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o “Distributed Systems: Concepts and Design”, (5t Ed)
Coulouris et al, Addison-Wesley 2012

e “Distributed Systems: Principles and Paradigms”
(2nd Ed), Tannenbaum et al, Prentice Hall, 2006

e “Operating Systems, Concurrent and Distributed
S/W Design“, Bacon & Harris, Addison-Wesley 2003

— or “Concurrent Systems”, (2" Ed), Jean Bacon,
Addison-Wesley 1997
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e Aset of discrete computers (“nodes”) which
cooperate to perform a computation

— Operates “as if” it were a single computing system

e Examples include:
— Compute clusters (e.g. CERN, HPCF)
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— Distributed storage systems (e.g. NFS, Dropbox, ...)
— The Web (client/server; CDNs; and back-end too!)
— Vehicles, factories, buildings (?)
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e Scale and performance
— Cheaper to buy 100 PCs than a supercomputer...
— ... and easier to incrementally scale up too!

e Sharing and Communication

— Allow access to shared resources (e.g. a printer) and
information (e.g. distributed FS or DBMYS)

— Enable explicit communication between machines
(e.g. EDI, CDNs) or people (e.g. email, twitter)
e Reliability
— Can hopefully continue to operate even if some parts
of the system are inaccessible, or simply crash
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e Distributed Systems are Concurrent Systems

— Need to coordinate independent execution at
each node (c/f first part of course)

* Failure of any components (nodes, network)
— At any time, for any reason
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— Can’t distinguish congestion from crash/partition

* No global time
— Tricky to coordinate, or even agree on ordering!
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* Recall a distributed system should appear “as if”
it were executing on a single computer

* We often call this transparency:

— User is unaware of multiple machines
— Programmer is unaware of multiple machines

e How “unaware” can vary quite a bit

— e.g. web user probably aware that there’s network
communication ... but not the number or location of
the various machines involved

— e.g. programmer may explicitly code communication,
or may have layers of abstraction: middleware
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Machine A Machine B Machine C

Distributed applications

Middleware services

Network OS Network OS Network OS
services services services
Kernel Kernel Kernhel

Network

 Note that the middleware layer extends over multiple machines
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Transparency Description

Hide differences in data representation and how a

Access :
resource is accessed
Location Hide where a resource is located
Migration Hide that a resource may move to another location
: Hide that a resource may be moved to another
Relocation : o
location while in use
Replication Hide that_ a resource may be provided by multiple
v cooperating systems
Hide that a resource may be simultaneously shared by
Concurrency -
several competitive users
Failure Hide the failure and recovery of a resource

Persistence

Hide whether a (software) resource is in memory or
on disk
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 We will look at techniques, protocols &
algorithms used in distributed systems

— in many cases, these will be provided for you by a
middleware software suite

— but knowing how things work will still be useful!
 Assume OS & networking support

— processes, threads, synchronization

— basic communication via messages

— (will see later how assumptions about messages will
influence the systems we [can] build)

e Let’s start with a simple client-server systems
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1970s: development of LANs

1980s: standard deployment involves small
number of servers, plus many workstations
— Servers: always-on, powerful machines

— Workstations: personal computers

 Workstations request ‘service’ from servers over
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File server

@ Disks on which
shared file system

My « !

Network 10

Client 1 Client 2
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* Basic scheme:

— Client issues a request message

— Server performs request, and sends reply
e Simplest version is synchronous:

— client blocks awaiting reply
e Example: HTTP 1.0

— Client (browser) sends “GET /index.html”

— Web server fetches file and returns it
— Browser displays HTML web page

11
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* Errors are application-level things => easy ;-)
— E.g. client requests non-existent web page
— Need special reply (e.g. “404 Not Found”)

* Failures are system-level things, e.g.:

— lost message, client/server crash, network down,...

* To handle failure, client must timeout if it
doesn’t receive a reply within a certain time T
— On timeout, client can retry request
— (Q: what should we set T to?)

