercise is approximately three hours but times
wildly different from this average may be expected!

Due to a timetable change introduced in October 2010, these exercises now concern
material that will often not have been lectured by the time they are given to students.
To compensate for this situation, we have added explanations and simplified some of the
problems. If however you find a problem impossible to understand, you may prefer to
leave it for the following week. It is not essential to solve each exercise on the day that
is given out. The final deadline for handing in exercises is in Lent term, and it will be
announced to all students.

Other (non-assessable) problems will be presented in the Lectures and these should be
attempted, especially by those who find the exercises in this document too easy. Those who
find they have time on their hands may also usefully study details of the local computing
facilities. The Computing Service have a good deal of documentation available and also
run classes, both introductory and more advanced, on many topics.

L.C. Paulson, Course Lecturer

M.G. Kuhn, Part IA Coordinator

October 2011



Exercise 1 — Introduction to ML

Full details of what constitutes a solution to this exercise will be explained at the
first Thursday-afternoon class. There will be an associated handout which gives an exact
specification of what is required. The purpose of the exercise is to learn how to log in to
a workstation, invoke the ML application, print out a trivial example, and exit again.

Remember to type each line exactly as given and press the ENTER (or RETURN) key
at the end of the line.

After logging in, enter Windows and then enter ML.
ML will print various messages, then signal that it is ready by printing a line containing

just a hyphen (called the prompt character):

- type ML text here . . .

Now type each of the following lines, one at a time. Use small letters as shown — ML
considers x to be different from X. For aesthetic reasons and as explained in the associated
handout, it is a requirement that the ENTER key should also be pressed before each line
to ensure that the typed lines and responses appear in vertically-separated pairs.

val x = 0.1;
val y = x + x;
val z = y + y;
2.0 - z - z - y;
2.0 - x - x - x - x - x - x - x - x - x - x;

ML should respond to each line with, e.g., > val x = 0.1 : real. It should print
a prompt character on the next line to say it is ready for a new command. If you make
a typing error, ML will probably print an error message and then a prompt character.
However, certain errors will cause ML to expect another line of input. ML signals this by
printing an equals sign instead of a hyphen:

- val y = x + ENTER was pressed too early . . .
= ... so ML continues reading

If you get stuck like this, it may be possible to recover by typing the missing character.

Remark: This exercise is designed for Cambridge ML, which we use in our practical
sessions. The output you see may vary for other versions of ML. If you are attempting this
exercise with a different version of ML, or are merely feeling adventurous, you might want
to enter the following additional line:

1.0 - x - x - x - x - x - x - x - x - x - x;

This exercise shows how ML can be used as a calculator. Variables (such as x, y, and
z) can be defined and used. (If you are experienced with another programming language,
note that these variables behave differently from those that you are familiar with!) You
will see that machine arithmetic is not always exact. Can you explain why?



Exercise 2 — Recursive Functions

You may wish to limber up for this exercise by performing numerical calculations using
ML, as in last week’s exercise. If you write numerical constants that include decimal points,
and use the familiar arithmetic operators (+ - * /), then ML will perform floating point
arithmetic resembling that done by calculators. If you write integer constants (no decimal
points), then ML will perform exact integer arithmetic; the operators div and mod yield
integer quotient and remainder, respectively.

A mathematical formula is often expressed in the form of a function. For example, a
mathematician might express the formula for the area of a triangle, xy/2 as the function
definition

area(x, y) = xy/2.

We can define a similar function in ML by typing

fun area (x,y) = x*y/2.0;

and now we can calculate the areas of particular triangles by typing expressions like

area(3.5, 4.0);

1. Enter this function definition and demonstrate it by calculating some areas of triangles,
as shown above. (Decimal points are essential. Can you see why area(3,4); doesn’t
work?)

Mathematical function definitions are often recursive. The well-known factorial func-
tion, n!, is defined by 0! = 1 and (for n > 0)

n! = n× (n− 1)!

Even this can easily be defined in ML:

fun fact n = if n=0 then 1 else n * fact(n-1);

It specifies a computation that, given n, tests whether n = 0 or not, and in the latter case,
calls itself with the value n− 1.

