Distributed Systems
8L for Part IB

Handout 1

Dr. Steven Hand

necommenaea ne U

ng

o “Distributed Systems: Concepts and Design”, (5t Ed)
Coulouris et al, Addison-Wesley 2012

e “Distributed Systems: Principles and Paradigms”
(2nd Ed), Tannenbaum et al, Prentice Hall, 2006

e “Operating Systems, Concurrent and Distributed
S/W Design“, Bacon & Harris, Addison-Wesley 2003

— or “Concurrent Systems”, (2" Ed), Jean Bacon,
Addison-Wesley 1997

Mf“)

\A/h A+ o
al Clllo.

-~ A n:n-l-v- Iaii+AaA Cuvict
vviidadal Al UiolliiivuLcu JYDL

e Aset of discrete computers (“nodes”) which
cooperate to perform a computation

— Operates “as if” it were a single computing system

e Examples include:
— Compute clusters (e.g. CERN, HPCF)

Dnll\lr Ia|/a CETIml—l mo 1
dRd OC 1 1(\Wi (Hic arl

— Distributed storage systems (e.g. NFS, Dropbox, ...)
— The Web (client/server; CDNs; and back-end too!)
— Vehicles, factories, buildings (?)

\ 7

-|-v- Iaii+yAaA CuvicdbAarace
LITUULT U JYDLCl 1.

IJ\I N\ Y/
dvantage

Ulo C M\

e Scale and performance
— Cheaper to buy 100 PCs than a supercomputer...
— ... and easier to incrementally scale up too!

e Sharing and Communication

— Allow access to shared resources (e.g. a printer) and
information (e.g. distributed FS or DBMYS)

— Enable explicit communication between machines
(e.g. EDI, CDNs) or people (e.g. email, twitter)
e Reliability
— Can hopefully continue to operate even if some parts
of the system are inaccessible, or simply crash

n:n-l-v- IaiiyAaA CvickAarac:s ClhhAallAa
LIODULITVULCU JYDLCl 15. Cl1IAIIC

NgES

e Distributed Systems are Concurrent Systems

— Need to coordinate independent execution at
each node (c/f first part of course)

* Failure of any components (nodes, network)
— At any time, for any reason

e Nao \unrll dAala avs
(A A" A A A'AY IR LWAY A9 | @ y

— Can’t distinguish congestion from crash/partition

* No global time
— Tricky to coordinate, or even agree on ordering!

Y\, f‘\lo-l\
nsparency & M

TIF fJIJIf\\A"'\IF
11ld Uuuicvvdl

e

* Recall a distributed system should appear “as if”
it were executing on a single computer

* We often call this transparency:

— User is unaware of multiple machines
— Programmer is unaware of multiple machines

e How “unaware” can vary quite a bit

— e.g. web user probably aware that there’s network
communication ... but not the number or location of
the various machines involved

— e.g. programmer may explicitly code communication,
or may have layers of abstraction: middleware

11IT \UICT VUl IVIIUUITVVdAI T
Machine A Machine B Machine C

Distributed applications

Middleware services

Network OS Network OS Network OS
services services services
Kernel Kernel Kernhel

Network

 Note that the middleware layer extends over multiple machines

\ llf\ 'F TV' o\ \ /M™\ 7
Y OT 1ransparency
Transparency Description

Hide differences in data representation and how a

Access :
resource is accessed
Location Hide where a resource is located
Migration Hide that a resource may move to another location
: Hide that a resource may be moved to another
Relocation : o
location while in use
Replication Hide that_ a resource may be provided by multiple
v cooperating systems
Hide that a resource may be simultaneously shared by
Concurrency -
several competitive users
Failure Hide the failure and recovery of a resource

Persistence

Hide whether a (software) resource is in memory or
on disk

lin +lhhice CALIF
11 LIS CWUUI

SE

 We will look at techniques, protocols &
algorithms used in distributed systems

— in many cases, these will be provided for you by a
middleware software suite

— but knowing how things work will still be useful!
 Assume OS & networking support

— processes, threads, synchronization

— basic communication via messages

— (will see later how assumptions about messages will
influence the systems we [can] build)

e Let’s start with a simple client-server systems

Clhinnt CAarviar NMAAAL
CIHITCIILmOCI VT 1VIUUCI

1970s: development of LANs

1980s: standard deployment involves small
number of servers, plus many workstations
— Servers: always-on, powerful machines

— Workstations: personal computers

 Workstations request ‘service’ from servers over

+tho nn'l'\Alan(e.0. access ch:\rarl fila svstem:
CIING TINGCGUVVYV I |\’ 06 U L JIDJD u GITIUII \G\A THTI\L YJ\- LN B Y

File server

@ Disks on which
shared file system

My « !

