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Distributed Mutual Exclusion 

• In first part of course, saw need to coordinate 
concurrent processes / threads 
– In particular considered how to ensure mutual exclusion: 

allow only 1 thread in a critical section 

• A variety of schemes possible: 
– test-and-set locks; semaphores; event counts and 

sequencers; monitors; and active objects 

• But most of these ultimately rely on hardware support 
(atomic operations, or disabling interrupts…) 
– not available across an entire distributed system 

• Assuming we have some shared distributed resources, 
how can we provide mutual exclusion in this case? 
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Solution #1: Central Lock Server 

• Nominate one process C as coordinator 
– If Pi wants to enter critical section, simply sends lock message to 

C, and waits for a reply 
– If resource free, C replies to Pi  with a grant message; otherwise 

C adds Pi to a wait queue 
– When finished, Pi sends unlock message to C 
– C sends grant message to first process in wait queue 
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Central Lock Server: Pros and Cons 

• Central lock server has some good properties: 
– simple to understand and verify 

– live (providing delays are bounded, and no failure) 

– fair (if queue is fair, e.g. FIFO), and easily supports 
priorities if we want them 

– decent performance: lock acquire takes one round-
trip, and release is ‘free’ with asynchronous messages 

• But C can become a performance bottleneck… 

• … and can’t distinguish crash of C from long wait 
– can add additional messages, at some cost 
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Solution #2: Token Passing 

• Avoid central bottleneck 
• Arrange processes in a logical ring 

– Each process knows its predecessor & successor 
– Single token passes continuously around ring 
– Can only enter critical section when possess token; pass 

token on when finished (or if don’t need to enter CS) 
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Token Passing: Pros and Cons 

• Several advantages : 
– Simple to understand: only 1 process ever has token => 

mutual exclusion guaranteed by construction 
– No central server bottleneck 
– Liveness guaranteed (in the absence of failure) 
– So-so performance (between 0 and N messages until a 

waiting process enters, 1 message to leave) 

• But:  
– Doesn’t guarantee fairness (FIFO order) 
– If a process crashes must repair ring (route around) 
– And worse: may need to regenerate token – tricky! 

• And constant network traffic: an advantage??? 
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Solution #3: Totally-Ordered Multicast 

• Scheme due to Ricart & Agrawala (1981) 
• Consider N processes, where each process maintains local 

variable state which is one of { FREE, WANT, HELD } 
• To obtain lock, a process Pi sets state:= WANT, and then 

multicasts lock request to all other processes 
• When a process Pj receives a request from Pi: 

– If Pj’s local state is FREE, then Pj replies immediately with OK 
– If Pj’s local state is HELD, Pj queues the request to reply later 

• A requesting process Pi waits for OK from N-1 processes 
– Once received, sets state:= HELD, and enters critical section 
– Once done, sets state:= FREE, & replies to any queued requests 

• What about concurrent requests?  
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Handling Concurrent Requests 

• Need to decide upon a total order: 
– Each processes maintains a Lamport timestamp, Ti 

– Processes put current Ti into request message 
– Insufficient on its own (recall that Lamport timestamps can 

be identical) => use process id (or similar) to break ties 

• Hence if a process Pj receives a request from Pi and Pj 
has an outstanding request (i.e. Pj’s local state is WANT) 
– If (Tj, Pj) < (Ti, Pi) then queue request from Pi 

– Otherwise, reply with OK, and continue waiting 

• Note that using the total order ensures correctness, 
but not fairness (i.e. no FIFO ordering) 
– Q: can we fix this by using vector clocks? 
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Totally-Ordered Multicast: Example 

• Imagine P1 and P2 simultaneously try to acquire lock… 
– Both set state to WANT, and both send multicast message 
– Assume that timestamps are 17 (for P1) and 9 (for P2) 

• P3 has no interest (state is FREE), so replies Ok to both 
• Since 9 < 17, P1 replies Ok; P2 stays quiet & queues P1’s request 
• P2 enters the critical section and executes…  
• … and when done, replies to P1 (who can now enter critical section) 
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Additional Details 

