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Aims

» To familiarise students with
— Combinational logic circuits
— Sequential logic circuits

— How digital logic gates are built using
transistors

— Design and build of digital logic systems

Course Structure

11 Lectures

» Hardware Labs
— 6 Workshops
— 7 sessions, each one 2.5h, alternate weeks
— Thu. 10.00 or 2.00 start, beginning week 3
—In Intel Lab. (SW11), William Gates
Building
— In groups of 2
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Obijectives

At the end of the course you should

— Be able to design and construct simple
digital electronic systems

— Be able to understand and apply Boolean
logic and algebra — a core competence in
Computer Science

— Be able to understand and build state
machines

Books

« Lots of books on digital electronics, e.g.,

— D. M. Harris and S. L. Harris, ‘Digital Design
and Computer Architecture,” Morgan Kaufmann,
2007.

— R. H. Katz, ‘Contemporary Logic Design,’
Benjamin/Cummings, 1994.

—J. P. Hayes, ‘Introduction to Digital Logic
Design,” Addison-Wesley, 1993.

 Electronics in general (inc. digital)

— P. Horowitz and W. Hill, ‘The Art of Electronics,’
CUP, 19809.
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Other Points

This course is a prerequisite for

— ECAD (Part IB)

— VLSI Design (Part II)

Keep up with lab work and get it ticked.

Have a go at supervision questions plus
any others your supervisor sets.

Remember to try questions from past
papers

Semiconductors to Computers

* Increasing levels of complexity
— Transistors built from semiconductors
— Logic gates built from transistors
— Logic functions built from gates
— Flip-flops built from logic
— Counters and sequencers from flip-flops
— Microprocessors from sequencers
— Computers from microprocessors




Semiconductors to Computers

* Increasing levels of abstraction:
— Physics
— Transistors
— Gates
—Logic
— Microprogramming (Computer Design Course)
— Assembler (Computer Design Course)
— Programming Languages (Compilers Course)
— Applications

Combinational Logic
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Introduction to Logic Gates

» We will introduce Boolean algebra and
logic gates

» Logic gates are the building blocks of
digital circuits

Logic Variables

« Different names for the same thing
— Logic variables
— Binary variables
— Boolean variables

« Can only take on 2 values, e.g.,
— TRUE or False
— ON or OFF
—1lor0O
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Logic Variables

* In electronic circuits the two values can
be represented by e.g.,
— High voltage fora 1
— Low voltage fora 0

» Note that since only 2 voltage levels are
used, the circuits have greater immunity
to electrical noise

Uses of Simple Logic

« Example — Heating Boiler
— If chimney is not blocked and the house is cold
and the pilot light is lit, then open the main fuel
valve to start boiler.
b = chimney blocked
¢ = house is cold
p = pilot light lit
v = open fuel valve
— So in terms of a logical (Boolean) expression
v=(NOT b) AND ¢ AND p




Logic Gates

 Basic logic circuits with one or more
inputs and one output are known as
gates

» Gates are used as the building blocks in
the design of more complex digital logic
circuits

Representing Logic Functions

* There are several ways of representing
logic functions:
— Symbols to represent the gates
— Truth tables
— Boolean algebra

» We will now describe commonly used
gates
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NOT Gate
Symbol Truth-table Boolean
a y aly y=a
4[><P 0|1
110

A NOT gate is also called an ‘inverter
yis only TRUE if ais FALSE

implies that it as an inverting (or
complemented) output

Circle (or ‘bubble’) on the output of a gate

AND Gate
Symbol Truth-table Boolean
ably y=ab
a Y
b:D—y 000
0110
10(0
11(1

« yisonly TRUE only if ais TRUE and b is

TRUE

» In Boolean algebra AND is represented by

adot .
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OR Gate
Symbol Truth-table Boolean
ably y=a+b
a |V
bDy 000
011
10(1
1111

* yis TRUE ifais TRUE or b is TRUE (or
both)

* In Boolean algebra OR is represented by
a plus sign +

EXCLUSIVE OR (XOR) Gate

Symbol Truth-table Boolean
ably y=a®b
a Y
bj}D—y 0010
011
10(1
111(0

yis TRUE if ais TRUE or b is TRUE (but
not both)

In Boolean algebra XOR is represented by
an @ sign

06/07/2011
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NOT AND (NAND) Gate

Symbol Truth-table Boolean
ably y=ab
a
b:Dy 001
011
101
1110

* yis TRUE if ais FALSE or b is FALSE (or
both)

» yis FALSE only ifais TRUE and b is
TRUE

NOT OR (NOR) Gate

Symbol Truth-table Boolean
ably y=a+b
a
bj)wy 00(1
0110
10(0
111(0

» yis TRUE only if ais FALSE and b is
FALSE

» yis FALSE if ais TRUE or b is TRUE (or
both)

06/07/2011
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Boiler Example

« If chimney is not blocked and the house is
cold and the pilot light is lit, then open the
main fuel valve to start boiler.

b = chimney blocked ¢ = house is cold
p = pilot light lit v = open fuel valve

b
C — v=Db.c.
p—‘} :

Boolean Algebra

* |n this section we will introduce the laws
of Boolean Algebra

» We will then see how it can be used to
design combinational logic circuits

« Combinational logic circuits do not have
an internal stored state, i.e., they have
no memory. Consequently the output is
solely a function of the current inputs.

 Later, we will study circuits having a
stored internal state, i.e., sequential
logic circuits.
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Boolean Algebra

OR AND
a+0=a a.0=0
a+a=a da=a4a
a+l=1 al=a
a+a=1 aa=0

» AND takes precedence over OR, e.g.,
ab+cd=(ab)+(cd)

Boolean Algebra

« Commutation
a+b=b+a
ab=ba

« Association
a+b)+c=a+(b+c)
ab).c=a.(b.c)

e Distribution
a®+c+”):mby{a%+”.
a+(bc...)=(a+b).(a+c).... NEW

« Absorption
a+(ac)=a NEW
a(a+c)=a NEW

06/07/2011
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Boolean Algebra - Examples

Show

a(a+b)=ab
a(a+b)=aa+ab=0+ab=ab

Show

a+(ab)=a+b
a+(ab)=(a+a).(a+b)=1(a+b)=a+b

Boolean Algebra

» A useful technique is to expand each
term until it includes one instance of each
variable (or its compliment). It may be
possible to simplify the expression by
cancelling terms in this expanded form
e.g., to prove the absorption rule:

a+ab=a

=

ab+ab+ah=ab+ab=a(+b)=al=a

06/07/2011
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Boolean Algebra - Example
Simplify

XY+ Y.Z+XZ+XY.Z
XY.Z+XY.Z+XY.Z+XY.Z+XY.Z+XY.Z+X.Y.Z
XY.Z+XY.Z+XY.Z+X.y.Z
X.Y.(2+2)+Yy.2.(X+ X)

Xy.l+y.zl

XY+ Y.z

DeMorgan’s Theorem

a+b+c+ ...=abc. ...

abc. ...=a+b+c+ ...