2. Now consider the following recursive definition of the number 2 raised to a power:

20 = 1 2n = 2× 2n−1 (for n > 0)

Write the analogous definition of this function in ML. Demonstrate your function with
several different values of n.



Exercise 2* — Recursive Functions Continued

Note that although the following Week 2 problems will not count towards a ‘tick’ it is a
very good idea to attempt them before Week 3.

Remark: The function real converts an integer to a real number. The function floor
converts a real number x to the largest integer i such that i 6 x. These functions will be
useful in the examples below, which involve both integer and real calculations.

1. Write an ML function sumt(n) to sum the n terms

1 +
1
2

+
1
4

+ · · ·+ 1
2n−1

for n > 0. When n = 2 the sum is 1
20 + 1

21 , namely 1.5.
Observe that each term can be cheaply computed from its predecessor. A fancy treat-

ment of this is to consider the slightly more general function

f(x, n) = x +
x

2
+

x

4
+ · · ·+ x

2n−1

This function satisfies the recursive definition (for n > 0)

f(x, n) = x + f(x/2, n− 1).

2. Write an ML function eapprox(n) to sum the n terms in the approximation

e ≈ 1 +
1
1!

+
1
2!

+ · · ·+ 1
(n− 1)!

Again, each term can be cheaply computed.

3. Write an ML function exp(z,n) to compute exponentials:

ez ≈ 1 +
z

1!
+

z2

2!
+ · · ·+ zn−1

(n− 1)!



Exercise 3 — Structured Data: Pairs and Lists

Before working the questions, try some simple experiments with structured data. Start
ML and define the following selector functions:

fun fst (x,y) = x;
fun snd (x,y) = y;

To experiment with them, type declarations like

val p = ("red",3);
val q = (p, "blue");
val r = (q, p);
val s = ((23,"grey"), r);

and then type things like

fst (fst q); fst (fst p); fst(snd s);

Structures can contain functions. Try some examples like these:

val u = (fst,snd);
fst(u)(1,2);

Note: Triples are not pairs! Compare ML’s response to each of the following:

fst((1,2),3); fst(1,2,3);

Lists in ML are written inside square brackets, e.g. [1,2,3] is a list consisting of
elements 1, 2 and 3. The empty list, [], has no elements. Lists are built (“constructed”)
using a constructor called cons. We write cons as :: between its arguments, e.g. 1::[2,3]
constructs the list [1,2,3]. Try a few examples:

val x = [1,2,3];
val y = 4::5::[8,9];
val z = 4::5::x;
val q = "red"::"green"::[];

Note: All elements in a list must have the same type! Observe ML’s response to each of
the following. Remember that 1.0 is a real and 2 is an int.

["orange",1,2]; 1.0::[2];

Lists are taken apart using functions hd and tl, respectively called head and tail. The
function hd returns the first element of a non-empty list and the function tl returns a
list consisting of all elements following the first element. Try these by typing in a few
examples:

val x = hd [1,2,3];
val y = tl [1,2,3];
val z = hd (5::[]);
val q = tl [1];

The function null tests whether or not a given list is empty. Writing null mylist is
more general and efficient (for a number of obscure reasons) than writing mylist = [].

We can define functions that operate over lists using hd and tl. Experiment with the
following functions: length(xs) returns the length of list xs, sum(xs) returns the sum of
all element in list xs and take(xs,n) returns a list consisting of the first n elements of
list xs.



fun length(xs) = if null xs then 0 else 1 + length(tl xs);
fun sum(xs) = if null xs then 0 else (hd xs) + sum(tl xs);
fun take(xs,n) = if n = 0 then [] else (hd xs) :: take(tl xs, n-1);

Experiment with these definitions on a few inputs:

val l = length [1,2,3];
val s = sum [5,6,7];
val xs = take ([7,6,5,4,3], 3);

Note: Lists can contain structured data, e.g. pairs of numbers [(1,2),(4,5),(8,9)] and
functions can be defined for these similarly:

fun prod(i,j) = i * j : int;
fun sum_prod(xs) = if null xs then 0 else prod (hd xs) + sum_prod(tl xs);

Try this function on sample inputs, e.g. enter the following into ML:

val p = sum prod [(1,2),(3,3)];

Do the following tasks to complete this Exercise:

1. The function hd returns the first element of a list. Getting at the last element is
harder. Write a recursive function last to return the last element of a list. For example,
on input [1,2,3], your function last should return 3.