12
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e (Client could timeout because:
1. Request was lost
2. Request was sent, but server crashed on receipt

3. Request was sent & received, and server performed operation
(or some of it?), but crashed before replying

4. Request was sent & received, and server performed operation
correctly, and sent reply ... which was then lost

5. As #4, but reply has just been delayed for longer than T

e For read-only stateless requests (like HTTP GET), can retry
in all cases, but what if request was an order with Amazon?

— In case #1, we probably want to re-order... and in case #5 we
want to wait for a little bit longer, and otherwise we ... erm?

 Worse: we don’t know what case it actually was!

13
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e What we want is exactly-once semantics:

— Our request occurs once no matter how many times
we retry (or if the network duplicates our messages)

e E.g. add a unique ID to every request

— Server remembers IDs, and associated responses
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— Client ignores duplicate responses
e Pretty tricky to ensure exactly-once in practice

— e.g. if server explodes ;-)

14
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* |n practice, protocols guarantee one of the below

* All-or-nothing (atomic) semantics
— Use scheme on previous page, with persistent log
— (essentially same idea as transaction processing).

e At-most-once semantics
— Request carried out once, or not at all, or don’t know
— e.g. send a single request, and give up if we timeout

e At-least-once semantics
— Retry if we timeout, & risk operation occurring again
— Ok if the operation is read-only, or idempotent

15
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e Request/response protocols are useful —and
widely used — but rather clunky to use

— e.g. need to define the set of requests, including how
they are represented in network messages

e A nicer abstraction is remote procedure call
— Programmer simply invokes a procedure...
— ...but it executes on a remote machine (the server)

— RPC subsystem handles message formats, sending &
receiving, handling timeouts, etc

e Aim is to make distribution (mostly) transparent
— certain failure cases wouldn’t happen locally

16
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e RPCis integrated with the programming language
— Some additional magic to specify things are remote

 RPC layer marshals parameters to the call, as well

as any return value(s), e.g.

Caller

L~

call(.)

A

A

V4

RPC Service

1) Marshal args
2) Generate ID
3) Start timer

8) Unmarshal
9) Acknowledge

message

RPC Service

4) Unmarshal
5) Record ID

6) Marshal
7) Set timer

™

/

Remote
Function

]

fun(.)

I
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 To marshal, the RPC layer needs to know:
— how many arguments the procedure has,
— how many results are expected, and
— the types of all of the above
 The programmer must specify this by describing things
in an interface definition language (IDL)

— In higher-level languages, this may already be included as
standard (e.g. C#, Java)

— In others (e.g. C), IDL is part of the middleware

* The RPC layer can then automatically generate stubs
— Small pieces of code at client and server (see previous)

18
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 Developed mid 80’s for Sun Unix systems

e Simple request/response protocol:
— Server registers one or more “programs” (services)

— Client issues requests to invoke specific
procedures within a specific service
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— requests have a unique transaction id which can
be used to detect & handle retransmissions
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e SunRPC used XDR for describing interfaces:

// Tile: test.x
program test {
version testver {

int get(getargs) = 1; // procedure number
int put(putargs) = 2; // procedure number
} = 1; // version number
} = 0x12345678; // program number

* rpcgen generates [un]marshaling code, stubs
e Single arguments... but recursively convert values
e Some support for following pointers too

e Data on the wire always in big-endian format (oops!)
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1. Write XDR, and use rpcgen to generate skeleton code
2. Fillin blanks (i.e. write actual moving parts for server,
and for client(s)), and compile code.
3. Run server program & register with portmapper
— holds mappings from { prog#, ver#, proto } -> port
— (on linux, try “/usr/sbin/rpcinfo -p”)
4. Server process will then listen(), awaiting clients
5. When a client starts, client stub calls clnt_create

Sends { prog#, ver#, proto } to portmapper on server,
and gets reply with appropriate port number to use