• Completely unstructured decentralized solution ... but: 
– Lots of messages (1 multicast + N-1 unicast) 
– Ok for most recent holder to re-enter CS without any messages 

• Variant scheme (due to Lamport): 
– To enter, process Pi multicasts request(Pi, Ti) [same as before] 
– On receipt of a message, Pj replies with an ack(Pj,Tj) 
– Processes keep all requests and acks in ordered queue 
– If process Pi sees his request is earliest, can enter CS … and 

when done, multicasts a release(Pi, Ti) message  
– When Pj receives release, removes Pi’s request from queue 
– If Pj’s request is now earliest in queue, can enter CS…  

• Note that both Ricart & Agrawala and Lamport’s scheme, 
have N points of failure: doomed if any process dies :-( 
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Leader Election 

• Many schemes are built on the notion of having a well-
defined ‘leader’ (master, coordinator) 
– examples seen so far include the Berkeley time 

synchronization protocol, and the central lock server 

• An election algorithm is a dynamic scheme to choose a 
unique process to play a certain role 
– assume Pi contains state variable electedi 

– when a process first joins the group, electedi = UNDEFINED 

• By the end of the election, for every Pi, 
– electedi = Px, where Px is the winner of the election, or 
– electedi = UNDEFINED, or  
– Pi has crashed or otherwise left the system 
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Ring-Based Election 

• System has coordinator who crashes 
• Some process notices, and starts an election  

– Puts its id into a message, and sends to its successor 
– On receipt, a process acks to sender (not shown), and then 

appends its id and forwards the election message 
– Finished when a process receives message containing its id 
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The Bully Algorithm 

• Assume that we know the ids of all processes 
• Algorithm proceeds by attempting to elect the process still 

alive with the highest id 
– Assumes we can reliably detect failures by timeouts 

• If process Pi sees current leader has crashed, sends election 
message to all processes with higher ids, and starts a timer 
– Concurrent election initiation by multiple processes is fine 
– Processes receiving an election message reply OK to sender, and 

start an election of their own (if not already in progress) 
– If a process hears nothing back before timeout, it declares itself 

the winner, and multicasts result 

• A dead process that recovers (or new process that joins) 
also starts an election: can ensure highest ID always elected   
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Problems with Elections 

• Algorithms rely on being able use timeouts to reliably detect failure 
• However it is possible for networks to fail: a network partition  

– Some processes can speak to others, but not all 

• Can lead to split-brain syndrome: 
– Every partition independently elects a leader => too many bosses! 

• To fix, need some secondary (& tertiary?) communication scheme 
– e.g. secondary network, shared disk, serial cables, …  
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Aside: Consensus 

• Elections are a specific example of a more general 
problem: consensus 
– Given a set of N processes in a distributed system, how can 

we get them all to agree on something? 

• Classical treatment has every process Pi propose 
something (a value Vi) 
– Want to arrive at some deterministic function of Vi’s (e.g. 

‘majority’ or ‘maximum’ will work for election) 

• A correct solution to consensus must satisfy: 
– Agreement: all nodes arrive at the same answer 
– Validity: answer is one that was proposed by someone 
– Termination: all nodes eventually decide 
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“Consensus is impossible” 

• Famous result due to Fischer, Lynch & Patterson (1985) 
– Focuses on an asynchronous network (unbounded delays) 

with at least one process failure 
– Shows that it is possible to get an infinite sequence of 

states, and hence never terminate 
– Given the Internet is an asynchronous network, then this 

seems to have major consequences!! 