 In a simple expression like a+b+c (or ab.c)

simply change all operators from OR to
AND (or vice versa), complement each
term (put a bar over it) and then
complement the whole expression, i.e.,
a+b+c+...=abwc. ...

abc. ...=a+b+c+ ...
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DeMorgan’s Theorem

* For Zivariablies we can show a+b=ab
and ab=a+b using a truth table.

aba+b ab ab ab a+b

00 1 1 11 1 1

1 0 1 10 0 1

0O 0 1 01 0 1
11 0 0 00 O O

« Extending to more variables by induction

a+b+c=(a+b)c=(ab)c=abc

DeMorgan’s Examples

» Simplify ab +a.(b+c)+b.(b+c)

=ab +ab.c+bb.c (DeMorgan)
=ab+abc (b.b=0)
=ab (absorbtion)

06/07/2011
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DeMorgan’s Examples

 Simplify (ab.(c+b.d)+ab).cd
=(ab.(c+b+d)+a+b)cd (DeMorgan)
=(abc+abb+abd+a+b)cd  (distribute)
=(abc+abd+a+b)cd (abb=0)
=abcd+abd.cd+acd+b.ecd  (distribute)
=ab.cd+a.cd+b.cd (ab.d.cd =0)
=(ab+a+b)cd (distribute)
=(ab+ab)cd (DeMorgan)

=cd (ab+ab=1)

DeMorgan’s in Gates

« To implement the function f =ab+cd we
can use AND and OR gates

a
b

c
d

« However, sometimes we only wish to
use NAND or NOR gates, since they
are usually simpler and faster

06/07/2011

17



DeMorgan’s in Gates

» To do this we can use ‘bubble’ logic

Two consecutive ‘bubble’ (or

a X, —— \
complement) operations cancel,

b i.e., no effect on logic function

c g
d y What about this gate? I
~ DeMorgan says X + Y =X.Y
See AND gates are

now NAND gates Which is a NOT
AND (NAND) gate

So j>— is equivalent to:D

DeMorgan’s in Gates

» So the previous function can be built
using 3 NAND gates

Dy gy
b b

f f
C c
; e

f =ab+cd

f =(ab).(cd)

06/07/2011
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DeMorgan’s in Gates

« Similarly, applying ‘bubbles’ to the input
of an AND gate yields

X
@f
y Which is a NOT OR

N
What about this gate? /(NOR) gate

DeMorgan says X.y=X+YVy

So j:)— is equivalent to i}

 Useful if trying to build using NOR gates

Logic Minimisation

» Any Boolean function can be implemented
directly using combinational logic (gates)

» However, simplifying the Boolean function will
enable the number of gates required to be
reduced. Techniques available include:

— Algebraic manipulation (as seen in examples)

— Karnaugh (K) mapping (a visual approach)

— Tabular approaches (usually implemented by
computer, e.g., Quine-McCluskey)

« K mapping is the preferred technique for up to
about 5 variables

06/07/2011
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Truth Tables
 f is defined by the following truth table
* A minterm must contain

X'y z|f| minterms all variables (in either
000|1| XYz complement or

8 2 é i ;;é uncomplementgd form)
011(1| XYy.Z * Note variables in a
100]|0 minterm are ANDed
10110 together (conjunction)

% % (1) (1) X.y.z * One minterm for each

term of f that is TRUE
* SO x.y.z IS a minterm but y.z is not

Disjunctive Normal Form

« A Boolean function expressed as the
disjunction (ORing) of its minterms is said

to be in the Disjunctive Normal Form (DNF)
f =Xy.Z+XY.Z+XY.Z+X.Y.Z+X.Y.Z

« A Boolean function expressed as the
ORing of ANDed variables (not necessarily
minterms) is often said to be in Sum of
Products (SOP) form, e.g.,
f =x+y.z Note functions have the same truth table

06/07/2011

20



06/07/2011

Maxterms

« A maxterm of n Boolean variables is the
disjunction (ORing) of all the variables either
in complemented or uncomplemented form.

— Referring back to the truth table for f, we can
write,
f =XYy.Z+Xy.Z+XY.Z

Applying De Morgan (and complementing) gives
f=(X+y+2).(X+y+2).(X+y+2)
So it can be seen that the maxterms of f are

effectively the minterms of f with each variable
complemented

Conjunctive Normal Form

» A Boolean function expressed as the
conjunction (ANDing) of its maxterms is said
to be in the Conjunctive Normal Form (CNF)

f=(X+y+2).(X+y+2).(X+y+2)

» A Boolean function expressed as the ANDing
of ORed variables (not necessarily maxterms)
is often said to be in Product of Sums (POS)
form, e.g.,

f=(x+Yy).(x+2)

21
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Logic Simplification

» As we have seen previously, Boolean
algebra can be used to simplify logical
expressions. This results in easier
implementation
Note: The DNF and CNF forms are not

simplified.

» However, it is often easier to use a
technique known as Karnaugh mapping

Karnaugh Maps

« Karnaugh Maps (or K-maps) are a
powerful visual tool for carrying out
simplification and manipulation of logical
expressions having up to 5 variables

* The K-map is a rectangular array of
cells

— Each possible state of the input variables
corresponds uniquely to one of the cells

— The corresponding output state is written in
each cell

22
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K-maps example

* From truth table to K-map

xyz|f oo
000]1 XN\ 00 01 11 10

001]1 of1f1f1]1

010]1 1 1

0111 d

100(0 y

% 2 é 8 Note that the logical state of the
11111 variables follows a Gray code, i.e.,

only one of them changes at a time

The exact assignment of variables in
terms of their position on the map is
not important

K-maps example
» Having plotted the minterms, how do we

use the map to give a simplified

ion?
expression? . oo terms

, * Having size equal to a power of

yz 2,e.0.,2,4,8, etc.
XN\.00 01 11 10 )
0 /1) » Large groups best since they
x| 1 1) contain fewer variables

* Groups can wrap around edges
and corners

X y.Z y
So, the simplified func. is,
f =x+y.z asbefore

23



K-maps — 4 variables

« K maps from Boolean expressions
—Plot f=ab+bcd

2<% 00 01 11 10
00
o1|1]1]1]1
11
10

C

d
« See in a 4 variable map:
— 1 variable term occupies 8 cells
— 2 variable terms occupy 4 cells
— 3 variable terms occupy 2 cells, etc.

K-maps — 4 variables

» For example, plot

C q C

cd c

ab\ 00 01 11 10 ab\ 00 01 11 10

ool1l1]1]1 00| 1 1
01 ‘b 01
.| 11 .| 11

wol1l1]2]1 101 1

d d

06/07/2011
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K-maps — 4 variables

« Simplify, f =ab.d +b.cd+abc.d+cd
c

cd
ab\_00 01 11 10

00 A\
01 11T X
11 1
10 \1/
A ] cd

So, the simplified func. is,
f=ab+cd

POS Simplification

* Note that the previous examples have
yielded simplified expressions in the
SOP form
— Suitable for implementations using AND

followed by OR gates, or only NAND gates
(using DeMorgans to transform the result —
see previous Bubble logic slides)

* However, sometimes we may wish to
get a simplified expression in POS form

— Suitable for implementations using OR
followed by AND gates, or only NOR gates

06/07/2011
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POS Simplification

» To do this we group the zeros in the map
—i.e., we simplify the complement of the function
« Then we apply DeMorgans and
complement

« Use ‘bubble’ logic if NOR only
implementation is required

a

c

ab
00
01
11
10

POS Example

« Simplify f =ab+bc.d into POS form.

C C
%00 01 11 10 0% 00 01 11 10,
00f\olololo

1[1]1 ‘b Group 1afaf1]],
Zeros
o] 112§

}/0 0
_ \
b ad d ac

f=b+ac+ad

06/07/2011
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» Applying DeMorgans to

a

]

o o o

POS Example

o o

f =b+ac+ad
gives,

f —b.(@+c)(a+d) .
f =b.(a+c).(a+d) .
a

f C

a

d

o

Expression in POS form

Apply DeMorgans and take

complement, i.e., f is now in SOP form
Fill in zeros in table, i.e., plot f

Fill remaining cells with ones, i.e., plot f
Simplify in usual way by grouping ones
to simplify f

06/07/2011
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Don’t Care Conditions

* Sometimes we do not care about the
output value of a combinational logic
circuit, i.e., if certain input combinations
can never occur, then these are known
as don’t care conditions.