Client now invokes remote procedures as needed

21
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 NFS = Networked File System (developed Sun)
— aimed to provide distributed filing by remote access
e Key design decisions:
— High degree of transparency
— Tolerant of node crashes or network failure

e First public version, NFS v2 (1989), did this by:

— Unix file system semantics (or almost)
— Integration into kernel (including mount)
— Simple stateless client/server architecture

22
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Client side Server Side
User Program
Syscall Level Syscall Level
VES Layer VFS Layer
Local FS NFS Client NFS Server Local FS

@ RPC Request T
RPC Response

* Client uses opaque file handles to refer to files
e Server translates these to local inode numbers
e SunRPC with XDR running over UDP (originally)

23



* Dedicated mount RPC protocol which:
— Performs authentication (if any);
— Negotiates any optional session parameters; and
— Returns root filehandle

24
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e Key NFS design decision to make fault
recovery easier

e Stateless means:
— Doesn’t keep any record of current clients
— Doesn’t keep any record of current file accesses

e Hence server can crash + reboot, and clients
shouldn’t have to do anything (except wait ;-)

e Clients can crash, and server doesn’t need to
do anything (no cleanup etc)

25
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No “open” or “close” operations
— use lookup(<pathname>)

No implicit arguments

— e.g. cannot support read(fd, buf, 2048)
— Instead use read(fh, buf, offset, 2048)

Note this also makes operations idempotent

— Can tolerate message duplication in network / RPC

Challenges in providing Unix FS semantics...

26
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* File deletion tricky — what if you discard pages
of a file that a client has “open”?

— NFS changes an unlink() to a rename()

— Only works for same client (not local delete, or
concurrent clients — “stale filehandle”)

e Stateless file locking seems impossible
— Add two other daemons: rpc.lockd and rpc.statd
— Server reboot => rpc.lockd contacts clients
— Client reboot => server’s rpc.statd tries contact

27
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* Neither side knows if other is alive or dead

— All writes must be synchronously committed on
server before it returns success

e Very limited client caching...

— Risk of inconsistent updates if multiple clients
have file open for writing at the same time

e These two facts alone meant that NFS v2 had
truly dreadful performance

28
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e NFSv3(1995): mostly minor enhancements
— Scalability

e Remove limits on path- and file-name lengths
e Allow 64-bit offsets for large files
e Allow large (>8KB) transfer size negotiation
— Explicit asynchrony
e Server can do asynchronous writes (write-back)
e Client sends explicit commit after some #writes

— Optimized operations (readdirplus, symlink)
 But had major impact on performance

29
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e NFS v4 (2003): major rethink

— Single stateful protocol (including mount, lock)
— TCP (or at least reliable transport) only

— Explicit open and close operations

— Share reservations

— Delegation

— Arbitrary compound operations

e Actual success yet to be seen...

30
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e SunRPC (now “ONC RPC”) very successful but

— Clunky (manual program, procedure numbers, etc)
— Limited type information (even with XDR)
— Hard to scale beyond simple client/server

* One improvement was OSF DCE (early 90’s)
— DCE = “Distributed Computing Environment”

— Larger middleware system including a distributed file
system, a directory service, and DCE RPC

— Deals with a collection of machines — a cell — rather
than just with individual clients and servers
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e Quite similar in many ways

— Interfaces written in Interface Definition Notation
(IDN), and compiled to skeletons and stubs

— NDR wire format: little-endian by default (woot!)
— Can operate over various transport protocols

e Better security, and location transparency
— Services identified by 128-bit “Universally” Unique

identifiers (UUIDs), generated by uuidgen
— Server registers UUID with cell-wide directory service

— Client contacts directory service to locate server...
which supports service move, or replication

32
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e Neither SunRPC / DCE RPC good at handling
types, exceptions, or polymorphism

e Object-Oriented Middleware (OOM) arose in
the early 90s to address this
— Assume programmer is writing in OO-style

— Provide illusion of ‘remote object’ which can be
manipulated just like a regular (local) object

— Makes it easier to program (e.g. can pass a
dictionary object as a parameter)
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* First OOM system was CORBA

— Common Object Request Broker Architecture
— specified by the OMG: Object Management Group

e OMA (Object Management Architecture) is
the general model of how objects interoperate
— Objects provide services.