• Not really: 
– Result actually says we can’t always guarantee consensus, 

not that we can never achieve consensus  
– And in practice, we can use tricks to mask failures (such as 

reboot, or replication), and to ignore asynchrony 
– Have seen solutions already, and will see more later 
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Transaction Processing Systems 

• Last term looked at transactions: 
– Support for composite operations (i.e. a collection of 

reads and updates to a set of objects) 

• A transaction is atomic (“all-or-nothing”) 
– If it commits, all operations are applied 
– If it aborts, it’s as if nothing ever happened 

• A committed transaction moves system from one 
consistent state to another 

• Transaction processing systems also provide: 
– isolation (between concurrent transactions) 
– durability (committed transactions survive a crash)   
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Distributed Transactions 

• Scheme described last term was client/server 
– (even though I didn’t say it at the time ;-) 
– Clients communicate with a server (e.g. a database) 

• However distributed transactions are those which 
span multiple transaction processing servers 

• E.g. booking a complicated trip from London to Vail, CO 
– Could fly LHR -> LAX -> EGE + hire a car…  
– … or fly LHR -> ORD -> DEN + take a public bus 

• Want a complete trip (i.e. atomicity) 
– Not get stuck in an airport with no onward transport! 

• Must coordinate actions across multiple parties 
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A Model of Distributed Transactions 

• Multiple servers (S1, S2, S3, …), each holding some objects which can 
be read and written within client transactions 

• Multiple concurrent clients (C1, C2, …) who perform transactions 
which interact with one or more servers 
– e.g. T1 reads x, z from S1, writes a on S2, and reads & writes j on S3 

– e.g. T2 reads i, j from S3, then writes z on S1 

• A successful commit implies agreement at all servers 
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Implementing Distributed Transactions 

• Can build on top of solution for single server: 
– e.g. use locking or shadowing to provide isolation 
– e.g. use write-ahead long for durability 

• Main additional challenge is in coordinating 
decision to either commit or abort 
– Assume clients create unique transaction id: TXID 
– Uses TXID in every read or write request to a server Si 

– First time Si sees a given TXID, it starts a tentative 
transaction associated with that transaction id 

– When client wants to commit, must perform atomic 
commit of all tentative transactions across all servers 
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Atomic Commit Protocols 

• A naïve solution would have client simply invoke 
commit(TXID) on each server in turn 
– Will work only if no concurrent conflicting clients, every server 

commits (or aborts), and no server crashes 

• To handle concurrent clients, introduce a coordinator: 
– A designated machine (can be one of the servers) 
– Clients ask coordinator to commit on their behalf… and hence 

coordinator can serialize concurrent commits 

• To handle inconsistency/crashes, coordinator: 
– Asks all involved servers if they could commit TXID 
– Servers Si reply with a vote Vi = { COMMIT, ABORT } 
– If all Vi = COMMIT, coordinator multicasts doCommit(TXID) 
– Otherwise, coordinator multicasts doAbort(TXID) 
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Two-Phase Commit (2PC) 

• This scheme is called two-phase commit (2PC): 
– First phase is voting: collect votes from all parties 
– Second phase is completion: either abort or commit 

• Doesn’t require ordered multicast, but needs reliability 
– If server fails to respond by timeout, treat as a vote to abort 

• Once all ACKs received, inform client of successful commit  
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2PC: Additional Details 

• Client (or any server) can abort during execution: 
simply multicasts doAbort(TXID) to all servers 

• If a server votes to abort, can immediately abort locally 

• If a server votes to commit, it must be able to do so if 
subsequently asked by coordinator: 
– Before voting to commit, server will prepare by writing 

entries into log and flushing to disk 

– (this is why some sources call the first phase “prepare”) 

– Also records all requests from & responses to coordinator 

– Hence even if crashes after voting to commit, will be able 
to recover on reboot 
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2PC: Coordinator Crashes 

• Coordinator must also persistently log events: 
– Including initial message from client, requesting votes, 

receiving replies, and final decision made 
– Lets it reply if (rebooted) client or server asks for outcome 
– Also lets coordinator recover from reboot, e.g. re-send any 

vote requests without responses, or reply to client 

• One additional problem occurs if coordinator crashes 
after phase 1, but before initiating phase 2: 
– servers will be uncertain of outcome… 
– if voted to commit, will have to continue to hold locks, etc 

• (other consensus protocols such as 3PC provide better 
progress guarantees if permanent failure can happen) 
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Replication 

• Many distributed systems involve replication 
– Multiple copies of some object stored at different servers 
– Multiple servers capable of providing some operation(s) 

