
Distributed Systems
8L for Part IB

Handout 3

Dr. Steven Hand

1

Distributed Mutual Exclusion

• In first part of course, saw need to coordinate
concurrent processes / threads
– In particular considered how to ensure mutual exclusion:

allow only 1 thread in a critical section

• A variety of schemes possible:
– test-and-set locks; semaphores; event counts and

sequencers; monitors; and active objects

• But most of these ultimately rely on hardware support
(atomic operations, or disabling interrupts…)
– not available across an entire distributed system

• Assuming we have some shared distributed resources,
how can we provide mutual exclusion in this case?

2

Solution #1: Central Lock Server

• Nominate one process C as coordinator
– If Pi wants to enter critical section, simply sends lock message to

C, and waits for a reply
– If resource free, C replies to Pi with a grant message; otherwise

C adds Pi to a wait queue
– When finished, Pi sends unlock message to C
– C sends grant message to first process in wait queue

3

P1

P2 physical time

C

...execute critical section

Central Lock Server: Pros and Cons

• Central lock server has some good properties:
– simple to understand and verify

– live (providing delays are bounded, and no failure)

– fair (if queue is fair, e.g. FIFO), and easily supports
priorities if we want them

– decent performance: lock acquire takes one round-
trip, and release is ‘free’ with asynchronous messages

• But C can become a performance bottleneck…

• … and can’t distinguish crash of C from long wait
– can add additional messages, at some cost

4

Solution #2: Token Passing

• Avoid central bottleneck
• Arrange processes in a logical ring

– Each process knows its predecessor & successor
– Single token passes continuously around ring
– Can only enter critical section when possess token; pass

token on when finished (or if don’t need to enter CS)

5

P0

P4
P3

P1

P2

P5

Initial token
generated by P0 Passes clockwise

around ‘ring’
If e.g. P4 wants to

enter CS, holds onto
token for duration

Token Passing: Pros and Cons

• Several advantages :
– Simple to understand: only 1 process ever has token =>

mutual exclusion guaranteed by construction
– No central server bottleneck
– Liveness guaranteed (in the absence of failure)
– So-so performance (between 0 and N messages until a

waiting process enters, 1 message to leave)

• But:
– Doesn’t guarantee fairness (FIFO order)
– If a process crashes must repair ring (route around)
– And worse: may need to regenerate token – tricky!

• And constant network traffic: an advantage???

6

Solution #3: Totally-Ordered Multicast

• Scheme due to Ricart & Agrawala (1981)
• Consider N processes, where each process maintains local

variable state which is one of { FREE, WANT, HELD }
• To obtain lock, a process Pi sets state:= WANT, and then

multicasts lock request to all other processes
• When a process Pj receives a request from Pi:

– If Pj’s local state is FREE, then Pj replies immediately with OK
– If Pj’s local state is HELD, Pj queues the request to reply later

• A requesting process Pi waits for OK from N-1 processes
– Once received, sets state:= HELD, and enters critical section
– Once done, sets state:= FREE, & replies to any queued requests

• What about concurrent requests?

7

Handling Concurrent Requests

• Need to decide upon a total order:
– Each processes maintains a Lamport timestamp, Ti

– Processes put current Ti into request message
– Insufficient on its own (recall that Lamport timestamps can

be identical) => use process id (or similar) to break ties

• Hence if a process Pj receives a request from Pi and Pj
has an outstanding request (i.e. Pj’s local state is WANT)
– If (Tj, Pj) < (Ti, Pi) then queue request from Pi

– Otherwise, reply with OK, and continue waiting

• Note that using the total order ensures correctness,
but not fairness (i.e. no FIFO ordering)
– Q: can we fix this by using vector clocks?

