
Distributed Systems
8L for Part IB

Handout 4

Dr. Steven Hand

1

Weak Consistency

• Maintaining strong consistency has costs:
– Need to coordinate updates to all (or Qw) replicas
– Slow… and will block other accesses for the duration

• Weak consistency provides fewer guarantees:
– e.g. C1 updates (replica of) object x at S3
– S3 lazily propagates changes to other replicas
– Other clients can potentially read old (“stale”) value

• Considerably more efficient:
– Write is simpler, and doesn’t need to wait for

communication with lots of other replicas…
– … hence is also more available (i.e. fault tolerant)

2

FIFO Consistency

• As with group communication primitives, various
ordering guarantees possible

• FIFO consistency: all updates at Si occur in the same
order at all other replicas
– As with FIFO multicast, can buffer for as long as we like!

– But says nothing about how Si’s updates are interleaved
with Sj’s at another replica (may put Sj first, or Si, or mix)

• Still useful in some circumstances
– e.g. single user accessing different replicas at disjoint times

– Essentially primary replication with primary=last accessed

3

Eventual Consistency

• FIFO consistency doesn’t provide very nice semantics:
– e.g. we write first version of file f to S1

– later we read f from S2, and write version 2
– later again we read f from S3 – changes lost!

• What happened?
– Update from S1 arrived to S3 after those from S2, who thus

overwrote them (stoooopid S3)

• A desirable property in weakly consistent systems is
that they converge to a more correct state
– i.e. in the absence of further updates, every replica will

eventually end up with the same latest version

• This is called eventual consistency

4

Implementing Eventual Consistency

• Servers Si keep a version vector Vi(O) for each object
– For each update of O on Si, increment Vi(O)[i]

– (essentially a vector clock reused as a version number)

• Servers synchronize pair-wise from time to time
– For each object O, compare Vi(O) to Vj(O)

– If Vi(O) < Vj(O), Si gets an up-to-date copy from Sj;
if Vj(O) < Vi(O), Sj gets an up-to-date copy from Si.

• If Vi(O) ~ Vj(O) we have a write-conflict:
– Concurrent updates have occurred at 2 or more servers

– Must apply some kind of reconciliation method

– (similar to revision control systems, and equally painful)

5

Example: Amazon’s Dynamo

• Storage service used within Amazon’s WS
– By Amazon itself, and by 3rd party service providers

• Designed to emphasize availability above consistency:
– SLA to ensure bounded response time 99.99% of the time
– if customer wants to add something to shopping basket

and there’s a failure… still want addition to ‘work’
– Even if get (temporarily) inconsistent view… fix later!

• Built around notion of a so-called sloppy quorum:
– Have N, Qw, Qr as before … but don’t actually require that

Qw > N/2, or that (Qw + Qr) > N
– Instead make tunable: lower Q values = higher availability
– Also let system continue during failure; add a new replica

6

Session Guarantees

• Eventual consistency seems great, but how can you
program to it?
– Need to know something about what guarantees are provided

to the client

• These are called session guarantees:
– Not system wide, just for one (identified) client
– Client must be a more active participant, e.g. client maintains

version vectors of objects it has read & written

• Example: Read Your Writes (RYW):
– if Ci writes a new value to x, a subsequent read of x should see

this update … even if Ci is now reading from a different replica
– Need Ci to remember highest id of any update it made
– Only read from a server if it has seen that update

7

Session Guarantees & Availability

• There are a variety of session guarantees
– All deal with allowable state on replica given history of

accesses by a specific client
– (further examples included in additional, non-examinable

material downloadable from course web page)

• Session guarantees are weaker than strong consistency,
but stronger than ‘pure’ weak consistency:
– But this means that they sacrifice availability
– i.e. choosing not to allow a read or write if it would break a

session guarantee means not allowing that operation!
– ‘pure’ weak consistency would allow the operation

• Can we get the best of both worlds?

8

Consistency, Availability & Partitions

• Short answer: No ;-)
• The CAP Theorem (Brewer 2000, Gilbert & Lynch 2002) says

you can only guarantee two of:
– Consistent data, Availability, Partition-tolerance

• … in a single system.
• In local-area systems, can sometimes drop partition-

tolerance by using redundant networks
• In the wide-area, this is not an option:

– Must choose between consistency & availability
– Most Internet-scale systems ditch consistency

• NB: this doesn’t mean that things are always inconsistent,
just that they’re not always guaranteed to be consistent

9

Replication and Fault-Tolerance

• Can also use replication for a service:
• Easiest is for stateless services:

– Simply duplicate functionality in K machines
– Clients use any (e.g. closest), fail over to another

• Very few totally stateless services, but e.g. much of the web
only has per-session soft-state:
– State generated per-client, lost when client leaves