• Three key advantages: 
– Load-Balancing: if have many replicas, then can spread out 

work from clients between them 
– Lower Latency: if replicate an object/server close to a 

client, will get better performance 
– Fault-Tolerance: can tolerate the failure of some replicas 

and still provide service 

• Examples include DNS, web & file caching (& content-
distribution networks), replicated databases, …  
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Replication in a Single System 

• One good example is RAID: 
– RAID = Redundant Array of Inexpensive Disks 
– i.e. disks are cheap, so use several instead of just one  
– if replicate data across disks, can tolerate disk crash 

• A variety of different configurations (levels) 
– RAID 0: stripe data across disks, i.e. block 0 to disk 0, block 1 to 

disk 1, block 2 to disk 0, and so on 
– RAID 1: mirror (replicate) data across disks, i.e. block 0 written 

on disk 0 and disk 1 
– RAID 5: parity – write block 0 to disk 0, block 1 to disk 1, and 

(block 0 XOR block 1) to disk 2 

• Get improved performance since can access disks in parallel 
• With RAID 1, 5 also get fault-tolerance 

 
 

 



Replication in Distributed Systems 

• Have some number of servers (S1, S2, S3, …) 
– Each holds a copy of all objects 

• Each client Ci can access any replica (any Si) 
– e.g. clients can choose closest, or least loaded 

• If objects are read-only, then trivial: 
– Start with one primary server P having all data 
– If client asks Si for an object, Si returns a copy  
– (Si fetches a copy from P if it doesn’t already have one) 

• Can easily extend to allow updates by P 
– When updating object O, send invalidate(O) to all Si 

– (Or add just tag all objects with ‘valid-until’ field) 

• In essence, this is how web caching / CDNs work today 
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Replication and Consistency 

• Gets more challenging if clients can perform updates 
• For example, imagine x has value 3 (in all replicas) 

– C1 requests write(x, 5) from S4 
– C2 requests read(x) from S3 
– What should occur?   

• With strong consistency, the distributed system 
behaves as if there is no replication present: 
– i.e. in above, C2 should get the value 5 
– requires coordination between all servers 

• With weak consistency, C2 may get 3 or 5 (or …?) 
– Less satisfactory, but much easier to implement 
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Achieving Strong Consistency 

• Need to ensure any update propagates to all replicas 
before allow any subsequent reads 

• One solution: 
– When Si receives request to update x, first locks x at all 

other replicas 
– Once successful, Si makes update, and propagates to all 

other replicas, who acknowledge 
– Finally, Si instructs all replicas to unlock 

• Need to handle failure (of replica, or network) 
– Add step to tentatively apply update, and only actually 

apply (“commit”) update if all replicas agree 

• We’ve reinvented distributed transactions & 2PC ;-) 
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Quorum Systems 

• Transactional consistency works, but: 
– High overhead, and  
– Poor availability during update (worse if crash!) 

• An alternative is a quorum system: 
– Imagine there are N replicas, a write quorum Qw, and 

a read quorum Qr, where Qw > N/2 and (Qw + Qr) > N 

• To perform a write, must update Qw replicas 
– Ensures a majority of replicas have new value 

• To perform a read, must read Qr replicas 
– Ensures that we read at least one updated value 
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Example 

• Seven replicas (N=7), Qw = 5, Qr = 3 
• All objects have associated version (T, S) 

– T is logical timestamp, initialized to zero 
– S is a server ID (used to break ties) 

• Any write will update at least Qw replicas 
• Performing a read is easy: 

– Choose replicas to read from until get Qr responses 
– Correct value is the one with highest version 
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Quorum Systems: Writes 

• Performing a write is trickier: 
– Must ensure get entire quorum, or cannot update 

– Hence need a commit protocol (as before) 

• In fact, transactional consistency is a quorum 
protocol with Qw = N and Qr = 1! 
– But when Qw < N, additional complexity since must 

bring replicas up-to-date before updating 

• Quorum systems are good when expect failures 
– Additional work on update, additional work on reads…  

– … but increased availability during failure 
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