Network 10

Client 1 Client 2

| -|- Anh, D f\-l-f\nf\ln
ST-Reply Protocoils

Reque

* Basic scheme:

— Client issues a request message

— Server performs request, and sends reply
e Simplest version is synchronous:

— client blocks awaiting reply
e Example: HTTP 1.0

— Client (browser) sends “GET /index.html”

— Web server fetches file and returns it
— Browser displays HTML web page

11

I_I"\ fJ 2 Vel e Q- E"\ Il N aVYe
nanai IS 'S & rdliures

* Errors are application-level things => easy ;-)
— E.g. client requests non-existent web page
— Need special reply (e.g. “404 Not Found”)

* Failures are system-level things, e.g.:

— lost message, client/server crash, network down,...

* To handle failure, client must timeout if it
doesn’t receive a reply within a certain time T
— On timeout, client can retry request
— (Q: what should we set T to?)

12

+rrv s CArmrranti~e
Lly SJTIIIAIILILYS

DA
IN\C

e (Client could timeout because:
1. Request was lost
2. Request was sent, but server crashed on receipt

3. Request was sent & received, and server performed operation
(or some of it?), but crashed before replying

4. Request was sent & received, and server performed operation
correctly, and sent reply ... which was then lost

5. As #4, but reply has just been delayed for longer than T

e For read-only stateless requests (like HTTP GET), can retry
in all cases, but what if request was an order with Amazon?

— In case #1, we probably want to re-order... and in case #5 we
want to wait for a little bit longer, and otherwise we ... erm?

 Worse: we don’t know what case it actually was!

13

1 A | CAaArm~antire
11U | CIITIAIIlILO

ed

e What we want is exactly-once semantics:

— Our request occurs once no matter how many times
we retry (or if the network duplicates our messages)

e E.g. add a unique ID to every request

— Server remembers IDs, and associated responses

ol aYaY e A Ilf'\li

1 £ + ' +
— IT SEES a aup (e, JUstr

~atAn o AFriirne AlA rAcrhANnecAa
LaiLgc, JUDL CLUllI> UIU |CD}JU||DC

— Client ignores duplicate responses
e Pretty tricky to ensure exactly-once in practice

— e.g. if server explodes ;-)

14

Dvracrtiral CArmantire
rFriadaiiLitLdl OCIIIAadllliILYS

* |n practice, protocols guarantee one of the below

* All-or-nothing (atomic) semantics
— Use scheme on previous page, with persistent log
— (essentially same idea as transaction processing).

e At-most-once semantics
— Request carried out once, or not at all, or don’t know
— e.g. send a single request, and give up if we timeout

e At-least-once semantics
— Retry if we timeout, & risk operation occurring again
— Ok if the operation is read-only, or idempotent

15

DAarnAa~n+t D A
INCI1110UL 1 Uul

"\
\/

€ rroce e C

e Request/response protocols are useful —and
widely used — but rather clunky to use

— e.g. need to define the set of requests, including how
they are represented in network messages

e A nicer abstraction is remote procedure call
— Programmer simply invokes a procedure...
— ...but it executes on a remote machine (the server)

— RPC subsystem handles message formats, sending &
receiving, handling timeouts, etc

e Aim is to make distribution (mostly) transparent
— certain failure cases wouldn’t happen locally

16

chall

N
1idll

AA

e Y 8 -|-
IS ng A C

gnu

S

d

e RPCis integrated with the programming language
— Some additional magic to specify things are remote

 RPC layer marshals parameters to the call, as well

as any return value(s), e.g.

Caller

L~

call(.)

A

A

V4

RPC Service

1) Marshal args
2) Generate ID
3) Start timer

8) Unmarshal
9) Acknowledge

message

RPC Service

4) Unmarshal
5) Record ID

6) Marshal
7) Set timer

™

/

Remote
Function

]

fun(.)