• Commonly used to scale multi-tier web farms:
– First and second tiers (web servers and app servers) only have

per-session soft-state => trivial to replicate
– (clients are independent, so no coordination needed)
– Third tier (storage/db tier) either partitioned (disjoint clients on

different servers), or implements consistent replication

10

Primary/Backup (Passive) Replication

• A solution for stateful services is primary/backup:
– Backup server takes over in case of failure

• Based around persistent logs and system checkpoints:
– Periodically (or continuously) checkpoint primary
– If detect failure, start backup from checkpoint

• A few variants trade-off fail-over time:
– Cold-standby: backup server must start service (software),

load checkpoint & parse logs
– Warm-standby: backup server has software running in

anticipation – just needs to load primary state
– Hot-standby: backup server mirrors primary work, but

output is discarded; on failure, enable output

11

Active Replication

• Have K replicas running at all times
• Front-end server acts as an ordering node:

– Receives requests from client and forwards them to all
replicas using totally ordered multicast

– Replicas each perform operation and respond to front-end
– Front-end gathers responses, and replies to client

• Typically require replicas to be “state machines”:
– i.e. act deterministically based on input
– Idea is that all replicas operate ‘in lock step’

• Active replication is expensive (in terms of resources)…
– … and not really worth it in the common case.
– However valuable if consider Byzantine failures

12

Access Control

• Distributed systems may want to allow access to
resources based on a security policy

• As with local systems, three key concepts:
– Identification: who you are (e.g. user name)

– Authentication: proving who you are (e.g. password)

– Authorization: determining what you can do

• Can consider authority to cover actions an
authenticated subject may perform on objects
– Access Matrix = set of rows, one per subject, where

each column holds allowed operations on some object

13

ACLs and Capabilities

• Access matrix is typically large & sparse:
– Just keep non-NULL entries by column or by row

• Access Control Lists:
– Keep columns, i.e. for each object O, keep list of subjects

and their allowable access
– ACLs stored with objects (e.g. local filesystems)
– Bit like a guest list on the door of a night club

• Capabilities:
– Keep rows, i.e. for each subject S, keep list of objects and

the allowable access to them
– Capabilities stored with subjects (e.g. processes)
– Bit like a key or access card that you carry around

14

Access Control in Distributed Systems

• In single systems usually have small number of users
(subjects) and large number of objects:
– e.g. a few hundred users in a Unix system
– Easy to track subjects (e.g. effective user id of current

process), and to keep ACL with objects (e.g. with files)

• Distributed systems are large & dynamic:
– Can have huge (and unknown?) number of users
– Interactions over the network – may not have explicit ‘log

in’ and associated process per user

• Capability model is a more natural fit:
– Client presents capability with request for operation
– System only performs operation if capability checks out

15

Cryptographic Capabilities

• Privileged server can issue capabilities
– e.g. has secret key k and a one-way function f()
– Issues a capability <oid, access, f(k, oid, access) >
– Simple example is f(k,o,a) = sha1(k|o|a)

• Client transmits capability with request
– If server knows k, can check if operation allowed
– (otherwise can ask privileged server to validate)

• Can use same capability to access many servers
– And one server can use it on your behalf
– e.g. allow web tier to access objects on storage tier

16

Capabilities: Pros and Cons

• Relatively simple and pretty scalable
• Allow anonymous access (i.e. server does not need to

know identity of client)
– And hence easily allows delegation

• However this also means:
– Capabilities can be stolen (unauthorized users)…
– … and are difficult to revoke (like someone cutting a copy

of your house key)

• Can address these problems by:
– Having time-limited validity (e.g. 30 seconds)
– Incorporating version into capability, and storing version

with the object: increasing version => revoke all access

17

Combining ACLs and Capabilities

• Recall one problem with ACLs was inability to
scale to large number of users (subjects)

• However in practice we may have a small-ish
number of authority levels
– e.g. moderator versus contributor on chat site

• Can use to build role-based access control:
– Have (small-ish) well-defined number of roles

– Store ACLs at objects based on roles

– Allow subjects to enter roles according to some rules

– Issue capabilities which attest to current role

18

Role-Based Access Control

• General idea is very powerful
– Separates { principal → role }, { role → privilege }
– Developers of individual services only need to focus

on the rights associated with a role
– Easily handles evolution (e.g. an individual moves

from being an undergraduate to an alumnus)

• Possible to have sophisticated rules for role entry:
– e.g. enter different role according to time of day
– or entire role hierarchy (1B student <= CST student)
– or parametric/complex roles (“the doctor who is

currently treating you”)

19

Single-System Sign On

• Distributed systems inherently involve a number of
different machines
– Frustrating to have to authenticate to each one!

