Denotational Semantics

12 lectures for Part Il CST 2011/12
Andrew Pitts

Course web page:
http://www.cl.cam.ac.uk/teaching/1112/DenotSem/
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Styles of formal semantics

Operational.(@m ot PE

Meanings for program phrases defined in terms of the steps

of computation they can take during program execution.

Axiomatic. (@— toove Lo %D

Meanings for program phrases defined indirectly via the

axioms and rules of some logic of program properties.
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Denotational .

Concerned with giving mathematical models of programming
languages. Meanings for program phrases defined abstractly
as elements of some suitable mathematical structure.



Why do we care?

e Rigour.
. specification of programming languages
... Justification of program transformations

e |nsight.

... generalisations of notions computability
... higher-order functions
... data structures



e Feedback into language design.

. continuations
. monads

e Reasoning principles.

... Scott induction
. Logical relations
... Co-induction



Basic idea of denotational semantics

Syntax u Semantics

P — [P]



Basic idea of denotational semantics

Syntax u Semantics
Recursive program  +—>  Partial recursive function

Boolean circuit — Boolean function

P — [P]



Characteristic features of a
denotational semantics

e Each phrase (= part of a program), P, is given a denotation,
[[P]] — a mathematical object representing the contribution of
P to the meaning of any complete program in which it occurs.

e The denotation of a phrase is determined just by the
denotations of its subphrases (one says that the semantics Is
compositional).



Basic idea of denotational semantics

Syntax u Semantics
Recursive program  +—>  Partial recursive function
Boolean circuit +—  Boolean function
P — [P]

concerns:

e Abstract models (i.e. implementation/machine independent).
~ gk 12 e d of conrse " doman

e Compositionality. )
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e Relationship to computation (e.g. operational semantics).
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Basic example of denotational semantics (l)

IMP — syntax

Arithmetic expressions

AcAexp == n | L | A+ A |

where 1 ranges over integers and
L over a specified set of locations 1L

Boolean expressions

B eBexp 1= true | false | A=A4| ...
| =B | ...
Commands
Ce€eComm := skip | L:=A | C;C

| if BthenCelseC



Basic example of denotational semantics (ll)

Semantic functions

sk f o
A: Aexp — (State = Z) (b <ivole b
71

=k 7

{...,—1,0,1,.D

where
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Basic example of denotational semantics (ll)

Semantic functions

A: Aexp — (State — 7Z)
B: Bexp — (State — B)

where

Z = {...,—1,0,1,...}
B = {true,false}
State = (L — 7Z)
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Basic example of denotational semantics (ll)

Semantic functions

A: Aexp — (State — 7Z)
B: Bexp — (State — B)
C: Comm — (State — State)

. —
where ! —
7 = {....—1.0.1,. ..} Sihﬂmﬂ
B = {true, false } T@mdﬂms
State = (L — Z) WPWW\ ek Stale

Yo celb Stk

10



ordered pairs {(x,y) | x € XAy € Y}

i.e. for all x € X there is
at most one y € Y with

(xvy) €f

Definition. A partial function from a set X to a set Y
is specified by any subset f C X X Y satisfying

(xy) €EfAn(xy)ef—y=Yy
forallx € X and y,y’ € Y.




Basic example of denotational semantics (ll1)

Semantic function A

Aln] = As € State.n
A[L] = Xs € State. s(L)

A[A1 4+ As] = As € State. A[A1](s) + A[A2](s)
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Basic example of denotational semantics (V)

Btrue]

B|false]

B[ A,

As

Semantic function 5

As € State. true
As € State. false

As € State. eq(A[A1](s), A[A2](s))

4 ] /
true ifa = a

 false ifa # a’

where eq(a,a’) = <
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Basic example of denotational semantics (V)

Semantic function C

[skip] = As € State.s

NB: From now on the names of semantic functions are omitted!
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A simple example of compositionality

Given partial functions [C'], [C'] : State — State and a
function | B] : State — {true, false}, we can define

[if B then C else C'] =
As € State.if ([B](s), [C](s), [C"](s))

where
)

r ifb = true

if (b,x,2') = ¢
A ) ' iftb = false

\

14



Basic example of denotational semantics (VI)

Semantic function C

As € State. N € L.if (¢ = L, [A](s), s(¢))
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Denotational semantics of sequential composition

Denotation of sequential composition C'; C’ of two commands
[C;C'] = [C'] o [C] = As € State. [C']([C](s))

given by composition of the partial functions from states to states
[C], [C"] : State — State which are the denotations of the
commands.
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Denotational semantics of sequential composition

Denotation of sequential composition C'; C’ of two commands

[C;C'] = [C'] o [C] = As € State. [C']([C](s))

given by composition of the partial functions from/states to states
[C], [C"] : State —\ State which are the de
commands.

tations of the

V¢
L' D(Teps))is V\V\M’W\Qﬂ{ f
coatrar TcT(s) is undefined
*JY [CMS\:S’,@\%} ardIC D (57) s ‘Mdﬁf"’u’?‘
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Denotational semantics of sequential composition

Denotation of sequential composition C'; C’ of two commands
[C;C'] = [C'] o [C] = As € State. [C']([C](s))

given by composition of the partial functions from states to states
[C], [C"] : State — State which are the denotations of the
commands.

Cf. operational semantics of sequential composition:
C,sls C's|s"
C:C", sl s

16



[while B do C]

Exdond the (Wmé,e IMP To o
{U\V\%/\Am,é/@ M P bg, %&m&.%m

(OY“O\W\W\M G:E OUW\YVWW\OB -

Ce Gmm = - | whle B doC
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[while B do (]

OpermA’vqo\/\o\X Seman hcS dT (A)/H'LZ~)0<>)03
<b\)\/\\'l€ B OQoC , S> —
< if B tren Ci(whie B do €) ehse skip, >
Suggest (obk(né (or ot donstobon Juhle B do ¢
EN\/\\\L 8 dlﬁC?]:
[ £ B then C; (While B doC) else Skip ﬂ



Fixed point property of
[while B do C]

[while B do C] = fipy jc1([while B do C])

where, for each b : State — {true, false} and
c : State — State, we define

fo.c @ (State — State) — (State — State)
as

fo.c = Aw € (State — State). \s € State.

if (b(s), w(c(s)), s).
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Fixed point property of
[while B do (]

[while B do C] = fip) jc7([while B do C])

where, for each b : State — {true, false} and
c : State — State, we define

fo.c @ (State — State) — (State — State)
as

fo.c = Aw € (State — State). \s € State.

if (b(s), w(c(s)), s).

e Why does w = fip] [c7(w) have a solution?

e \What If it has several solutions—which one do we take to be

[while B do C]?
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[while X >0do (Y =X Y ;X =X —1)]

Let

def : : .
State = (L — 7Z) integer assignments to locations

def
D = (State — State) partial functions on states

For [while X >0doY =X Y ;X =X —1] € Dwe
seek a minimal solution to w = f(w), where f : D — D'is
defined by:

f(w)([X — z,Y — y])

([ X — 2,V — if z < 0

WX —2—-1Y »axy]) ifz>0.
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D« (State — State)

e Partial order L on D:

wCw' iff forall s € State, if w is defined at s then
so is w’ and moreover w(s) = w’(s).

iff the graph of w is included in the graph of w’.

e Leastelement 1. € D w.rt. C:
1 = totally undefined partial function

= partial function with empty graph

(satisfies | T w, forallw € D).
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