* In any simplification they may be treated
as 0 or 1, depending upon which gives
the simplest result.

— For example, in a K-map they are entered
as Xs

Don’t Care Conditions - Example

 Simplify the function f =ab.d+a.cd+acd
With don’t care conditions,ab.c.d,ab.cd,abcd

c
cd
ab\ 00 01 11 10

See only need to include

00 A Xs if they assist in making
o1| yx|1 ‘b a bigger group, otherwise
E : ’
al o can ignore.

ab ——

f=ab+cd or, f=ad+cd

06/07/2011
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Some Definitions

Cover — A term is said to cover a minterm if that
minterm is part of that term

Prime Implicant — a term that cannot be further
combined

Essential Term — a prime implicant that covers a
minterm that no other prime implicant covers

Covering Set — a minimum set of prime
implicants which includes all essential terms plus
any other prime implicants required to cover all
minterms

Binary Adders

06/07/2011
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Binary Adding Circuits

« We will now look at how binary addition
may be implemented using combinational
logic circuits. We will consider:

— Half adder
— Full adder

— Ripple carry adder

Half Adder

» Adds together two, single bit binary
numbers a and b (note: no carry input)

» Has the following truth table:

ab|c, sum

out a sum
Oo0oflO0 O — —
10(0 1 — ——out
11|11 O

* By inspection:
sum=ab+ab=a®b
Cout = a.b

06/07/2011
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Full Adder

» Adds together two, single bit binary
numbers a and b (note: with a carry input)

a sum

b C

out

in

» Has the following truth table:

c

Full Adder
co.ab [c,, sum _ _
ool o SUm=Cpab+cpab+c,ab +c,ab
0010 1 sum=c,.(ab+ab)+c,.(ab+ab
0100 1 il ) Cin{ )
0111 O From DeMorgan
1000 1 n _ =
10il1 o ab+ab —7(a+b).(airb)
11011 O =(aa+ab +ba+bb)
1111 1 D

=(ab +b.a)

So

‘sum=c;,.(ab+ab)+c,.(ab+ab)
sum =C;;.X+C;,.X =C;, ®Xx=¢;, @a®b

31



Full Adder

0
=

Cout SUM

Cout = Cip-ab+¢jp.ab+c,.ab+c,.ab
Cout = ab.(Cjy +Cj) +Cjp.ab + Cin-a.0
Cout =ab+c,.ab+c,ab

Cout =a-(b+ci,b)+cj.ab

Cout =a-(b+¢i,).(b+b)+¢.ab

PFRPRFRPPRPOOOO
PRPOORFRLPOO|D
PORPRORFRLPOPRO|T
PRPRFRPORFRLOOO
RPOORFRORLEKFRO

Cout =Db.(a+c,.a@)+ac, =b.(a+c,).(a+a)+ac,
Cout =Db.a+bc, +ac,
Cout =b.a+c,.(b+a)

Full Adder

 Alternatively,

0
=

Cout SUM

Cout = Cip-ab+¢jp.ab+c,.ab +¢,.ab
Cout = Cin-(@b +ab) +ab.(ciy +Cp)
Cout =Cin-(@®Db)+ab

RPRPRRPFRPOOOO
RPRPOORROO|D
RPOFRPORORO|T
PRPRFRPOFRLPOOO
O

RPOORLOPRr

» Which is similar to previous expression
except with the OR replaced by XOR

06/07/2011
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Ripple Carry Adder

* We have seen how we can implement a
logic to add two, one bit binary numbers
(inc. carry-in).

* However, in general we need to add
together two, n bit binary numbers.

* One possible solution is known as the
Ripple Carry Adder

— This is simply n, full adders cascaded
together

Ripple Carry Adder
« Example, 4 bit adder

C, 8, by a; by a, b, a; by

‘ a b a b a b a b
Cin Cout Cin Cout Cin Cout Cin Cout
sum sum sum sum

SO Sl 52 53 C4

* Note: If we complement a and set c, to
one we have implemented s=b-a

06/07/2011
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To Speed up Ripple Carry Adder

« Abandon compositional approach to the adder
design, i.e., do not build the design up from
full-adders, but instead design the adder as a
block of 2-level combinational logic with 2n
inputs (+1 for carry in) and n outputs (+1 for
carry out).

 Features

— Low delay (2 gate delays)

— Need some gates with large numbers of inputs
(which are not available)

— Very complex to design and implement (imagine
the truth table!

To Speed up Ripple Carry Adder

» Clearly the 2-level approach is not
feasible

* One possible approach is to make use
of the full-adder blocks, but to generate
the carry signals independently, using
fast carry generation logic

* Now we do not have to wait for the carry
signals to ripple from full-adder to full-
adder before output becomes valid

06/07/2011
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Fast Carry Generation

Co 3y by a by a, b, a; b,

L1 [ 1 [ 1 [ |
a b a b a b a b Conventional

Cin Cout Cin Cout Cin Cout Cin Cout | RCA

sum sum sum sum
ISO Isl ISZ IS3 C4
Co ag by a; by a, b, a; by
| [ | [ | [ | [ |
Fast Carry
Fast Carry Generation Adder

| | | |
a b a b a b a b

C Cin Cout c Cin Cout c Cin Cout c Cin Cout
(0] 1 2 3
sum sum sum sum

Fast Carry Generation

» We will now determine the Boolean
equations required to generate the fast
carry signals

» To do this we will consider the carry out
signal, c,, generated by a full-adder
stage (say i), which conventionally gives
rise to the carry in (c;,) to the next stage,
l.e., Ciyq-

06/07/2011
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Fast Carry Generation

Carry out always zero. —

Call this carry kill

Carry out same as carry in.
Pi =28 ®b

Call this carry propagate

Carry out generated
independently of carry in. _
P Y Y gi =a;.b

Call this carry generate

Also (from before), S;j = &; Dby D ¢

Fast Carry Generation

Also from before we have,
Ci.1 =& +¢.(a +b,) oralternatively,
Ciyy = a0 +C.(8 ©by)
Using previous expressions gives,
Ci1 =0 + G-
So,
Cit2 =09ix1 tCj1-Pina
Civ2 = Oi1 + Pisa-(95 +Ci-pj)
Cit2 = Git1 + Piva-9i + Pit1-Pi G

06/07/2011
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Fast Carry Generation

Similarly,
Cit3 =0ir2 tCi2-Pis2
Civg = Oi+2 + Piv2-(Jie + Pisa-(9i +Ci-y))
Ci3 = Gir2 + Pis2-(Jise + Pis1-9i) + Pis2-Pisa-PiCi
and
Citsa = Gi+3 +Ci13-Pivs
Cira = Ui+3+ Pisa-(Gis2 + Piv2-(ist + Pis1-9i) + Pir2-Pisa-PiCi)
Cira = 0i+3+ Pisa-(Jis2 + Pis2-(Jise + Pis1-9i)) + Piz3-Piv2-Pisa- Pi €

Fast Carry Generation

« So for example to generate c,, i.e., i =0,
C4 =03+ P3-(92 + P2-(91 + P1-9o)) + Ps-P2-P1-Po-Co
c, =G+ Pc
where,
G =03+ P3.(92+ P2-(91 + P1-Yo))
P = p3.P2-P1-Po

» See it is quick to evaluate this function
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Fast Carry Generation

» We could generate all the carrys within an
adder block using the previous equations

« However, in order to reduce complexity, a
suitable approach is to implement say 4-bit
adder blocks with only c, generated using
fast generation.