2. Now do the same thing for tl: write a recursive function butLast to remove the last
element of a list. For example, butLast[1,2,3,4] should return [1,2,3]. Note that
butLast(xs) should return [] if the list xs has length 1.

3. Write a function nth such that nth(xs,n) returns the nth element of list xs, counting
the head of the list as element zero.



Exercise 3* — List of Lists

Write a function choose(k,xs) that returns all k-element lists that can be drawn from
xs, ignoring the order of list elements. If n is the length of xs, then (provided k 6 n) the
result should be an

(
n
k

)
-element list. Here are some sample inputs and outputs

- choose (3, [1,2]);
> [] : (int list) list

- choose (3, [1,2,3]);
> [[1,2,3]] : (int list) list

- choose (3, [1,2,3,4,5]);
> [[1,2,3],[1,2,4],[1,2,5],[1,3,4],[1,3,5],[1,4,5],[2,3,4],

[2,3,5],[2,4,5],[3,4,5]] : (int list) list

Note: It might be useful to first define two auxiliary functions: a function which adds a
specific element to all list in a list:

- allcons (6, [[1,2,3],[2],[]]);
> [[6,1,2,3],[6,2],[6]] : (int list) list

and a function which concatenates two lists (of lists) together:

- append ([[1],[2,3]],[[],[4,5,6]])
> [[1],[2,3],[],[4,5,6]] : int list



Exercise 4 — Route Finding

This problem is concerned with finding routes through a system of one-way streets.
Suppose we have an ML list of pairs

[(x1, y1), . . . , (xn, yn)]

where each (xi, yi) means that there is a route from xi to yi. (This need not mean there
is a route from yi to xi!) The exercises on this sheet lead up to a program for producing
the list of all pairs (x, y) such that there is a route from x to y involving one or more steps
from the input list. (So do not include (x, x) unless there is a non-trivial route from x
back to itself.)

1. Write a function startpoints(pairs,z) that produces the list of all x such that
(x, z) is in the list pairs. For example, startpoints ([(1,2), (2,3), (2,1)], 2)
should yield [1].

2. Write a function endpoints(z,pairs) that produces the list of all y such that (z, y)
is in the list pairs. For example, endpoints ([(1,2), (2,3), (2,1)], 2) should yield
[3,1].

3. Write a function allpairs(xs,ys) that produces the list of all (x, y) for x in the list
xs and y in the list ys.

4. Call a list of pairs complete if whenever (x, z) and (z, y) are in the list, then (x, y) is also
in the list. (The empty list is trivially complete.) Write a function addnew((x,y),pairs),
where you may assume the list pairs to be complete. The result should be a new list
containing (x, y), the elements of pairs, and just enough additional pairs to make the
result list complete.

Hint : This function should not use recursion, but should concatenate lists generated
with the help of the functions startpoints, endpoints, and allpairs. Note that the
new segment (x, y) can create new paths in three different ways: as a first or last step of
a path or somewhere inside.

5. Write a function routes(pairs) that produces a list of all (x, y) such that there is
a route from x to y via the pairs (which you should not assume to be complete). The
result of the function should be a complete list of pairs. Hint : let addnew do all the work.

For example, routes [(1,2), (2,3), (2,1)] should yield [(1,2), (2,2), (1,3),
(1,1), (2,3), (2,1)].

Mathematicians may like to know that this problem is concerned with the transitive
closure of a relation. A list of pairs represents the finite relation R that holds just between
those pairs (xi, yi) in the list. The transitive closure of R is another relation R+, and
R+(x, y) holds just when there is a chain from x to y along R.

A reasoned derivation of the the cost of the routes function, expressed in big-O nota-
tion, will count as Exercise 4*.



