
Distributed Systems
8L for Part IB

Additional Material
(Case Studies)

Dr. Steven Hand

1

Introduction

• The Distributed Systems course covers a wide
range of topics in a variety of areas

• This handout includes 3 case studies (all of which
are distributed storage systems):
– AFS, Coda & Bayou

• Aim is to illustrate how entire systems:
– use replication,
– maintain consistency, and
– handle failure

• The hope is that these will aid understand of core
concepts: details covered are not examinable

2

The Andrew File System (1983)

• A different approach to remote file access

• Meant to service a large organization
– Scaling is a major goal

• Basic AFS model:
– Files are stored permanently at file server machines

– Users work from workstation machines
• With their own private namespace

– Andrew provides mechanisms to cache user’s files
from shared namespace

• Even “local” accesses go via client

Vice, Virtue and Venus…

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

Virtue RPC

Virtue RPC

Virtue RPC

Virtue RPC

Virtue RPC

Basic Idea: Whole File Caching

• Andrew caches entire files from the system.
– On open Venus caches files from Vice

– On close, [modified] copies are witten back

• Reading and writing bytes of a file are done on
the cached copy by the local kernel

• Venus also caches contents of directories and
symbolic links, for path-name translation
– Exceptions for modifications to made directly on

the server responsible for that directory

Why do Whole-File Caching?

• Minimizes communications with server
– Less network traffic

– Better performance

• Most files used in entirety anyway (prefetch)

• Simpler cache management

• However does requires substantial free disk
space on workstations
– Can be an issue for huge files

– Later versions allow caching part of a file

Andrew Shared Namespace

• An AFS installation has a global shared namespace

• A fid identifies a Vice file or directory

• A fid is 96 bits long and has three 32-bit components:
– volume number (a unit holding the files of a single client)

– vnode number (basically an inode for a single volume)

– uniquifier (generation number for vnodes numbers,
thereby keeping certain data structures, compact

• High degree of name and location transparency
– Fids do not embed any notion of location

– Every server stores volume->server mapping

AFS Consistency

• Aiming to provide “local” semantics

• Implemented by callbacks:
– On open, Venus checks if client already has copy

– If not, then requests from Vice server that is custodian
of that particular file

– Server returns contents along with a callback promise
(and logs this to durable storage)

• Whenever a client sends back an updated copy
(e.g. on close), invoke all callbacks

• Same scheme used for volume map

AFS Pros and Cons (1)

• Performance
– Most file operations are done locally (and most files

typically have one writer in a time window)
– Little load on servers beyond open/close timescales

• Location transparency
– Indirection via volume map makes it easy to move volumes
– Also can do limited replication (read-only files)

• Scalability
– Initial design aimed for 200:1 client-server ratio
– Indirection and caching makes this easily achievable

• “Single System Image”
– Clients (workstations) essentially interchangeable

AFS Pros and Cons (2)

• Good Security

– Client machines untrusted (only Vice servers trusted)

– Strong initial authentication via Kerberos

– Can use encryption used to protect transmissions

• But:

– Complex and invasive to install (“take over the world”)

– Usability issues, e.g. ticket expiration, weird “last close
wins” semantics for concurrent update

• Ultimately AFS popular only in niche domains…

Coda (CMU, 1987+)

• A file-system with optimistic replication

– Essentially client/server (developed from AFS)

• Motivated by the emergence of laptops

– When connected to network, laptop operated just
like any other Andrew workstation

– When disconnected, however, no file updates
allowed once the leases expired

– This was fine for temporary outages in AFS (e.g.
reboot or network glitch), but not for mobile use

Coda Operation

• Change the Venus cache manager to operate
in three different modes:

1. Hoarding
– “Normal” operation

2. Emulating
– Disconnected

3. Reintegrating
– Reconciling changes back to the server

• Few changes required to Vice or Virtue

Hoarding

Emulating Recovering

Coda: Hoarding

• “Normal” operation a little different than AFS
– Aggressively cache copies of files on local disk

• Add a Hoard Database (HDB) to Coda clients
– Specifies files to be cached on local disk

– User can tweak HDB, and add priorities
• Laptop disks were small back in the day

– Files actually cached a function of hoard priority and
actual usage – can pickup dependencies

• Perform hoard walk periodically (or on request)
to ensure disk has only highest priority files

Coda: Emulating

• When disconnected, attempts to access files
not in the cache appear as failures to apps