— This is used as the carry-in to the next 4-bit
adder block

— Within each 4-bit adder block, conventional RCA
is used

Fast Carry Generation

Co a, by a; by a, b, a; by

|_II I I [ |

Fast Carry Generation

| | | |

a b a b a b a b
Cin Cout Cin Cout Cin Cout Cin Cout
sum sum sum sum

ISO ISl |32 IS3 C4

06/07/2011
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Combinational Logic Design

Further Considerations

Multilevel Logic

* We have seen previously how we can
minimise Boolean expressions to yield
so called 2-level’ logic implementations,
l.e., SOP (ANDed terms ORed together)
or POS (ORed terms ANDed together)

* Note also we have also seen an
example of ‘multilevel’ logic, i.e., full
adders cascaded to form a ripple carry
adder — see we have more than 2 gates
in cascade in the carry chain

39
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Multilevel Logic

« Why use multilevel logic?

— Commercially available logic gates usually
only available with a restricted number of
inputs, typically, 2 or 3.

— System composition from sub-systems

reduces design complexity, e.g., a ripple
adder made from full adders

— Allows Boolean optimisation across multiple
outputs, e.g., common sub-expression
elimination

Building Larger Gates

 Building a 6-input OR gate

40



Common Expression Elimination

« Consider the following minimised SOP
expression:

z=ad.f +ae.f+bd.f +be.f+cd.f +cef +g
* Requires:
 Six, 3 input AND gates, one 7-input
OR gate — total 7 gates, 2-levels

« 19 literals (the total number of times
all variables appear)

Common Expression Elimination

» We can recursively factor out common literals
z=ad.f +aef +bd.f +be.f +cd.f +cef+g

z=(ad+ae+bd+be+cd+ce).f+g
z=((a+b+c)d+(a+b+c)e).f +g
z=(a+b+c).(d+e).f+g
* Now express z as a number of equations in 2-
level form:
x=a+b+c y=d+e z=xy.f+g
* 4 gates, 9 literals, 3-levels

06/07/2011
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Gate Propagation Delay

« So, multilevel logic can produce reductions
in implementation complexity. What is the
downside?

« We need to remember that the logic gates
are implemented using electronic
components (essentially transistors) which
have a finite switching speed.

« Consequently, there will be a finite delay
before the output of a gate responds to a
change in its inputs — propagation delay

Gate Propagation Delay

* The cumulative delay owing to a number of
gates in cascade can increase the time
before the output of a combinational logic
circuit becomes valid

« For example, in the Ripple Carry Adder, the
sum at its output will not be valid until any
carry has ‘rippled’ through possibly every full
adder in the chain — clearly the MSB will
experience the greatest potential delay

06/07/2011
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Gate Propagation Delay

* As well as slowing down the operation of
combinational logic circuits, gate delay can
also give rise to so called ‘Hazards’ at the
output

* These Hazards manifest themselves as
unwanted brief logic level changes (or
glitches) at the output in response to
changing inputs

* We will now describe how we can address
these problems

Hazards

» Hazards are classified into two types,
namely, static and dynamic

 Static Hazard — The output undergoes a
momentary transition when it is
supposed to remain unchanged

» Dynamic Hazard — The output changes
more than once when it is supposed to
change just once
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Timing Diagrams

» To visually represent Hazards we will use the
so called ‘timing diagram’

» This shows the logical value of a signal as a
function of time, for example the following
timing diagram shows a transition from 0 to 1
and then back again

Logic ‘1’

Logic ‘0’

Time

Timing Diagrams

* Note that the timing diagram makes a number
simplifying assumptions (to aid clarity)
compared with a diagram which accurately
shows the actual voltage against time
— The signal only has 2 levels. In reality the signal
may well look more ‘wobbly’ owing to electrical
noise pick-up etc.

— The transitions between logic levels takes place
instantaneously, in reality this will take a finite
time.
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Logic ‘1’

Logic ‘0’

Logic ‘1’

Logic ‘0’

Static Hazard

“ Static 1 hazard
Time

H Static 0 hazard
Time

Logic ‘1’

Logic ‘0’

Logic ‘1’

Logic ‘0’

Dynamic Hazard

‘ ‘ Dynamic hazard

‘ ‘ ‘ ‘ Dynamic hazard

Time
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Static 1 Hazard

X u y
y w
t
t

Vv u
Z v
This circuit implements,

W=XYy+Zzy W J

Consider the output when Z = X =1

and Y changes from 1 to 0

Hazard Removal

 Toremove a 1 hazard, draw the K-map
of the output concerned. Add another
term which overlaps the essential terms

* Toremove a 0 hazard, draw the K-map
of the complement of the output
concerned. Add another term which
overlaps the essential terms
(representing the complement)

* To remove dynamic hazards — not
covered in this course!

06/07/2011
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Removing the static 1 hazard

W=XYy+2y
z

yz
XxN\.00 01 11 10
0 (1) y w
« 1o -
y |
Extra term added to remove
hazard, consequently,

W=XY+Z2.y+XZ

Other Ways to Implement
Combinational Logic

* We have seen how combinational logic
can be implemented using logic gates,
e.g., AND, OR etc.

» However, it is also possible to generate
combinational logic functions using
memory devices, e.g., Read Only
Memories (ROMSs)
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ROM Overview

« A ROM is a data storage device:

— Usually written into once (either at manufacture or
using a programmer)

— Read at will

— Essentially is a look-up table, where a group of
input lines (say n) is used to specify the address
of locations holding m-bit data words

— For example, if n = 4, then the ROM has 24 = 16
possible locations. If m = 4, then each location
can store a 4-bit word

— So, the total number of bits storedis mx2" | j.e.,
64 in the example (very smalll) ROM

ROM Example
address data Design amounts to putting
; A s4.bit Do minterms in the appropriate
—A -bit p, —— i
X A; ROM D; address location
0'—A, D, No logic simplification
required
dd data _ _
(3edr§]s§|,) Xy z|f]| DsD.D;Dy Useful if multiple Boolean
0 00011l XXX 1 functlons are to be_ _
1 0011l Xxxx1 implemented, e.g., in this
2 0101 XXX 1 case we can easily do up to
3 0111 XXX 1 4, i.e., 1 for each output line
4 100|0(XXXDO
5 101|0| XXX O Reasonably efficient if lots of
6 110(0)|XXXO minterms need to be
7 111|11[XXX1 generated
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ROM Implementation

« Can be quite inefficient, i.e., become large in
size with only a few non-zero entries, if the
number of minterms in the function to be
iImplemented is quite small

» Devices which can overcome these problems
are known as programmable array logic (PAL)

* In PALSs, only the required minterms are
generated using a separate AND plane. The
outputs from this plane are ORed together in
a separate OR plane to produce the final

output

Programmed by
selectively removing
connections in the AND
and OR planes —
controlled by fuses or
memory bits

Basic PAL Structure____

OR plane

\ fo
]
\ fy
)
\ fy
]
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Other Memory Devices

* Non-volatile storage is offered by ROMs (and
some other memory technologies, e.g.,
FLASH), i.e., the data remains intact, even
when the power supply is removed

Volatile storage is offered by Static Random
Access Memory (SRAM) technology

— Data can be written into and read out of the
SRAM, but is lost once power is removed

Memory Application

Memory devices are often used in computer
systems

The central processing unit (CPU) often
makes use of busses (a bunch of wires in
parallel) to access external memory devices

The address bus is used to specify the
memory location that is being read or written
and the data bus conveys the data too and
from that location

So, more than one memory device will often
be connected to the same data bus

06/07/2011
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Bus Contention

* In this case, if the output from the data pin of
one memory was a 0 and the output from the
corresponding data pin of another memory
was a 1, the data on that line of the data bus
would be invalid

« S0, how do we arrange for the data from
multiple memories to be connected to the
some bus wires?