8

Totally-Ordered Multicast: Example

• Imagine P1 and P2 simultaneously try to acquire lock…
– Both set state to WANT, and both send multicast message
– Assume that timestamps are 17 (for P1) and 9 (for P2)

• P3 has no interest (state is FREE), so replies Ok to both
• Since 9 < 17, P1 replies Ok; P2 stays quiet & queues P1’s request
• P2 enters the critical section and executes…
• … and when done, replies to P1 (who can now enter critical section)

9

P3

17
17

17

9

9 9

P2

P1 P3

OK

P2

P1 P3

P2

P1

OK
OK

OK

Additional Details

• Completely unstructured decentralized solution ... but:
– Lots of messages (1 multicast + N-1 unicast)
– Ok for most recent holder to re-enter CS without any messages

• Variant scheme (due to Lamport):
– To enter, process Pi multicasts request(Pi, Ti) [same as before]
– On receipt of a message, Pj replies with an ack(Pj,Tj)
– Processes keep all requests and acks in ordered queue
– If process Pi sees his request is earliest, can enter CS … and

when done, multicasts a release(Pi, Ti) message
– When Pj receives release, removes Pi’s request from queue
– If Pj’s request is now earliest in queue, can enter CS…

• Note that both Ricart & Agrawala and Lamport’s scheme,
have N points of failure: doomed if any process dies :-(

10

Leader Election

• Many schemes are built on the notion of having a well-
defined ‘leader’ (master, coordinator)
– examples seen so far include the Berkeley time

synchronization protocol, and the central lock server

• An election algorithm is a dynamic scheme to choose a
unique process to play a certain role
– assume Pi contains state variable electedi

– when a process first joins the group, electedi = UNDEFINED

• By the end of the election, for every Pi,
– electedi = Px, where Px is the winner of the election, or
– electedi = UNDEFINED, or
– Pi has crashed or otherwise left the system

11

Ring-Based Election

• System has coordinator who crashes
• Some process notices, and starts an election

– Puts its id into a message, and sends to its successor
– On receipt, a process acks to sender (not shown), and then

appends its id and forwards the election message
– Finished when a process receives message containing its id

12

C

P4
P3

P1

P2

P5

P2 notices C has
crashed and

starts election

P4 has also
crashed, so P3
routes around

(2)

(2,3)

(2,3,5)
(1,2,3,5)

P2 can multicast
winner (or can
continue to P5)

(2,3)

The Bully Algorithm

• Assume that we know the ids of all processes
• Algorithm proceeds by attempting to elect the process still

alive with the highest id
– Assumes we can reliably detect failures by timeouts

• If process Pi sees current leader has crashed, sends election
message to all processes with higher ids, and starts a timer
– Concurrent election initiation by multiple processes is fine
– Processes receiving an election message reply OK to sender, and

start an election of their own (if not already in progress)
– If a process hears nothing back before timeout, it declares itself

the winner, and multicasts result

• A dead process that recovers (or new process that joins)
also starts an election: can ensure highest ID always elected

13

Problems with Elections

• Algorithms rely on being able use timeouts to reliably detect failure
• However it is possible for networks to fail: a network partition

– Some processes can speak to others, but not all

• Can lead to split-brain syndrome:
– Every partition independently elects a leader => too many bosses!

• To fix, need some secondary (& tertiary?) communication scheme
– e.g. secondary network, shared disk, serial cables, …

14

P0 P4 P2

P8

P5

P3

P6 P7

P1

Aside: Consensus

• Elections are a specific example of a more general
problem: consensus
– Given a set of N processes in a distributed system, how can

we get them all to agree on something?

• Classical treatment has every process Pi propose
something (a value Vi)
– Want to arrive at some deterministic function of Vi’s (e.g.

‘majority’ or ‘maximum’ will work for election)

• A correct solution to consensus must satisfy:
– Agreement: all nodes arrive at the same answer
– Validity: answer is one that was proposed by someone
– Termination: all nodes eventually decide

15

“Consensus is impossible”

• Famous result due to Fischer, Lynch & Patterson (1985)
– Focuses on an asynchronous network (unbounded delays)

with at least one process failure
– Shows that it is possible to get an infinite sequence of

states, and hence never terminate
– Given the Internet is an asynchronous network, then this

seems to have major consequences!!