• Single-system sign on aims to ease user burden while
maintaining good security
– e.g. Kerberos, Microsoft Active Directory let you

authenticate to a single domain controller
– Get a session key and a ticket (~= a capability)
– Ticket is for access to the ticket-granting server (TGS)
– When wish to e.g. log on to another machine, or access a

remote volume, s/w asks TGS for a ticket for that resource

• Some wide-area schemes too (OpenID, Shibboleth)

20

Coordination Services

• Earlier looked at middleware support for RPC/RMI
– Imperative and (typically) synchronous interaction

• An alternative is message-oriented middleware
– Communication via asynchronous messages
– Messages stored in message queues

21

Client App. Server App.

local message
queues

message
queues

Network Network Network

Message Servers

local message
queues

MOM: Pros and Cons

• Asynchronous interaction
– Client and server are only loosely coupled
– Messages are queued
– Good for application integration

• Support for reliable delivery service
– Keep queues in persistent storage

• Processing of messages by message server(s)
– May do filtering, transforming, logging, …
– Networks of message servers

• But pretty low-level (‘packet level’) interactions, and still
just point-to-point messages with no typing...

• Examples: IBM MQSeries, Java Message Service (JMS)

22

Publish-Subscribe

• Get more flexibility with publish-subscribe:
– Publishers advertise and publish events
– Subscribers register interest in topics (i.e. a set of

properties of events)
– Event-service notifies interested subscribers of

published events

• Keeps asynchronous (decoupled) nature of
message-oriented middleware but:
– Allows 1-to-many communication
– Dynamic membership (publishers and subscribers can

join or leave at any time)

23

Publish-Subscribe: Pros and Cons

• Pub/sub useful for ‘ad hoc’ systems such as embedded
systems or sensor networks:
– Client(s) can ‘listen’ for occasional events
– Don’t need to define semantics of entire system in

advance (e.g. what to do if get event <X>)

• Leads to natural “reactive” programming:
– when <X>, <Y> occur then do <Z>
– event-driven systems like Apama can help understand

business processes in real-time

• But:
– Can be awkward to use if application doesn’t fit
– And difficult to make perform well…

24

Simplifying Distributed Systems

• Traditional middleware systems provide a number of
‘medium-level’ abstractions
– Naming and directory services

– Synchronous RPC and asynchronous events

– Group communication and ordered multicast

– Failure detectors and membership protocols

– Consensus schemes (2PC, 3PC, Paxos, …)

– Capabilities and access control

• However still rather tricky to actually build a
distributed system in the real world

• Recent advances in full (?!) distribution transparency

25

Google’s MapReduce

• Programming framework for datacenter scale
– Run a program across 100’s or 10,000’s machines

• Framework takes care of:
– Parallelization, distribution, load-balancing, scaling

up (or down) & fault-tolerance

• Programmer provides two methods ;-)
– map(key, value) -> list of (key’, value’) pairs

– reduce(key’, value’ list) -> result

– Inspired by functional programming

26

MapReduce: The Big Picture

27

Input

Map

Reduce

Output

Shuffle

Example Programs

• Sorting data is trivial (map, reduce both identity function)
– Works since the shuffle step essentially sorts data

• Distributed grep (search for words)
– map: emit a line if it matches a given pattern
– reduce: just copy the intermediate data to the output

• Count URL access frequency
– map: process logs of web page access; output <URL, 1>
– reduce: add all values for the same URL

• Reverse web-link graph
– map: output <target, source> for each link to target in a page
– reduce: concatenate the list of all source URLs associated with a

target. Output <target, list(source)>

28

MapReduce: Pros and Cons

• Extremely simple, and:
– Can auto-parallelize (since operations on every element in

input are independent)
– Can auto-distribute (since rely on underlying GFS

distributed file system)
– Gets fault-tolerance (since tasks are idempotent, i.e. can

just re-execute if a machine crashes)

• Doesn’t really use any of the sophisticated algorithms
we’ve seen (though does use storage replication)

• However not a panacea:
– Limited to batch jobs, and computations which are

expressible as a map() followed by a reduce()

29

Other Frameworks

• MapReduce stems from 2004, and Google (and
others) have done a lot since then

• If interested check out Apache Hadoop
– http://hadoop.apache.org/

• Includes HDFS and Hadoop (clones of GFS and
MapReduce respectively), as well as:
– Cassandra (scalable multi-master database), and
– Zookeeper (coordination/consensus service)

• Lots of ongoing research in this space
– Current hot topics involve dealing with iterative

and/or real-time computations

30

http://hadoop.apache.org/

Summary (1)

• Distributed systems are everywhere
• Core problems include:

– Inherently concurrent systems
– Any machine can fail…
– … as can the network (or parts of it)
– And we have no notion of global time

• Despite this, we can build systems that work
– Basic interactions are request-response
– Can build synchronous RPC/RMI on top of this …
– Or asynchronous message queues or pub/sub

31

Summary (2)

• Coordinating actions of larger sets of computers
requires higher-level abstractions
– Process groups and ordered multicast

– Consensus protocols, and

– Replication and Consistency

• Various middleware packages (e.g. CORBA, EJB)
provide implementations of many of these:
– But worth knowing what’s going on “under the hood”

• Recent trends towards even higher-level:
– MapReduce and friends

32