Bus Contention

« The answer is:
— Tristate buffers (or drivers)
— Control signals

« A tristate buffer is used on the data output of
the memory devices

— In contrast to a normal buffer which is either 1
or O at its output, a tristate buffer can be
electrically disconnected from the bus wire, i.e.,
it will have no effect on any other data currently
on the bus — known as the ‘high impedance’
condition
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Tristate Buffer

Symbol Functional :
Bus line Bus line

analo
9y OE=1

o D

Output Enable

(OE)=1 OEj_O
41/‘, 4[>_. —
OE =0

Control Signals

« We have already seen that the memory
devices have an additional control input (OE)
that determines whether the output buffers are
enabled.

» Other control inputs are also provided:

— Write enable (WE). Determines whether data is
written or read (clearly not needed on a ROM)

— Chip select (CS) — determines if the chip is
activated
» Note that these signals can be active low,
depending upon the particular device
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Sequential Logic

Flip-flops and Latches

Sequential Logic
» The logic circuits discussed previously
are known as combinational, in that the
output depends only on the condition of
the latest inputs

» However, we will now introduce a type
of logic where the output depends not
only on the latest inputs, but also on the
condition of earlier inputs. These circuits
are known as sequential, and implicitly
they contain memory elements
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A memory stores data — usually one bit per

element

A snapshot of the memory is called the state
A one bit memory is often called a bistable,

Memory Elements

I.e., it has 2 stable internal states

Flip-flops and latches are particular
iImplementations of bistables

An RS

RS Latch

latch is a memory element with 2

inputs: Reset (R) and Set (S) and 2

outputs: Qand Q.

R Q SR Q" Q'| comment
00|QQ | hod
o1l0 1 reset
1010 | set

s Q 11(00 illegal

Where Q' is the next state
and Q is the current state
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RS Latch - Operation

R Q NOR truth table
ably

é | b complemented

==|=x=]
RO RO

S Q 8 | always 0

« R=1andS=0
— Gate 1 output in ‘always 0’ condition, Q=0
— Gate 2 in ‘complement’ condition, so Q=1
« This is the (R)eset condition

RS Latch - Operation

R Q NOR truth table
ably

(1) | b complemented

Q

| =X=]

RO FR,O

S 8 | always 0

e S=0andRto 0
— Gate 2 remains in ‘complement’ condition, Q=1
— Gate 1 into ‘complement’ condition, Q=0

* This is the hold condition
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RS Latch - Operation

R Q NOR truth table
ably

é | b complemented

Q

==|=x=]
RO RO

S 8 | always 0

«S=l1landR=0
— Gate 1 into ‘complement’ condition, Q =1
— Gate 2 in ‘always 0’ condition, Q=0

» This is the (S)et condition

RS Latch - Operation

R Q NOR truth table
ably
01 | b complemented
B 10
110 [ O
S Q 110 | always 0

e S=landR=1

» This is the illegal condition
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RS Latch — State Transition Table

» A state transition table is an alternative
way of viewing its operation

Qs R |Q" | comment
000(0O hold
oo1lo0 reset
010(1 set
01110 ilegal
100|1 hold
1010 reset
110(1 set
11110 illegal

A state transition table can also be
expressed in the form of a state diagram

RS Latch — State Diagram

A state diagram in this case has 2
states, i.e., Q=0 and Q=1

* The state diagram shows the input
conditions required to transition
between states. In this case we see that
there are 4 possible transitions

» We will consider them in turn
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RS Latch — State Diagram

Q=0 Q=0
QsR|Q | comment From the table we can see:
000|O hold SR+SR+SR=
0011 0 reset N — ~
0101 1 set S(R+R)+S.R=S+SR=
0110 llegal (S+S).(S+R)=S +R
100]|1 hold
101]0 reset =1 Q'=1
1101 set N < ,
11110 illegal From the table we can see:
SR+SR=R.(S+9S)=
R
RS Latch — State Diagram

: Q=1 Q'=0
C? ‘3 Ig % Corr;r;llznt From the table we can see:
001 0 reset §R+SR:

set S —

01215 | ilega R(S+S)=R
1001 hold
101!l o0 reset Q=0 Q'=1
110]|1 set From the table we can see:
11110 illegal SR
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RS Latch — State Diagram

» Which gives the following state diagram:

S.R
Nez Iz el

R
« A similar diagram can be constructed for the

Q output
» We will see later that state diagrams are a
useful tool for designing sequential systems

Clocks and Synchronous Circuits

» For the RS latch we have just described, we
can see that the output state changes occur
directly in response to changes in the inputs.
This is called asynchronous operation

» However, virtually all sequential circuits
currently employ the notion of synchronous
operation, that is, the output of a sequential
circuit is constrained to change only at a time
specified by a global enabling signal. This
signal is generally known as the system clock
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Clocks and Synchronous Circuits

 The Clock: What is it and what is it for?

— Typically it is a square wave signal at a
particular frequency

— Itimposes order on the state changes
— Allows lots of states to appear to update
simultaneously
« How can we modify an asynchronous
circuit to act synchronously, i.e., in
synchronism with a clock signal?

Transparent D Latch

« We now modify the RS Latch such that its
output state is only permitted to change when
a valid enable signal (which could be the
system clock) is present

» This is achieved by introducing a couple of
AND gates in cascade with the R and S inputs
that are controlled by an additional input
known as the enable (EN) input.
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Transparent D Latch

R Symbol
Q
—b ol—
-
EN S Q
D EN
« See from the AND truth table: AND truth table
— if one of the inputs, say a is 0, the output = b |y
is always O 0010
— Output follows b input if a is 1 8 é 8
» The complement function ensures 111

that R and S can never be 1 at the
same time, i.e., illegal avoided

Transparent D Latch

R
Q
EN S Q
D N
D EN | Q' Q| comment
X 0 |QQ | RShold
0O 1101 RS reset
1 1|10 RS set

+ See Q follows D input provided EN=1.
If EN=0, Q maintains previous state
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Master-Slave Flip-Flops

» The transparent D latch is so called ‘level’
triggered. We can see it exhibits transparent
behaviour if EN=1. It is often more simple to
design sequential circuits if the outputs
change only on the either rising (positive
going) or falling (negative going) ‘edges’ of
the clock (i.e., enable) signal

» We can achieve this kind of operation by
combining 2 transparent D latches in a so
called Master-Slave configuration

Master-Slave D Flip-Flop

Master Slave Symbol

D D Q Qim D Q _Q D Q

1 1 A

« To see how this works, we will use a timing diagram

 Note that both latch inputs are effectively connected
to the clock signal (admittedly one is a complement
of the other)
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Master-Slave D Flip-Flop

Master Slave
D D Q Qint D Q —Q
- [ See Q changes on rising
CLKADQ—~‘>OJ edge of CLK
CLK
CLK

Note propagation delays
D have been neglected in
the timing diagram
Qint

Q

D Flip-Flops

» The Master-Slave configuration has
now been superseded by new F-F
circuits which are easier to implement
and have better performance

* When designing synchronous circuits it
Is best to use truly edge triggered F-F
devices

» We will not consider the design of such
F-Fs on this course
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Other Types of Flip-Flops

 Historically, other types of Flip-Flops
have been important, e.g., J-K Flip-
Flops and T-Flip-Flops

However, J-K FFs are a lot more
complex to build than D-types and so
have fallen out of favour in modern
designs, e.g., for field programmable
gate arrays (FPGAs) and VLSI chips

Other Types of Flip-Flops

Consequently we will only consider
synchronous circuit design using D-type
FFs

However for completeness we will
briefly look at the truth table for J-K and
T type FFs
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J-K Flip-Flop

* The J-K FF is similar in function to a
clocked RS FF, but with the illegal state
replaced with a new ‘toggle’ state

JK | Q" Q'|comment Symbol

00|QQ | hod _ [ o—

0110 1 reset

10|10 | set K Q
aY A

11|Q Q| toggle

Where Q' is the next state
and Q is the current state

T Flip-Flop

» This is essentially a J-K FF with its J
and K inputs connected together and
renamed as the T input

__, Symbol
T | Q" Q'lcomment J_
0[QQ | hold 1
1]QQ toggle QI

Where Q' is the next state
and Q isthe current state
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Asynchronous Inputs

It is common for the FF types we have mentioned
to also have additional so called ‘asynchronous’
inputs

They are called asynchronous since they take
effect independently of any clock or enable inputs
Reset/Clear — force Qto O

Preset/Set — force Qto 1

Often used to force a synchronous circuit into a
known state, say at start-up.