— Clients makes a request to an object for a service.

— Client doesn’t need to know where the object is, or
anything about how the object is implemented!

— Object interface must be known (public)

34
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e The ORB is the core of the architecture

— Connects clients to object implementations

— Conceptually spans multiple machines (in practice,
ORB software runs on each machine)

Object
implementation

Generated Generated
Stub Code Skeleton Code

35
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e Clients obtain an object reference
— Typically via the naming service or trading service
— (Object references can also be saved for use later)

e |nterfaces defined by CORBA IDL

e Clients can call remote methods in 2 ways:

1. Static Invocation: using stubs built at compile time
(just like with RPC)

2. Dynamic Invocation: actual method call is created
on the fly. It is possible for a client to discover new
objects at run time and access the object methods

36



DDA NI
CUNDA UL

e Definition of language-independent remote interfaces
— Language mappings to C++, Java, Smalltalk, ...
— Translation by IDL compiler

e Type system

— basic types: long (32 bit), long long (64 bit), short, float,
char, boolean, octet, any, ...

— constructed types: struct, union, sequence, array, enum
— objects (common super type Object)
 Parameter passing
— in, out, inout (= send remote, modify, update)
— basic & constructed types passed by value
— objects passed by reference

37
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e CORBA has some unique advantages
— Industry standard (OMG)
— Language & OS agnostic: mix and match

— Richer than simple RPC (e.g. interface repository,
implementation repository, DIl support, ...)

— Many additional services (trading & naming, events &
notifications, security, transactions, ...)

* However:
— Really really complicated / ugly / buzzwordy
— Poor interoperability, at least at first
— Generally to be avoided unless you need it!

38
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e An alternative to CORBA:

— MS had invested in COM (object-oriented local IPC
scheme) so didn’t fancy moving to OMA

e Service Control Manager (SCM) on each machine
responsible for object creation, invocation, ...
— essentially a lightweight ‘ORB’

 Added remote operation using MSRPC:

— based on DCE RPC, but extended to support objects
— augmented IDL called MIDL: DCE IDL + objects

— requests include interface pointer IDs (IPIDs) to
identify object & interface to be invoked
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 Both are language neutral, and object-oriented
e DCOM supports objects with multiple interfaces
— but not, like CORBA, multiple inheritance of interfaces

e DCOM handles distributed garbage collection:
— remote objects are reference counted (via explicit calls)
— ping protocol handles abnormal client termination

e DCOM is widely used (e.g. SMB/CIFS, RDP, ... )

e But DCOM is MS proprietary (not standard)...
— and no support for exceptions (return code based)..
— and lacks many of CORBAs services (e.g. trading)

 Deprecated today in favor of .NET

40
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e 1995: Sun extended Java to allow RMI
— RMI = Remote Method Invocation

e Essentially an OOM scheme for Java with clients,
servers and an object registry
— object registry maps from names to objects
— supports bind()/rebind(), lookup(), unbind(), list()
e RMI was designed for Java only
— no goal of OS or language interoperability
— hence cleaner design and tighter language integration

41
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 remote class:
— one whose instances can be used remotely
— within home address space, a regular object

— within foreign address spaces, referenced indirectly
via an object handle

e serializable class: [nothing to do with transactions!]
— object that can be marshalled/unmarshalled

— if a serializable object is passed as a parameter or
return value of a remote method invocation, the value
will be copied from one address space to another

— (for remote objects, only the object handle is copied)

42
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* remote class:

e serializable class:
— object that can be marshalled/unmarshalled

— if or
re e value
Wi her

43
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e Registry can be on server... or one per distributed system
— client and server can find it via the LocateRegistry class
e Objects being serialized are annotated with a URL for the class
— unless they implement Remote => replaced with a remote reference