I

INIlc ArnA C+i i lhe
1L dllIU OLUDO

 To marshal, the RPC layer needs to know:
— how many arguments the procedure has,
— how many results are expected, and
— the types of all of the above
 The programmer must specify this by describing things
in an interface definition language (IDL)

— In higher-level languages, this may already be included as
standard (e.g. C#, Java)

— In others (e.g. C), IDL is part of the middleware

* The RPC layer can then automatically generate stubs
— Small pieces of code at client and server (see previous)

18

EI mnlae C. ~DDC
LAAITIYI e. Sunnre

 Developed mid 80’s for Sun Unix systems

e Simple request/response protocol:
— Server registers one or more “programs” (services)

— Client issues requests to invoke specific
procedures within a specific service

e NMoccaocncec ran ha cant nvar o
IVI 6 CUITI MU OGUTIU WUVl U||y

— requests have a unique transaction id which can
be used to detect & handle retransmissions

vt
L

"ol ‘o
|

Al
idl

¢-+
Q)
Tt
O

)

NUIN. L C ud (J }J N

e SunRPC used XDR for describing interfaces:

// Tile: test.x
program test {
version testver {

int get(getargs) = 1; // procedure number
int put(putargs) = 2; // procedure number
} = 1; // version number
} = 0x12345678; // program number

* rpcgen generates [un]marshaling code, stubs
e Single arguments... but recursively convert values
e Some support for following pointers too

e Data on the wire always in big-endian format (oops!)

llcina SiyinRDC
USIlg SQUINIRnFL
1. Write XDR, and use rpcgen to generate skeleton code
2. Fillin blanks (i.e. write actual moving parts for server,
and for client(s)), and compile code.
3. Run server program & register with portmapper
— holds mappings from { prog#, ver#, proto } -> port
— (on linux, try “/usr/sbin/rpcinfo -p”)
4. Server process will then listen(), awaiting clients
5. When a client starts, client stub calls clnt_create

Sends { prog#, ver#, proto } to portmapper on server,
and gets reply with appropriate port number to use

Client now invokes remote procedures as needed

21

CAacAn C+iidAvse NICC
wdadotl Ol uy. INT' O

 NFS = Networked File System (developed Sun)
— aimed to provide distributed filing by remote access
e Key design decisions:
— High degree of transparency
— Tolerant of node crashes or network failure

e First public version, NFS v2 (1989), did this by:

— Unix file system semantics (or almost)
— Integration into kernel (including mount)
— Simple stateless client/server architecture

22

NLCC. Pl:f\n-l-/Cnv-\:r\v- AvcrlhitAa~FiirAa
INTTO. CIHITHIL/OCT1 VT AITLITTLTULUIC
Client side Server Side
User Program
Syscall Level Syscall Level
VES Layer VFS Layer
Local FS NFS Client NFS Server Local FS

@ RPC Request T
RPC Response

* Client uses opaque file handles to refer to files
e Server translates these to local inode numbers
e SunRPC with XDR running over UDP (originally)

23

* Dedicated mount RPC protocol which:
— Performs authentication (if any);
— Negotiates any optional session parameters; and
— Returns root filehandle

24

NCC 1~ C+~
INT O 10O 0OLlU

e Key NFS design decision to make fault
recovery easier

e Stateless means:
— Doesn’t keep any record of current clients
— Doesn’t keep any record of current file accesses

e Hence server can crash + reboot, and clients
shouldn’t have to do anything (except wait ;-)

e Clients can crash, and server doesn’t need to
do anything (no cleanup etc)

25

-|- v'\ ~Ff
dlliv

o C+Aat+AlAace mAce
1D Ul OLALTCITOOTIITCOS

||p

No “open” or “close” operations
— use lookup(<pathname>)

No implicit arguments

— e.g. cannot support read(fd, buf, 2048)
— Instead use read(fh, buf, offset, 2048)

Note this also makes operations idempotent

— Can tolerate message duplication in network / RPC

Challenges in providing Unix FS semantics...

26

CAarmantimr TricrlL e~
STIIIAIILIU TTIUNDS

* File deletion tricky — what if you discard pages
of a file that a client has “open”?