Timing

 Various timings must be satisfied if a FF

IS to operate properly:

— Setup time: Is the minimum duration that
the data must be stable at the input before
the clock edge

— Hold time: Is the minimum duration that the
data must remain stable on the FF input
after the clock edge
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Applications of Flip-Flops

 Counters

— A clocked sequential circuit that goes through a
predetermined sequence of states

— A commonly used counter is an n-bit binary
counter. This has n FFs and 2" states which are
passed through in the order 0, 1, 2, ....2"1, 0, 1, .

— Uses include:
+ Counting
* Producing delays of a particular duration
» Sequencers for control logic in a processor

« Divide by m counter (a divider), as used in a digital
watch

Applications of Flip-Flops

 Memories, e.qg.,
— Shift register

 Parallel loading shift register : can be used for
parallel to serial conversion in serial data
communication

 Serial in, parallel out shift register: can be used
for serial to parallel conversion in a serial data
communication system.
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Counters

* In most books you will see 2 basic types
of counters, namely ripple counters and
synchronous counters

* In this course we are concerned with
synchronous design principles. Ripple
counters do not follow these principles
and should generally be avoided if at all
possible. We will now look at the
problems with ripple counters

Ripple Counters

» Aripple counter can be made be cascading
together negative edge triggered T-type FFs
operating in toggle’ mode, i.e., T =1

Qo Q jz
‘r ‘r ‘r
Q Q Q
L L L
A(j /\(j A(j
CLK—T ;I) ;I)
« See that the FFs are not clocked using the
same clock, i.e., this is not a synchronous
design. This gives some problems....
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Ripple Counters

« We will now draw a timing diagram

CLK_|
Qo
Q

Q, L
0 1 2 3 4 5 6 7 0
* Problems:

See outputs do not change at the same time, i.e., synchronously.

So hard to know when count output is actually valid.

Propagation delay builds up from stage to stage, limiting
maximum clock speed before miscounting occurs.

Ripple Counters

* |f you observe the frequency of the counter
output signals you will note that each has half
the frequency, i.e., double the repetition
period of the previous one. This is why
counters are often known as dividers

« Often we wish to have a count which is not a
power of 2, e.g., for a BCD counter (0 to 9).To
do this:

— use FFs having a Reset/Clear input

— Use an AND gate to detect the count of 10 and
use its output to Reset the FFs
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Synchronous Counters

Owing to the problems identified with ripple
counters, they should not usually be used to
implement counter functions

It is recommended that synchronous counter
designs be used

In a synchronous design

— all the FF clock inputs are directly connected to the clock
signal and so all FF outputs change at the same time, i.e.,
synchronously

— more complex combinational logic is now needed to
generate the appropriate FF input signals (which will be
different depending upon the type of FF chosen)

Synchronous Counters

» We will now investigate the design of
synchronous counters

» We will consider the use of D-type FFs
only, although the technique can be
extended to cover other FF types.

» As an example, we will considera O to 7
up-counter
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Synchronous Counters

» To assist in the design of the counter we will make
use of a modified state transition table. This table
has additional columns that define the required FF
inputs (or excitation as it is known)

— Note we have used a state transition table previously
when determining the state diagram for an RS latch

« We will also make use of the so called ‘excitation
table’ for a D-type FF

 First however, we will investigate the so called
characteristic table and characteristic equation for a
D-type FF

Characteristic Table

* In general, a characteristic table for a FF
gives the next state of the output, i.e.,Q"in
terms of its current state Q and current inputs

Q D|Q Which gives the characteristic equation,
0 ofo0 Q=D
2 cl) é i.e., the next output state is equal to the
1 111 current input value
r.o. ’
Since Q' is independent of Q D|Q
the characteristic table can 0O
be rewritten as 111

06/07/2011

71



Excitation Table

* The characteristic table can be modified to
give the excitation table. This table tells us
the required FF input value required to
achieve a particular next state from a given
current state

’ As with the characteristic table it can

Q QD be seen that Q', does not depend

upon, Q , however this is not

generally true for other FF types, in

which case, the excitation table is
more useful. Clearly for a D-FF,

D=Q

Rk OO
RO RO
RO FLO

Characteristic and Excitation

Tables

* Characteristic and excitation tables can
be determined for other FF types.

* These should be used in the design
process if D-type FFs are not used

* We will now determine the modified
state transition table for the example O
to 7 up-counter
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Modified State Transition

Table

 In addition to columns representing the
current and desired next states (as in a
conventional state transition table), the
modified table has additional columns
representing the required FF inputs to
achieve the next desired FF states

Modified State Transition Table

« For a 0to 7 counter, 3 D-type FFs are needed

Current  Next FF The procedure is to:

state state ~ Inputs Write down the desired
Q,QQ | Q2QQy| D,D,Dy count sequence in the
000|001 00 1 current state columns
8 2 (1) 8 % 8 8 % 8 Write down the required
011l100l100 next states in the next
100l101l101 state columns
101l1101 110 Fill ir) the FF.inputs
110|111 11 1 required to give the
111/l0001l 000 defined next state
Note: Since Q'=D (or D =Q") for a D-FF, the

required FF inputs are identical to the Next state
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Synchronous Counter Example

 Also note that if we are using D-type FFs, it
IS not necessary to explicitly write out the
FF input columns, since we know they are
identical to those for the next state

» To complete the design we now have to
determine appropriate combinational logic
circuits which will generate the required FF
inputs from the current states

« We can do this from inspection, using
Boolean algebra or using K-maps.

Synchronous Counter Example

Current  Next FF

state state inputs
QQQ | QQQy| D,D1Dy
0O00(001|]001
001(010(|010O0
010(011]011
011|200 (100
100|201 (101
101|210 (21210
110|211 (111
111|000 ]|000O0

By inspection,
Do =Qp

Note: FF, is toggling

Also, D, =Q, ®Q,

Use a K-map for D, ,
QiQo —%

Q200 01 11 10

0 @

Ql 1| D]/

Fo

DR G0 WAL
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Synchronous Counter Example

Qo
1~0
Q2\\00 01 11 10 So
0 @) N . o
Ql 1D ]/ D, =Qp-Q2 +Q.Q; +Qp.Q1.Q;

- /T D, =Q,.(Qy. + Q) +Qy.Q.Q,
QL 0, QuQ,

Q Q
0 1 Q, Q,
Qo
Q1 Combinati- J
DO Q Dl Q Ql onal logic D2 Q
D b Q2 b
AQ AR Q2 AQ

CLK

Synchronous Counter

« A similar procedure can be used to design
counters having an arbitrary count sequence
— Write down the state transition table
— Determine the FF excitation (easy for D-types)

— Determine the combinational logic necessary to
generate the required FF excitation from the
current states — Note: remember to take into
account any unused counts since these can be
used as don'’t care states when determining the
combinational logic circuits
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Shift Register

A shift register can be implemented
using a chain of D-type FFs

o Q Q,

Q Q Q
D,/ D | D
/\Q /\Q AQ

CLK

Has a serial input, D;, and parallel
output Q,, Q; and Q,.