• All changes made to anything are written in a
persistent log (the client modification log)
– In implementation was managed by using

lightweight recoverable virtual memory (lRVM)

– Simplifies Venus itself

• Venus purges unnecessary entries from the
CML (e.g. updates to files later deleted)

Coda: Reintegrating

• Once a coda client is reconnected, it initiates a
reintegration process
– Performed one volume at a time

– Venue ships replay to each volume

– Volumes execute a log replay algorithm

– Basic conflict detection and ‘resolution’

• Lessons learned:
– Reintegration can take a long time (need fast network)

– Conflicts rare in practice (0.75% chance of update of
same file by two users within 24 hours)

Coda: Summary

• Generally better than AFS
– Inherits most AFS advantages, but adds more

– e.g. replicated Vice servers with writable replicas

– e.g. CML can end up coalescing updates (or
removing them entirely) => less traffic, server load

• Much simpler than peer-to-peer schemes:
– Client only needs to reconcile with “its” server

– Servers themselves strongly connected + robust

– Garbage collection straightforward

Bayou (Xerox PARC, 1994)

• Bayou is a weakly consistent distributed storage
system
– Assumes a set of nodes (e.g. laptops, PDAs) which are

only occasionally connected

– Clients talk to servers, each of which manages a
‘database’ (= set of data items)

– (clients and servers can be co-located on a node)

– Any client is allowed to read from or write to any
server with which it can communicate

• Built around idea of eventual consistency

Eventual Consistency

• Assumption that, if no more updates, all
servers will end up with the same data

• Relies on two underlying properties:
– Total propagation: every server eventually

receives every update (perhaps via intermediaries)

– Consistent ordering: every server can agree on the
order of all (non-commutative) updates

• To achieve these Bayou relies on anti-entropy,
logical ordering, and a commit protocol

19

The Bayou Architecture

Anti-entropy

Storage
System

Server State

Storage
System

Server State

Storage
System

Server State

Storage
System

Server State

Bayou API

Application

Client Stub

Bayou API

Application

Client Stub

Client Server
Read

or
Write

Read
or

Write

Server

Server

Server

Client

Bayou Contributions

• Three key contributions:
– Definition of various session guarantees

– Design and implementation of database, anti-entropy
scheme, and means to achieve total ordering

– Application-specific conflict management

• Session guarantees
– Clients can get confused by lack of read/write

ordering in a weakly replicated system

– Global (“one-copy”) ordering at odds with weak
consistency – but what if just focus on one session?

21

Guarantees for sessions

• Basic operations are generalized reads and writes
– Read: database ‘query’, or just a request for a given file

– Write: creating, modifying, or deleting items

• Guarantees from single client session point of view
– Which may span multiple servers

• E.g. Read your writes (RYW):
– Reads should reflect previous session writes

– e.g. Password change in Grapevine system

• “Guarantees” in that data system will either ensure
them for each read/write, or notify that it can’t

Read Your Writes

• Want to ensure that if a session writes
something, a subsequent read sees it

• Imagine each write at a server is assigned a
globally unique id (WID), e.g. <server, seq>

• Servers maintain DB(S): ordered list of all WIDs
• Client remembers its session write set

– List of WIDs for all of its writes

• Then can provide RYW by:
– Before doing a read, client asks server S for DB(S)
– Only continue if write set if a subset of DB(S)

Monotonic Reads

• Ensure that every session read sees a non-
decreasing set of writes
– I.e. don’t want to operate on older version of data
– E.g. client requests list of new email messages, and

then requests full body of one of them

• To achieve this, on every read the server returns
the relevant writes: minimal subset of WIDs

• Client adds this to its session read set
• Then can provide monotonic reads by:

– Before doing read from server S, ask for DB(S)
– Only proceed if read set is a subset of DB(S)

Writes Follow Reads

• Ensures traditional write after read
dependencies apply at all servers
– If a session has a write W following a read(s), then

W will be ordered at every server after any writes
whose effects were seen by that read(s)

• Affects users outside the session:
– Essentially says casual order within session must

become the overall order

• Needs a bit more work than previous two…

Ensuring WFR

• If a server S accepts a write W at time t, it must
ensure W > W* for any W* in DB(S,t)
– i.e. new writes must be ordered after known ones

• When anti-entropy is performed between S and
S2, then any W in DB(S,t) can only be propagated
if all W* < W in DB(S,t) are also
– i.e. must transfer complete history

