
UNIVERSITY OF
CAMBRIDGE
Computer Laboratory

Computer Science Tripos Part Ib

Concepts in Programming
Languages

http://www.cl.cam.ac.uk/Teaching/1112/ConceptsPL/

Alan Mycroft am@cl.cam.ac.uk

2011–2012 (Easter Term)

http://www.cl.cam.ac.uk/Teaching/1112/ConceptsPL/
mailto:am@cl.cam.ac.uk

Additional notes

The notes contain material which I regard as important (and certainly part of the syllabus). The
material was lectured, but did not appear on the course hand-out slide copies, so I reproduce it
here to help with revision.

Alan Mycroft 22/5/2012

Access qualifiers and encapsulation

One of the key ideas of object-oriented languages is abstraction – that internal details of an object
can be hidden from the rest of the system. Another word for this is that objects are encapsulated.

Is it tempting to believe that access qualifiers (private, protected and public) provide encapsu-
lation. However, in one respect they fail to do this in that access qualifiers control access to fields
and methods, whereas for reasoning about an object we wish to restrict access to the object itself.
The difference is between controlling a reference to an object and the object itself (which may be
accessed by an aliasing reference).

Two examples illustrate this (the former not lectured, but both friends):

class C
{ private int x;

public C() { x = 0; }
public void inc() { x++; }
public void questionable(C other) { x--; other.x--; }

};

Question: should questionable be allowed to modify other.x as well as this.x? What does
Java say?

The other example is:

class Bar { ... } ;
class Foo
{ private Bar mybar;

public Foo() { mybar = new Bar; }
...

};

It is tempting to think that the private Bar encapsulates the use of its Bar object which may
only be used for Foo-private purposes. (Such objects are often called ‘rep’ (for representation)
objects for Foo objects.) However, this would be untrue if Foo also contained

public Bar cheat() { return mybar; }

Now, presumably no-one would deliberately write such a clear security hole, but there are many
other ways in which an alias to an object referenced by such a private field may be carried outside
the object, for example returning an object which refers to a collection which refers to the value
in mybar. Another example would be having an alternative constructor

public Foo(Bar x) { mybar = x; }

which is called as Foo(y) and where y is used again after the call to Foo, so the object in private
mybar once again has a non-private alias held in the variable y.

Access qualifiers only check static uses; they do not do a proper job of enforcing encapsulation,
e.g. that the object pointed to my mybar has no aliases.

To give a practical example, suppose my Car object has fields containing Brakes, Engine and
CPU objects. Not only should these fields be private, but I would wish that Car objects should
only be able to manipulate their own Brakes, Engine and CPU objects.

2

ML polymorphism

Type inference1 can in general be applied to any language, and indeed C] has a form of type
inference for initialised variables (because its types can become very verbose).

However, inference is more useful for some languages than others. For example in a language
with Algol-like or Java-like types, but expressed in ML-style syntax, we can deduce:

` fn x => x+1 : int -> int
` fn x => not x : bool -> bool
` fn x => x : int -> int
` fn x => x : bool -> bool

For the first two examples, the inference is simple – the expression has a single type. For fn x => x
the situation is more complicated as we can infer two distinct types – neither better than the other –
and guessing the ‘wrong’ one will produce mysterious type errors elsewhere.

The key idea of ML type inference is to enrich the language’s type system with type variables
(α etc.) within the type system itself. So instead of saying (as in the example above)

` fn x => x : t -> t

for all non-polymorphic types t, we now say, in addition to the other judgements for fn x => x,
that

` fn x => x : α -> α

or even

` fn x => x : ∀α. α -> α

This type is now more general than all other types which can be inferred for fn x => x, and is
known as the principal type. See the Part II Types course for more details.

One last point is that the ML type system works very well for pure functional languages (both
lazy and eager). However, impure constructs can cause complications in the type system. The
slides identify that some polymorphic exceptions, e.g.

exception Poly of ’a ; (*** ILLEGAL!!! ***)
(raise Poly true) handle Poly x => x+1 ;

can give type-unsafe programs unless faulted, but assignable variables cause similar problems.
Consider where the error(s) should be in the following program which, if executed, would be
type-unsafe by constructing a list containing an integer and a boolean:

val x = ref [] : (’a list) ref;
x := 3 :: (!x);
x := true :: (!x);
print x;

There are multiple treatments of types which reject such programs in different places, but Standard
ML chooses to fault the first line. Why? What is the error message?

1Many authors now prefer the phrase type reconstruction suggesting that the program was originally properly
typed (so from a universe of Platonic programs if one has philosophical leanings) but some action has caused these
types to be wholly or partly erased from the program.

3

Variance

While the notes cover all the formal material, I thought it would be useful to mention variance in
Java. We all understand Java subtyping:

class Fruit { ... }
class Apple extends Fruit { ... }
class Banana extends Fruit { ... }
Fruit f; Apple a; Banana b;
// each of the following lines should be viewed in isolation
f = a; // OK
f = b; // OK
a = b; // compile-time error
a = f; // compile-time error
a = (Apple)f; // OK, but possible run-time error.

However, now consider generic types: Java built-in arrays, and Java generics (added later to the
language) such as ArrayList<...> from the standard library. Now consider

Fruit[] f_ar; Apple a_ar[] = new Apple[10];
f_ar = a_ar; // allowed in Java (perhaps a design mistake)
f_ar[0] = b; // type checks OK, but run-time exception
// note this program must fail, because otherwise a_ar[0]
// would be a Banana!

We say Java arrays are covariant because a ar is considered a subtype of f ar (which parallels
the way that Apple is a subtype of Fruit). By contrast the generic type ArrayList (from the
Java library) is invariant (or non-variant), hence the following code is rejected by the compiler
(because the two instances of ArrayList are incompatible).

ArrayList<Fruit> f_al; ArrayList<Apple> a_al;
f_al = a_al; // compile-time error

Java does have the ability to assign an ArrayList<Apple> to an ArrayList<Fruit>, but only by
forbidding array update operations on the latter (which were the source of the problems above).
We instead write (using Java ‘wildcards’):

ArrayList<? extends Fruit> f_al; ArrayList<Apple> a_al;
f_al = a_al; // OK
a_al.get(3); OK -- returns type Apple
f_al.get(3); OK -- returns type Fruit
a_al.put(3, new Apple()); // OK
f_al.put(3, new Apple()); // write gives compile-time error

Remark: the underlying issues about co- and contra-variance can also be seen in the previous
section on ML and polymorphic exceptions and polymorphic ref types.

Parallel Languages

Ideally, this course should have a lecture on parallel languages to include the core ideas of: Erlang,
Cilk, X10, OpenMP and the like. I encourage you to read up on such languages (which lie outside
the current syllabus).

4