See data moves one position to the
right on application of clock edge

Shift Register

Preset and Clear inputs on the FFs can
be utilised to provide a parallel data
input feature

Data can then be clocked out through
Q, in a serial fashion, i.e., we now have
a parallel in, serial out arrangement

This along with the previous serial in,
parallel out shift register arrangement
can be used as the basis for a serial
data link
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Serial Data Link

Q A Q & Q
Parallel in | Serial Data |  gerial in
serial out parallel out

CLK

* One data bit at a time is sent across the serial
data link

» See less wires are required than for a parallel
data link

Synchronous State Machines
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Synchronous State Machines

* We have seen how we can use FFs (D-types
in particular) to design synchronous counters

« We will now investigate how these principles
can be extended to the design of synchronous
state machines (of which counters are a
subset)

« We will begin with some definitions and then
introduce two popular types of machines

Definitions

* Finite State Machine (FSM) — a deterministic
machine (circuit) that produces outputs which
depend on its internal state and external inputs

« States — the set of internal memorised values,
shown as circles on the state diagram

 Inputs — External stimuli, labelled as arcs on the
state diagram

» Outputs — Results from the FSM
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Types of State Machines

» Two types of state machines are in
general use, namely Moore machines
and Mealy machines

* In this course we will only look in detalil
at FSM design using Moore machines,
although for completeness we will
briefly describe the structure of Mealy
machines

Moore Current state
Machine
Next state Q Optional Outputs
Inputs /—| combinational —Hb #H combinational
n logic m Qm logic
A
CLK
Mealy
Machine Current state
Next state Q . output
/ combinational —4b / combinational utputs
Inputs —7 _ 7 A logic —
n logic m AQ m—
CLK
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Moore vs. Mealy Machines

« Outputs from Mealy Machines depend upon
the timing of the inputs

« Outputs from Moore machines come directly
from clocked FFs so:
— They have guaranteed timing characteristics
— They are glitch free

« Any Mealy machine can be converted to a
Moore machine and vice versa, though their
timing properties will be different

Moore Machine - Example

« We will design a Moore Machine to implement
a traffic light controller

 In order to visualise the problem it is often
helpful to draw the state transition diagram

» This is used to generate the state transition
table

» The state transition table is used to generate
— The next state combinational logic
— The output combinational logic (if required)
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Example — Traffic Light Controller

R See we have 4 states

So in theory we could
use a minimum of 2 FFs

However, by using 3 FFs
we will see that we do not
need to use any output
combinational logic

So, we will only use 4 of
the 8 possible states

In general, state assignment is a
difficult problem and the optimum
choice is not always obvious

Example — Traffic Light Controller

State By using 3 FFs (we will use
100 R D-types), we can assign one
to each of the required
outputs (R, A, G), eliminating

S(;ige the need for output logic
R )
State We now need to write down
110 the state transition table

We will label the FF outputs
R,Aand G

Remember we do not need to
explicitly include columns for FF
State excitation since if we use D-types
001 these are identical to the next state
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Example — Traffic Light Controller

State

100 R
State
010

State
110
G
State
001

Current Next

State State
RAG|RAG
100

11
R 00

110
0[O0 01
11010
010|100
Unused states, 000, 011, 101 and

111. Since these states will never
occur, we don’t care what output
the next state combinational logic

gives for these inputs. These don’t

care conditions can be used to
simplify the required next state
combinational logic

Example — Traffic Light Controller

Current Next

State State
RAG|RAG
1 001110
1101001
001|010
010100

Unused states, 000,
011, 101 and 111.

We now need to determine the next
state combinational logic

For the R FF, we need to determine Dy

To do this we will use a K-map

AG —SC
R\.00 01 11 10

0| X X
R|1@®X R.A

A

|

R.

Dy =RA+RA=R®A
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Example — Traffic Light Controller

Current  Next By inspection we can also see:
State State —
1 1 1 D :A
RAG|RAG A
100[(110 and,
110(001 _
001|010 D =R.A
010|100

Unused states, 000,
011, 101 and 111.

Example — Traffic Light Controller

R A G

D D D
A

CLK

Ol

>
Ol

>
<l
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FSM Problems

« Consider what could happen on power-up

» The state of the FFs could by chance be in
one of the unused states
— This could potentially cause the machine to

become stuck in some unanticipated sequence of
states which never goes back to a used state

FSM Problems

 What can be done?

— Check to see if the FSM can eventually
enter a known state from any of the
unused states

— If not, add additional logic to do this, i.e.,
include unused states in the state transition
table along with a valid next state

— Alternatively use asynchronous Clear and
Preset FF inputs to set a known (used)
state at power up
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Example — Traffic Light Controller

» Does the example FSM self-start?

» Check what the next state logic outputs
if we begin in any of the unused states

e Turns out:

Start Next state

state logic output

000 010 _ _

011 100 Which are all So it does

101 110 valid states self start
111 001

Example 2

We extend Example 1 so that the traffic
signals spend extra time for the R and G
lights

Essentially, we need 2 additional states, i.e.,
6 in total.

In theory, the 3 FF machine gives us the
potential for sufficient states

However, to make the machine combinational
logic easier, it is more convenient to add
another FF (labelled S), making 4 in total
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Example 2
State State
1000 /TR 1001/ TR See that new FF
toggles which
Stat makes the next
ate . .
0101 state logic easier
FF labels State R
RAGS 1100
As before, the first
step is to write
G G down the state
State State transition table
0010 0011
Example 2
State State Current  Next
1000/ (\R)I NLOO/ (R state state
State RAGS|RAGS
0101 1000{1001
FF R
labels  State 1001|1100
100 1100/0011
RAGS 0011|0010
0010({0101
é 0101({1 000
G G

State
0010

State
0011

Clearly a lot of unused states.
When plotting k-maps to determine
the next state logic it is probably
easier to plot Os and 1s in the map
and then mark the unused states
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Example 2
Current  Next
state state e will now use k-maps to determine
R AG S| RAGS the nextstate combinational logic
10001001 FortheR FF, we need to determine Dy
100111100
1100/0011 RA6500011110
0011(0010 0o TX TxToTo
0010[0101 o1 BT, |,
0101[1000 1 0 X xTx )
R 10 1 [ XTI RA
R.A
S
D =RA+RA=R®A
Example 2
Current  Next
state state We can plot k-maps for D, and Dg
RAGS|RAGS togie B
1000[{1001 Da=RS+GS or
1001[{1100 Do=RS+RS=R®S
11000011
0011({0010 Dg =RA+GS or
0010{0101 Dg=GS+AS
0101(1 000 . :
By inspection we can also see:
DS :§
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State Assignment

« As we have mentioned previously, state
assignment is not necessarily obvious or
straightforward

— Depends what we are trying to optimise, e.g.,

» Complexity (which also depends on the
implementation technology, e.g., FPGA, 74 series
logic chips).