— NFS changes an unlink() to a rename()

— Only works for same client (not local delete, or
concurrent clients — “stale filehandle”)

e Stateless file locking seems impossible
— Add two other daemons: rpc.lockd and rpc.statd
— Server reboot => rpc.lockd contacts clients
— Client reboot => server’s rpc.statd tries contact

27

rFrcliivlllidliicc FrifoOlICITO

* Neither side knows if other is alive or dead

— All writes must be synchronously committed on
server before it returns success

e Very limited client caching...

— Risk of inconsistent updates if multiple clients
have file open for writing at the same time

e These two facts alone meant that NFS v2 had
truly dreadful performance

28

\ 7

C Ly
S LVU

NLC AN
I 1VUI]

1y o4
IN IUL

e NFSv3(1995): mostly minor enhancements
— Scalability

e Remove limits on path- and file-name lengths
e Allow 64-bit offsets for large files
e Allow large (>8KB) transfer size negotiation
— Explicit asynchrony
e Server can do asynchronous writes (write-back)
e Client sends explicit commit after some #writes

— Optimized operations (readdirplus, symlink)
 But had major impact on performance

29

\ 7

NCECC Ly
1 LVU

I.
IN 11U

/‘\
\’

e NFS v4 (2003): major rethink

— Single stateful protocol (including mount, lock)
— TCP (or at least reliable transport) only

— Explicit open and close operations

— Share reservations

— Delegation

— Arbitrary compound operations

e Actual success yet to be seen...

30

f\\l 'aA\Wial 11V

HITYIrouvli N 15 UvVC) II\IF U

e SunRPC (now “ONC RPC”) very successful but

— Clunky (manual program, procedure numbers, etc)
— Limited type information (even with XDR)
— Hard to scale beyond simple client/server

* One improvement was OSF DCE (early 90’s)
— DCE = “Distributed Computing Environment”

— Larger middleware system including a distributed file
system, a directory service, and DCE RPC

— Deals with a collection of machines — a cell — rather
than just with individual clients and servers

E an \W i aYadel B CI IV\DnP
L IANFC VCIoUO O I\ C

®

N
L

e Quite similar in many ways

— Interfaces written in Interface Definition Notation
(IDN), and compiled to skeletons and stubs

— NDR wire format: little-endian by default (woot!)
— Can operate over various transport protocols

e Better security, and location transparency
— Services identified by 128-bit “Universally” Unique

identifiers (UUIDs), generated by uuidgen
— Server registers UUID with cell-wide directory service

— Client contacts directory service to locate server...
which supports service move, or replication

32

-|- Nviantad NMiAAlAwIAvrAa
CLUITICTILTU IvIIUUICVvVwdl T

Obje

e Neither SunRPC / DCE RPC good at handling
types, exceptions, or polymorphism

e Object-Oriented Middleware (OOM) arose in
the early 90s to address this
— Assume programmer is writing in OO-style

— Provide illusion of ‘remote object’ which can be
manipulated just like a regular (local) object

— Makes it easier to program (e.g. can pass a
dictionary object as a parameter)

CORRA (1090)
LURDA (13075

* First OOM system was CORBA

— Common Object Request Broker Architecture
— specified by the OMG: Object Management Group

e OMA (Object Management Architecture) is
the general model of how objects interoperate
— Objects provide services.

— Clients makes a request to an object for a service.

— Client doesn’t need to know where the object is, or
anything about how the object is implemented!

— Object interface must be known (public)

34

N ue -|-
UV Sl

/‘\
e

'Y o 'aYa B D
ect Requ DI

h-.

e The ORB is the core of the architecture

— Connects clients to object implementations

— Conceptually spans multiple machines (in practice,
ORB software runs on each machine)

Object
implementation

Generated Generated
Stub Code Skeleton Code

35

ilr'\\ II\II:

mey NNhiAa~+y~
IVUNII |5 UUJCLLD

e Clients obtain an object reference
— Typically via the naming service or trading service
— (Object references can also be saved for use later)

e |nterfaces defined by CORBA IDL

e Clients can call remote methods in 2 ways:

1. Static Invocation: using stubs built at compile time
(just like with RPC)

2. Dynamic Invocation: actual method call is created
on the fly. It is possible for a client to discover new
objects at run time and access the object methods

36

DDA NI
CUNDA UL

e Definition of language-independent remote interfaces
— Language mappings to C++, Java, Smalltalk, ...
— Translation by IDL compiler

e Type system

— basic types: long (32 bit), long long (64 bit), short, float,
char, boolean, octet, any, ...