• If these two hold, can implement WFR as:
– On any session read, add relevant writes to read-set
– Before writing to S, check read set is a subset of DB(S)

Monotonic Writes

• Essentially provides traditional write ordering

– i.e. if W1 precedes W2 in a session then, for any S, if
W2 is in DB(S) then W1 is too, and W1<W2

• Relies on the same two additional properties as
writes follow reads

• With these, ensuring monotonic writes means:

– Client maintains write set

– Before writing to S, ask for DB(S)

– Only continue if write set is a subset of DB(S)

Session Guarantees: Summary

• Four independent (but related) properties

• First two require little support

• Second two require: (a) new writes ordered after
existing ones, and (b) propagation is inclusive

Session State Updated Session State Checked

Read Your Writes Write Read

Monotonic Reads Read Read

Writes Follow Reads Read Write

Monotonic Writes Write Write

Bayou Implementation

• Inspired by session guarantee model, but made
more practical
– Model suggests servers maintain log of updates for

ever which leads to massive read/write sets

• Basic idea: at each server, consider writes to be in
one of two states:
– Tentative Writes, and
– Stable (or Committed) Writes

• Stable writes are those who have been globally
agreed upon – hence server can “collapse” these
into resulting data and forget about WIDs etc.

Tentative and Committed Writes

• When a write is accepted by a server, it is initially
deemed tentative
– Given WID of <server, timestamp>

• Timestamps in Bayou are logical clocks:
– Initially synchronized to local system clock

– However if receive message (e.g. during anti-entropy)
with larger clock, warp clock forward

• At some stage, writes become committed
– All committed writes are ordered before any tentative

ones, i.e. [W1 < W2 < .. WN] < [TW1 < TW2 < TW3]

Committing Writes

• For W to be committed, everyone must agree on:
– Total order of all previous committed entries
– Fact that W is next in total order
– Fact that all uncommitted entries are “after” W

• Bayou does this via a primary commit protocol
• “Primary” replica marks each write it receives

with permanent CSN (commit sequence number)
– That write is now committed

• Nodes exchange CSNs via gossip
– CSNs define total order for committed writes

30

Why Primary Commit?

• Chosen to match expected environment
– Many servers may be unavailable at any time

– Primary commit means that progress (in terms of
commitment) can be made with just one node

– Can have different primaries for different subsets

• In partitioned network may end up with servers
having lots of tentative writes
– That’s what session guarantees are for!

– When network heals, commit order becomes known

– “recent” tentative writes may be ordered quite “late”

Write Log Management

• Each server maintains partitioned log
– Front has (subset of) committed writes

– Back has tentative writes in arrival order

– Log entries used during anti-entropy

• Also has tuple store for serving reads
– Represents view of world for reads

– Tuples have 2-bit tag { committed , tentative }

• Also has undo log for every tentative entry
– So can recompute “world” if reordering occurs

Anti-Entropy Algorithm

• Each server maintains vector V[S1, S2, …, SN]
– Entry V[S] contains highest sequence number of

update received from server S

• Maintain prefix property:
– If get W from S2, also get all W* < W in DB(S2)

• Algorithm for sever S1 to update server S2:
– Get S2’s version vector V2

– For each write W in S1’s write log, let R=server[W]
• If V2[R] < W, update S2 with W* <= W for W* in DB(R)

Bayou: Dependency Checks

• So far have talked about reads and writes in
very general way

• In practice, this can lead to problems with
conflicts, e.g. consider calendar application
– Update W1 adds booking for Room 5 at 10-11

– Update W2 adds booking for Room 5 at 11-12

– Stupid conflict detection might think there’s a
conflict since both updates affect same tables

• Bayou proposed novel way to handle this…

Make “Writes” into Programs

• Rather that just submitting writes, submit a short
program in a scripting language
– includes a dependency check, and a merge procedure

• E.g. { Book meeting Room 5 10-11 if free;
otherwise book Room 8 12-1; else fail }

• The dependency check here is “if free”
– Essentially a query on the state of the database

• “Merge procedure” here is just try another room
– But can be considerably more sophisticated

depending on application.. see SOSP paper for details

Bayou: Summary

• Weak consistency for high availability

• Recognized that clients can get confused by
arbitrary ordering: session guarantees

• (Some assumptions on servers required)

• Also argued that applications on such systems
must be aware of weaker semantics

– Need to handle notion of tentative writes

– Can use programmatic updates for ‘atomicity’