Exercise 5 — Functions as Arguments and Results; Integer Streams

In ML, functions can be given as input and can be returned as results from functions.
For example, the function twice takes a function f as its first argument and applies f
twice to the second argument, x.

fun twice (f,x) = f (f x);

The fn construct lets us express a function in-place; for example, fn i=>i+5 denotes the
function that returns i+5 when applied to i. Try using twice with that function:

twice (fn i=>i+5, 3);

If we code twice as shown below, then instead of taking a pair of arguments, it takes
simply the argument f and returns a function that applies f twice to its argument.

fun twice f = (fn x => f (f x));

Compare the type of this version of twice with that of the previous version. Can you
explain why the following expression evaluates to 11?

twice (twice (twice (fn i=>i+1))) 3;

Do the following tasks to complete this Exercise:

1. If f is a function and n > 0 is an integer then the function fn is defined as follows:

fn(x) = f(f(· · · f(︸ ︷︷ ︸
n times

x) · · · ))

In particular, f0(x) = x.
Given that s is the function such that s(x) = x+1 (i.e. it simply adds 1 to its argument),

we can express the sum of two non-negative integers m and n as m + n = sn(m) (i.e. 1 is
added to m but n times over).

Express the product m × n and power mn similarly. Hint : Consider what has to
repeated n times over to obtain m × n and what has to repeated n times over to obtain
mn. Note that the functions that are analogous to s(x) may have to depend upon m.

2. Write an ML function nfold such that nfold(f,n) returns the function fn. Use nfold
to write functions to compute sums, products and powers.

3. Here is a definition of integer streams (infinite lists). Calling makeints(n) makes
the stream of all integers starting with n; note its use of fn()=>exp to create a function
which expects () as input before evaluating expression exp, i.e. fn()=> is used to delay
evaluation of exp. Calling tail(s) applies this function to the dummy value (), which
prompts evaluation to happen.

datatype stream = Cons of int * (unit -> stream);
fun tail (Cons(i,xf)) = xf();
fun makeints n = Cons(n, fn()=> makeints(n+1));

Test makeints by typing

makeints 4;
tail it;

Demonstrate that typing tail it; again and again reveals successive items in the stream.
(Recall that it always holds the value of the last top-level expression.)

4. Write a function nth(s,n) to return the nth element of sequence s. For example,
nth(makeints 1, 100) should return 100. Make the stream of positive squares (1, 4, 9,
. . .) and find its 49th element.



Exercise 5* — Integer Streams Continued

Before undertaking this exercise, you may wish to wait until the corresponding lectures
have been delivered.

1. Write a function map2 f xs ys, similar to maps, to take streams x1, x2, x3, . . . and
y1, y2, y3, . . . and return the stream f(x1)(y1), f(x2)(y2), f(x3)(y3), . . .

2. The Fibonacci Numbers are defined as follows: F1 = 1, F2 = 1, and Fn+2 = Fn+Fn+1.
So new elements of the sequence are defined in terms of two previous elements. If ML lists
were streams then we could define the steam of Fibonacci Numbers (in pseudo-ML) as
follows:

val fibs = 1 :: 1 :: (map2 plus fibs (tail fibs));

Here plus m n = m+n, and two copies of fibs recursively appear in the definition of
this stream. But this code is not legal; we have to use Cons. We also have to force fibs
into a function, since in ML only functions can be recursive. So the following is legal:

fun fibs() =
Cons(1, fn()=>

Cons(1, fn()=> map2 plus (fibs()) (tail(fibs())) ));

Use this code to compute the fifteenth Fibonacci Number.

3. Write a function merge(xs,ys) that takes two increasing streams, x0 < x1 < x2 < . . .
and y0 < y1 < y2 < . . ., and returns the increasing stream containing all the x’s and y’s.
Since the input streams are increasing, you need to compare their heads, take the smaller
one, and recursively merge whatever remains. Make certain there are no repeated elements
in the output stream.

4. Construct in ML the increasing stream containing all numbers of the form 2i × 3j for
integers i, j > 0. Hint : The first element is 1, and each new element can be obtained by
multiplying some previous element by 2 or 3. The code is similar to fibs, and calls merge.

5. Construct the increasing stream of all numbers of the form 2i × 3j × 5k for integers i,
j, k > 0. What is the sixtieth element of this stream?



Exercise 6 — Vacation Task

The concluding Tick 6 exercise is the subject of a separate handout which will be
issued later in the term. As noted on the front page, this exercise is compulsory for
CST candidates but not for candidates who borrow Paper 1, though such candidates are
welcome to try it.