— constructed types: struct, union, sequence, array, enum
— objects (common super type Object)
 Parameter passing
— in, out, inout (= send remote, modify, update)
— basic & constructed types passed by value
— objects passed by reference

37

CUNDA F1TUVUO dllUu UL IO

e CORBA has some unique advantages
— Industry standard (OMG)
— Language & OS agnostic: mix and match

— Richer than simple RPC (e.g. interface repository,
implementation repository, DIl support, ...)

— Many additional services (trading & naming, events &
notifications, security, transactions, ...)

* However:
— Really really complicated / ugly / buzzwordy
— Poor interoperability, at least at first
— Generally to be avoided unless you need it!

38

NMircrracnftr DNC
IVIILTOUOUIL UL

e
|

ONA (1
LUIVI (1

Ch

e An alternative to CORBA:

— MS had invested in COM (object-oriented local IPC
scheme) so didn’t fancy moving to OMA

e Service Control Manager (SCM) on each machine
responsible for object creation, invocation, ...
— essentially a lightweight ‘ORB’

 Added remote operation using MSRPC:

— based on DCE RPC, but extended to support objects
— augmented IDL called MIDL: DCE IDL + objects

— requests include interface pointer IDs (IPIDs) to
identify object & interface to be invoked

NCNOANNvwe COYDDA
ULCUIVI VOo. CLUINDA

 Both are language neutral, and object-oriented
e DCOM supports objects with multiple interfaces
— but not, like CORBA, multiple inheritance of interfaces

e DCOM handles distributed garbage collection:
— remote objects are reference counted (via explicit calls)
— ping protocol handles abnormal client termination

e DCOM is widely used (e.g. SMB/CIFS, RDP, ...)

e But DCOM is MS proprietary (not standard)...
— and no support for exceptions (return code based)..
— and lacks many of CORBAs services (e.g. trading)

 Deprecated today in favor of .NET

40

lav/Aa DNAI
Jdvd I\IVliI

e 1995: Sun extended Java to allow RMI
— RMI = Remote Method Invocation

e Essentially an OOM scheme for Java with clients,
servers and an object registry
— object registry maps from names to objects
— supports bind()/rebind(), lookup(), unbind(), list()
e RMI was designed for Java only
— no goal of OS or language interoperability
— hence cleaner design and tighter language integration

41

Dl\/ll. “If\\ll r.l"\(‘f‘f\f‘
INIVII. INTVV UIdooTO

 remote class:
— one whose instances can be used remotely
— within home address space, a regular object

— within foreign address spaces, referenced indirectly
via an object handle

e serializable class: [nothing to do with transactions!]
— object that can be marshalled/unmarshalled

— if a serializable object is passed as a parameter or
return value of a remote method invocation, the value
will be copied from one address space to another

— (for remote objects, only the object handle is copied)

42

Dl\/ll. “If\\ll r.l"\f‘f‘f\f‘
INIVII. INTVV UIdooTO

* remote class:

e serializable class:
— object that can be marshalled/unmarshalled

— if or
re e value
Wi her

43

ThAa ~+ ui

DNAI. Dic : A
Nnivil. 111 pbig riciulc
r fookur() bindl) [remote object
client —— implementation
application reference .
f(args) return/exception flargs) return/exn

marshal stream

e Registry can be on server... or one per distributed system
— client and server can find it via the LocateRegistry class
e Objects being serialized are annotated with a URL for the class
— unless they implement Remote => replaced with a remote reference

44

-|-v- Ihii+A A All dlala
LITOUULTC U Ull LIVUI

ecC

GW

n:f‘ 7\
Ulo C

gf\

 With RMI, can have local & remote object references
scattered around a set of machines

e Build distributed GC by leveraging local GC:
— When a server exports object O, it creates a skeleton S[O]

— When a client obtains a remote reference to O, it creates a
proxy object P[O], and remotely invokes dirty(O)

— Local GC will track the liveness of P[O]; when it is locally
unreachable, client remotely invokes clean(O)

— If server notices no remote references, can free S[O]
— If S[O] was last reference to O, then it too can be freed

e Like DCOM, server removes a reference if it doesn’t
hear from that client for a while (default 10 mins)

nnl\no CIIMM"\
UUIVIE. O 1iliila

v\ 7
!