— FF implementation may take less chip area than you may
think given their gate level representation

— Wiring complexity can be as big an issue as gate complexity
* Speed
— Algorithms do exist for selecting the ‘optimising’
state assignment, but are not suitable for manual
execution

State Assignment

* If we have m states, we need at least log, m
FFs (or more informally, bits) to encode the
states, e.g., for 8 states we need a min of 3
FFs

« We will now present an example giving
various potential state assignments, some
using more FFs than the minimum
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Example Problem

« We wish to investigate some state
assignment options to implement a divide by
5 counter which gives a 1 output for 2 clock
edges and is 0 for 3 clock edges

CLK

Output

Sequential State Assignment

» Here we simply assign the states in an
increasing natural binary count

» As usual we need to write down the
state transition table. In this case we
need 5 states, i.e., a minimum of 3 FFs
(or state bits). We will designate the 3
FF outputs as c, b, and a

* We can then determine the necessary
next state logic and any output logic.
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Sequential State Assignment

Current  Next By inspection we can see:

state s’tat’e ’ The required output is from FF b
cba|cba Plot k-maps to determine the
000001 npextstate logic:
0O001(010
010|011 ForFFa
011(100 ba —= ac
100l000 c\, 00 01 11 10

of 1

Unused states, 101, ¢l 1 XXX

110 and 111. b
D,=ac

Sequential State Assignment

For FF b:
Current  Next \ ba 2 ab
state state ) 00 ?11\ 11 ;&/
cbalcba o] 1 WX
000f(O0OO01 ab”
001|010 ' _b
010|011 D,=ab+ab=a®b
011|100 ForFFc:
100|000 ba a

C\{00 01 11 10 _gh

Unused states, 101, 0 (1]
110 and 111. c|1 x [\¥/| x

D, =ab "
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Sliding State Assignment

Current  Next By inspection we can see that
state state we can use any of the FF
cbalchba Outputsasthe wanted output
000|001 Plotk-maps to determine the
001|011 nextstatelogic:
011110
110l100 For FF a:
100[000 ba —2 bc
C\\00 01 11 10—
0|@ — | X
Unused states, 010, el 1 < x
101, and 111. |
- b
D,=b.c

Sliding State Assignment

Current  Next By inspection we can see that:

state state For FF b:
cbhajlcba D, =a
000|001 .
0oo1lo011 For FF c:
011|110 D.=b
110(100

100(000O

Unused states,
101, and 111.

010,
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Shift Register Assignment

» As the name implies, the FFs are connected
together to form a shift register. In addition,
the output from the final shift register in the
chain is connected to the input of the first
FF:

— Consequently the data continuously cycles
through the register

Shift Register Assignment

Current  Next Because of the shift register

state state configuration and also from the
edcbaled ¢ ba statetablewecansee that:
0oo011|00110 Da=¢
0011001100 Dy=a
0110011000 D,=b
1100010001 py=c
10001|]00011 p—¢g

€

By inspection we can see that
we can use any of the FF
outputs as the wanted output

Unused states. Lots!

See needs 2 more FFs, but no logic and simple wiring
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One Hot State Encoding

This is a shift register design style where only
one FF at a time holds a 1

Consequently we have 1 FF per state,
compared with log, m for sequential assignment

However, can result in simple fast state
machines

Outputs are generated by ORing together
appropriate FF outputs

One Hot - Example

« We will return to the traffic signal example,
which recall has 4 states

= For 1 hot, we need 1 FF for
§ each state, i.e., 4 in this case

The FFs are connected to form

- a shift register as in the
previous shift register example,
however in 1 hot, only 1 FF

holds a 1 at any time

We can write down the state
G transition table as follows
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One Hot - Example

= Current Next
§ state state
rradgalrraga
A 1000|0100
01 00|00 10
0O 0O10|0 0 01
0O 0O01|1 000
Unused states. Lots!
G Because of the shift register configuration

and also from the state table we can see

that Dy =g Dy=ra D=r D, =a

To generate the R, A and G outputs we do the following ORIng:
R=r+ra A=ra+a G=g¢

One Hot - Example
D,=9 Dy, =ra Dia=r Dy =a
R=r+ra A=ra+a G=g

r ra g

CLK

94



Tripos Example

» The state diagram for a synchroniser is shown.

It has 3 states and 2 inputs, namely e and r.
The states are mapped using sequential
assignment as shown.

r FF labels
[s1 0]

An output, s should be
true if in Sync state

Tripos Example

Current Input Next
state state

o |
w
()

RPIOOOFRrRFR,EFL OO

Unused state 11

XlPrRroOoRrRroO|XX| ®

XRPOX[FPOX|RO| T

RlrRrRrRooo|lo
¥|rorlooloo
x|loooloor|ro

From inspection, S=§;
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Current Input Next

Tripos Example

Plot k-maps to determine the

state state next state logic
S So| € Tl So For FF 1:
00|X 0{00 or €
00X 1]l0 1 $1 S0 00 01 11 10 Sper
010 X0 1 00
silidles R
10]0 X|[L 0 o 1K X
101 0f00 10 L
10]1 1jf1 0 -
T 1]|X X|[XX 5.8 LT
D, =s.€ +S.r +sp.er
Tripos Example
Current Input Next Plot k-maps to determine the
state state next state logic
s So|€r Si 36 For FF O:
oo[x offoo er0001llelo
00X 1]/01 $150 ——5;.50.I
0 1[0 X|[0 1 00 |
01|1 00O 011 |1 50
0111 1)1 0 X | X
100 X[[T0 a1 1o 2
10(1 0f0 O
101 112 0 So-€ v
1 1]|X X|[XX
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Tripos Example

* We will now re-implement the synchroniser
using a 1 hot approach

 |n this case we will need 3 FFs

r FF labels
[s2 51 S0l

An output, s should be
true if in Sync state

From inspection, S =,

Tripos Example

Current Input Next
state state

S'2 $1 So

wn
N
R

(5]
()

RPRORRO|IXX]| ®

RPOXFPOX|RO]| ™

ololo] oleolol §
RPORFLOO|IOO
OQOOI0CORr|FrO
ORrRrOI0ORrO|IOoORr

Remember when interpreting this table, because of the 1-
hot shift structure, only 1 FF is 1 at a time, consequently it
is straightforward to write down the next state equations
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Tripos

Current Input Next

Example

For FF 2:

state state D, =s.er+s,e+s,8er
S22 S0 € Is,s S For FF 1:
001|X 0|f0 01 D, =Sp.r+s.€
oI ruren
o101 ollo o1 Dy =Sg.r +s;.er+s,.er
010]1 11100
100[|0 X|[100
100|1 0|l001
100|1 1|fl100

Tripos Example

r

Note that it is not strictly
necessary to write down the
state table, since the next state
eguations can be obtained from
the state diagram

It can be seen that for each
state variable, the required
eqguation is given by terms
representing the incoming arcs
on the graph

For example, for FF 2: D, =S;.e.r +s,.6 +5,.er
Also note some simplification is possible by noting that:
S, +8+Sy =1 (which is equivalentto e.g., S, =S$;+S; )
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Tripos Example

» So in this example, the 1 hot is easier to
design, but it results in more hardware
compared with the sequential state
assignment design

Implementation of FSMs

« We saw previously that programmable logic
can be used to implement combinational logic
circuits, i.e., using PAL devices

» PAL style devices have been modified to
include D-type FFs to permit FSMs to be
implemented using programmable logic

» One particular style is known as Generic
Array Logic (GAL)

99



06/07/2011

GAL Devices

* They are similar in concept to PALS, but
have the option to make use of a D-type flip-
flops in the OR plane (one following each OR
gate). In addition, the outputs from the D-
types are also made available to the AND
plane (in addition to the usual inputs)

— Consequently it becomes possible to build
programmable sequential logic circuits

OR plane _D_D 5
GAL A

Device

b‘
=]
>

o ©
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FPGA

» Field Programmable Gate Array (FPGA)
devices are the latest type of programmable
logic

« Are a sea of programmable wiring and
function blocks controlled by bits downloaded
from memory

 Function units contain a 4-input 1 output look-
up table with an optional D-FF on the output
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