• Not really:
– Result actually says we can’t always guarantee consensus,

not that we can never achieve consensus
– And in practice, we can use tricks to mask failures (such as

reboot, or replication), and to ignore asynchrony
– Have seen solutions already, and will see more later

16

Transaction Processing Systems

• Last term looked at transactions:
– Support for composite operations (i.e. a collection of

reads and updates to a set of objects)

• A transaction is atomic (“all-or-nothing”)
– If it commits, all operations are applied
– If it aborts, it’s as if nothing ever happened

• A committed transaction moves system from one
consistent state to another

• Transaction processing systems also provide:
– isolation (between concurrent transactions)
– durability (committed transactions survive a crash)

17

Distributed Transactions

• Scheme described last term was client/server
– (even though I didn’t say it at the time ;-)
– Clients communicate with a server (e.g. a database)

• However distributed transactions are those which
span multiple transaction processing servers

• E.g. booking a complicated trip from London to Vail, CO
– Could fly LHR -> LAX -> EGE + hire a car…
– … or fly LHR -> ORD -> DEN + take a public bus

• Want a complete trip (i.e. atomicity)
– Not get stuck in an airport with no onward transport!

• Must coordinate actions across multiple parties

18

A Model of Distributed Transactions

• Multiple servers (S1, S2, S3, …), each holding some objects which can
be read and written within client transactions

• Multiple concurrent clients (C1, C2, …) who perform transactions
which interact with one or more servers
– e.g. T1 reads x, z from S1, writes a on S2, and reads & writes j on S3

– e.g. T2 reads i, j from S3, then writes z on S1

• A successful commit implies agreement at all servers

19

C1 C2

x=5
y=0
z=3

a=7
b=8
c=1

i=2
j=4

S1

S2

S3

T1 transaction {
 if(x<2) abort;
 a:= z;
 j:= j + 1;
}

T2 transaction {
 z:= (i+j);
}

Implementing Distributed Transactions

• Can build on top of solution for single server:
– e.g. use locking or shadowing to provide isolation
– e.g. use write-ahead long for durability

• Main additional challenge is in coordinating
decision to either commit or abort
– Assume clients create unique transaction id: TXID
– Uses TXID in every read or write request to a server Si

– First time Si sees a given TXID, it starts a tentative
transaction associated with that transaction id

– When client wants to commit, must perform atomic
commit of all tentative transactions across all servers

20

Atomic Commit Protocols

• A naïve solution would have client simply invoke
commit(TXID) on each server in turn
– Will work only if no concurrent conflicting clients, every server

commits (or aborts), and no server crashes

• To handle concurrent clients, introduce a coordinator:
– A designated machine (can be one of the servers)
– Clients ask coordinator to commit on their behalf… and hence

coordinator can serialize concurrent commits

• To handle inconsistency/crashes, coordinator:
– Asks all involved servers if they could commit TXID
– Servers Si reply with a vote Vi = { COMMIT, ABORT }
– If all Vi = COMMIT, coordinator multicasts doCommit(TXID)
– Otherwise, coordinator multicasts doAbort(TXID)

21

Two-Phase Commit (2PC)

• This scheme is called two-phase commit (2PC):
– First phase is voting: collect votes from all parties
– Second phase is completion: either abort or commit

• Doesn’t require ordered multicast, but needs reliability
– If server fails to respond by timeout, treat as a vote to abort

• Once all ACKs received, inform client of successful commit

22

C

S1
physical time

S3

canCommit(TxID)?

S2

doCommit(TxID)

2PC: Additional Details

• Client (or any server) can abort during execution:
simply multicasts doAbort(TXID) to all servers

• If a server votes to abort, can immediately abort locally

• If a server votes to commit, it must be able to do so if
subsequently asked by coordinator:
– Before voting to commit, server will prepare by writing

entries into log and flushing to disk

– (this is why some sources call the first phase “prepare”)

– Also records all requests from & responses to coordinator

– Hence even if crashes after voting to commit, will be able
to recover on reboot

23

2PC: Coordinator Crashes

• Coordinator must also persistently log events:
– Including initial message from client, requesting votes,

receiving replies, and final decision made
– Lets it reply if (rebooted) client or server asks for outcome
– Also lets coordinator recover from reboot, e.g. re-send any

vote requests without responses, or reply to client

• One additional problem occurs if coordinator crashes
after phase 1, but before initiating phase 2:
– servers will be uncertain of outcome…
– if voted to commit, will have to continue to hold locks, etc

• (other consensus protocols such as 3PC provide better
progress guarantees if permanent failure can happen)

24

Replication

• Many distributed systems involve replication
– Multiple copies of some object stored at different servers
– Multiple servers capable of providing some operation(s)