44
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 With RMI, can have local & remote object references
scattered around a set of machines

e Build distributed GC by leveraging local GC:
— When a server exports object O, it creates a skeleton S[O]

— When a client obtains a remote reference to O, it creates a
proxy object P[O], and remotely invokes dirty(O)

— Local GC will track the liveness of P[O]; when it is locally
unreachable, client remotely invokes clean(O)

— If server notices no remote references, can free S[O]
— If S[O] was last reference to O, then it too can be freed

e Like DCOM, server removes a reference if it doesn’t
hear from that client for a while (default 10 mins)
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e OOM enhances RPC with objects

— types, interfaces, exceptions, ...

e Seen CORBA, DCOM and Java RMI

— All plausible, and all still used today

— CORBA most general (language and OS agnostic), but
also the most complex: design by committee

— DCOM is MS only, & being phased out for .NET

— Java RMI decent starting point for simple distributed
systems... but lacks many features

— (EJB is a modern CORBA/RMI/<stuff> megalith)

46
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e Systems seen so far all developed by large
industry, and work fine in the local area...

— But don’t (or didn’t) do well through firewalls ;-)
 |n 1998, Dave Winer developed XML-RPC

— Use XML to encode method invocations (method
names, parameters, etc)

— Use HTTP POST to invoke; response contains the
result, also encoded in XML

— Looks like a regular web session, and so works fine
with firewalls, NAT boxes, transparent proxies, ...

47



VNAI DDC Xa nA

NIVILI\IF'C LA II|J
XML-RPC Request XML-RPC Response
<?xml version="1.0"7?> <?xml version="1.0"7?>
<methodCall> <methodResponse>
<methodName>util.InttoString</methodName> <params>

<params> <param>

<param> <value><string>Fifty Five</string></value>

<value><i4>55</i4></value> </param>

</param> </params>

</params> </methodResponse>

</methodCall>

e Client side names method (as a string), and lists
parameters, tagged with simple types

e Server receives message (via HTTP), decodes, performs
operation, and replies with similar XML

e |nefficient & weakly typed... but simple, language
agnostic, extensible, and eminently practical!
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e XML-RPC was a victim of its own success
e WWW consortium decided to embrace it, extend
it, and generally complify it up

— SOAP (Simple Object Access Protocol) is basically
XML-RPC, but with more XML bits

— Support for namespaces, user-defined types, multi-
hop messaging, recipient specification, ...

— Also allows transport over SMTP (!), TCP & UDP

 SOAP is part of the Web Services world
— As complex as CORBA, but with more XML ;-)

49
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e SOAP 1.2 defined in 2003

— Less focus on RPC, and more on moving XML
messages from A to B (perhaps via C & D)

 One major problem with all RPC schemes is that
they were synchronous:

— Client is blocked until server replies
— Poor responsiveness, particularly in wide area

e 2006 saw introduction of AJAX

— Asynchronous Javascript with XML
— Chief benefit: can update web page without reloading

e Examples: Google Maps, Gmail, Google Docs, ...

50
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o AJAX still does RPC (just asynchronously)

* |s a procedure call / method invocation really the
best way to build distributed systems?

 Representational State Transfer (REST) is an
alternative ‘paradigm’ (or a throwback?)
— Resources have a name: URL or URI

— Manipulate them via PUT (insert), GET (select), POST
(updated) and DELETE (delete)

— Send state along with operations
* Very widely used today (Amazon, Flickr, Twitter)

51
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e Server handles requests from client

— Simple request/response protocols (like HTTP) useful,
but lack language integration

— RPC schemes (SunRPC, DCE RPC) address this

— OOM schemes (CORBA, DCOM, RMI) extend RPC to
understand objects, types, interfaces, exns, ...

e Recent WWW developments move away from
traditional RPC/RMI:

— Avoid explicit IDLs since can slow evolution
— Enable asynchrony, or return to request/response