)4

e OOM enhances RPC with objects

— types, interfaces, exceptions, ...

e Seen CORBA, DCOM and Java RMI

— All plausible, and all still used today

— CORBA most general (language and OS agnostic), but
also the most complex: design by committee

— DCOM is MS only, & being phased out for .NET

— Java RMI decent starting point for simple distributed
systems... but lacks many features

— (EJB is a modern CORBA/RMI/<stuff> megalith)

46

N

\/ | _DDC
NIVILTINT ©

e Systems seen so far all developed by large
industry, and work fine in the local area...

— But don’t (or didn’t) do well through firewalls ;-)
 |n 1998, Dave Winer developed XML-RPC

— Use XML to encode method invocations (method
names, parameters, etc)

— Use HTTP POST to invoke; response contains the
result, also encoded in XML

— Looks like a regular web session, and so works fine
with firewalls, NAT boxes, transparent proxies, ...

47

VNAI DDC Xa nA

NIVILI\IF'C LA II|J
XML-RPC Request XML-RPC Response
<?xml version="1.0"7?> <?xml version="1.0"7?>
<methodCall> <methodResponse>
<methodName>util.InttoString</methodName> <params>

<params> <param>

<param> <value><string>Fifty Five</string></value>

<value><i4>55</i4></value> </param>

</param> </params>

</params> </methodResponse>

</methodCall>

e Client side names method (as a string), and lists
parameters, tagged with simple types

e Server receives message (via HTTP), decodes, performs
operation, and replies with similar XML

e |nefficient & weakly typed... but simple, language
agnostic, extensible, and eminently practical!

D Q \A/
P

CnA AL\ Cf\l"\l:f\f\f‘
SUMATN L VVCUD OCI1 VILCO

e XML-RPC was a victim of its own success
e WWW consortium decided to embrace it, extend
it, and generally complify it up

— SOAP (Simple Object Access Protocol) is basically
XML-RPC, but with more XML bits

— Support for namespaces, user-defined types, multi-
hop messaging, recipient specification, ...

— Also allows transport over SMTP (!), TCP & UDP

 SOAP is part of the Web Services world
— As complex as CORBA, but with more XML ;-)

49

“Il \l 2 AV Vi \I'F v\

Yo 1 e DD
IVIUVIIIES avwdy 11Ul IZNF O

e SOAP 1.2 defined in 2003

— Less focus on RPC, and more on moving XML
messages from A to B (perhaps via C & D)

 One major problem with all RPC schemes is that
they were synchronous:

— Client is blocked until server replies
— Poor responsiveness, particularly in wide area

e 2006 saw introduction of AJAX

— Asynchronous Javascript with XML
— Chief benefit: can update web page without reloading

e Examples: Google Maps, Gmail, Google Docs, ...

50

DCCT
NLO 1

o AJAX still does RPC (just asynchronously)

* |s a procedure call / method invocation really the
best way to build distributed systems?

 Representational State Transfer (REST) is an
alternative ‘paradigm’ (or a throwback?)
— Resources have a name: URL or URI

— Manipulate them via PUT (insert), GET (select), POST
(updated) and DELETE (delete)

— Send state along with operations
* Very widely used today (Amazon, Flickr, Twitter)

51

@Y

innt CAarviar lrndkAar +1iAarne Cirirmrrmrna
CIIC ILOCI VCI 1II1LC] LIVIIL. O 1iilid

v\ 7
!

erac v

e Server handles requests from client

— Simple request/response protocols (like HTTP) useful,
but lack language integration

— RPC schemes (SunRPC, DCE RPC) address this

— OOM schemes (CORBA, DCOM, RMI) extend RPC to
understand objects, types, interfaces, exns, ...

e Recent WWW developments move away from
traditional RPC/RMI:

— Avoid explicit IDLs since can slow evolution
— Enable asynchrony, or return to request/response