• Three key advantages:
– Load-Balancing: if have many replicas, then can spread out

work from clients between them
– Lower Latency: if replicate an object/server close to a

client, will get better performance
– Fault-Tolerance: can tolerate the failure of some replicas

and still provide service

• Examples include DNS, web & file caching (& content-
distribution networks), replicated databases, …

25

Replication in a Single System

• One good example is RAID:
– RAID = Redundant Array of Inexpensive Disks
– i.e. disks are cheap, so use several instead of just one
– if replicate data across disks, can tolerate disk crash

• A variety of different configurations (levels)
– RAID 0: stripe data across disks, i.e. block 0 to disk 0, block 1 to

disk 1, block 2 to disk 0, and so on
– RAID 1: mirror (replicate) data across disks, i.e. block 0 written

on disk 0 and disk 1
– RAID 5: parity – write block 0 to disk 0, block 1 to disk 1, and

(block 0 XOR block 1) to disk 2

• Get improved performance since can access disks in parallel
• With RAID 1, 5 also get fault-tolerance

Replication in Distributed Systems

• Have some number of servers (S1, S2, S3, …)
– Each holds a copy of all objects

• Each client Ci can access any replica (any Si)
– e.g. clients can choose closest, or least loaded

• If objects are read-only, then trivial:
– Start with one primary server P having all data
– If client asks Si for an object, Si returns a copy
– (Si fetches a copy from P if it doesn’t already have one)

• Can easily extend to allow updates by P
– When updating object O, send invalidate(O) to all Si

– (Or add just tag all objects with ‘valid-until’ field)

• In essence, this is how web caching / CDNs work today

27

Replication and Consistency

• Gets more challenging if clients can perform updates
• For example, imagine x has value 3 (in all replicas)

– C1 requests write(x, 5) from S4
– C2 requests read(x) from S3
– What should occur?

• With strong consistency, the distributed system
behaves as if there is no replication present:
– i.e. in above, C2 should get the value 5
– requires coordination between all servers

• With weak consistency, C2 may get 3 or 5 (or …?)
– Less satisfactory, but much easier to implement

28

Achieving Strong Consistency

• Need to ensure any update propagates to all replicas
before allow any subsequent reads

• One solution:
– When Si receives request to update x, first locks x at all

other replicas
– Once successful, Si makes update, and propagates to all

other replicas, who acknowledge
– Finally, Si instructs all replicas to unlock

• Need to handle failure (of replica, or network)
– Add step to tentatively apply update, and only actually

apply (“commit”) update if all replicas agree

• We’ve reinvented distributed transactions & 2PC ;-)

29

Quorum Systems

• Transactional consistency works, but:
– High overhead, and
– Poor availability during update (worse if crash!)

• An alternative is a quorum system:
– Imagine there are N replicas, a write quorum Qw, and

a read quorum Qr, where Qw > N/2 and (Qw + Qr) > N

• To perform a write, must update Qw replicas
– Ensures a majority of replicas have new value

• To perform a read, must read Qr replicas
– Ensures that we read at least one updated value

30

Example

• Seven replicas (N=7), Qw = 5, Qr = 3
• All objects have associated version (T, S)

– T is logical timestamp, initialized to zero
– S is a server ID (used to break ties)

• Any write will update at least Qw replicas
• Performing a read is easy:

– Choose replicas to read from until get Qr responses
– Correct value is the one with highest version

31

X=5 v1,S1

S1 time

X=5 v1,S1 X=5 v1,S1 X=5 v1,S1 X=5 v1,S1 X=5 v1,S1 X=5 v1,S1

S2 S3 S4 S5 S6 S7

X=5 v1,S1 X=0 v2,S3 X=0 v2,S3 X=5 v1,S1 X=0 v2,S3 X=0 v2,S3 X=0 v2,S3

Quorum Systems: Writes

• Performing a write is trickier:
– Must ensure get entire quorum, or cannot update

– Hence need a commit protocol (as before)

• In fact, transactional consistency is a quorum
protocol with Qw = N and Qr = 1!
– But when Qw < N, additional complexity since must

bring replicas up-to-date before updating

• Quorum systems are good when expect failures
– Additional work on update, additional work on reads…

– … but increased availability during failure

32

