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Introduction 

• The Distributed Systems course covers a wide 
range of topics in a variety of areas 

• This handout includes 3 case studies (all of which 
are distributed storage systems): 
– AFS, Coda & Bayou 

• Aim is to illustrate how entire systems: 
– use replication,  
– maintain consistency, and  
– handle failure 

• The hope is that these will aid understand of core 
concepts: details covered are not examinable 
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The Andrew File System (1983) 

• A different approach to remote file access 

• Meant to service a large organization  
– Scaling is a major goal 

• Basic AFS model: 
– Files are stored permanently at file server machines 

– Users work from workstation machines 
• With their own private namespace 

– Andrew provides mechanisms to cache user’s files 
from shared namespace 

• Even “local” accesses go via client 
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Basic Idea: Whole File Caching 

• Andrew caches entire files from the system.  
– On open Venus caches files from Vice 

– On close,  [modified] copies are witten back 

• Reading and writing bytes of a file are done on 
the cached copy by the local kernel 

• Venus also caches contents of directories and 
symbolic links, for path-name translation  
– Exceptions for modifications to made directly on 

the server responsible for that directory 

 



Why do Whole-File Caching? 

• Minimizes communications with server 
– Less network traffic 

– Better performance 

• Most files used in entirety anyway (prefetch) 

• Simpler cache management 

• However does requires substantial free disk 
space on workstations 
– Can be an issue for huge files 

– Later versions allow caching part of a file 

 



Andrew Shared Namespace 

• An AFS installation has a global shared namespace 

• A fid identifies a Vice file or directory  

• A fid is 96 bits long and has three 32-bit components: 
– volume number (a unit holding the files of a single client) 

– vnode number  (basically an inode for a single volume) 

– uniquifier  (generation number for vnodes numbers, 
thereby keeping certain data structures, compact 

• High degree of name and location transparency 
– Fids do not embed any notion of location 

– Every server stores volume->server mapping 



AFS Consistency 

• Aiming to provide “local” semantics 

• Implemented by callbacks: 
– On open, Venus checks if client already has copy  

– If not, then requests from Vice server that is custodian 
of that particular file 

– Server returns contents along with a callback promise 
(and logs this to durable storage) 

• Whenever a client sends back an updated copy 
(e.g. on close), invoke all callbacks 

• Same scheme used for volume map  



AFS Pros and Cons (1) 

• Performance 
– Most file operations are done locally (and most files 

typically have one writer in a time window) 
– Little load on servers beyond open/close timescales 

• Location transparency 
– Indirection via volume map makes it easy to move volumes  
– Also can do limited replication (read-only files) 

• Scalability 
– Initial design aimed for 200:1 client-server ratio 
– Indirection and caching makes this easily achievable 

• “Single System Image” 
– Clients (workstations) essentially interchangeable  



AFS Pros and Cons (2) 

• Good Security  

– Client machines untrusted (only Vice servers trusted) 

– Strong initial authentication via Kerberos 

– Can use encryption used to protect transmissions 

• But:  

– Complex and invasive to install (“take over the world”) 

– Usability issues, e.g. ticket expiration, weird “last close 
wins” semantics for concurrent update 

• Ultimately AFS popular only in niche domains… 



Coda (CMU, 1987+) 

• A file-system with optimistic replication 

– Essentially client/server (developed from AFS) 

• Motivated by the emergence of laptops 

– When connected to network, laptop operated just 
like any other Andrew workstation 

– When disconnected, however, no file updates 
allowed once the leases expired 

– This was fine for temporary outages in AFS (e.g. 
reboot or network glitch), but not for mobile use  



Coda Operation 

• Change the Venus cache manager to operate 
in three different modes:  

1. Hoarding 
– “Normal” operation 

2. Emulating 
– Disconnected 

3. Reintegrating 
– Reconciling changes back to the server 

• Few changes required to Vice or Virtue 
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Coda: Hoarding 

• “Normal” operation a little different than AFS 
– Aggressively cache copies of files on local disk 

• Add a Hoard Database (HDB) to Coda clients 
– Specifies files to be cached on local disk  

– User can tweak HDB, and add priorities  
• Laptop disks were small back in the day 

– Files actually cached a function of hoard priority and 
actual usage – can pickup dependencies 

• Perform hoard walk periodically (or on request) 
to ensure disk has only highest priority files  

 



Coda: Emulating 

• When disconnected, attempts to access files 
not in the cache appear as failures to apps 

• All changes made to anything are written in a 
persistent log (the client modification log)  
– In implementation was managed by using 

lightweight recoverable virtual memory (lRVM) 

– Simplifies Venus itself 

• Venus purges unnecessary entries from the 
CML (e.g. updates to files later deleted)  



Coda: Reintegrating 

• Once  a coda client is reconnected, it initiates a 
reintegration process 
– Performed one volume at a time 

– Venue ships replay to each volume 

– Volumes execute a log replay algorithm 

– Basic conflict detection and ‘resolution’ 

• Lessons learned: 
– Reintegration can take a long time (need fast network) 

– Conflicts rare in practice (0.75% chance of update of 
same file by two users within 24 hours)  

 
 



Coda: Summary 

• Generally better than AFS 
– Inherits most AFS advantages, but adds more 

– e.g. replicated Vice servers with writable replicas 

– e.g. CML can end up coalescing updates (or 
removing them entirely) => less traffic, server load 

• Much simpler than peer-to-peer schemes: 
– Client only needs to reconcile with “its” server 

– Servers themselves strongly connected + robust 

– Garbage collection straightforward   

 

 

 



Bayou (Xerox PARC, 1994) 

• Bayou is a weakly consistent distributed storage 
system 
– Assumes a set of nodes (e.g. laptops, PDAs) which are 

only occasionally connected 

– Clients talk to servers, each of which manages a 
‘database’ (= set of data items) 

– (clients and servers can be co-located on a node) 

– Any client is allowed to  read from or write to any 
server with which it can communicate 

• Built around idea of eventual consistency 

 
 



Eventual Consistency 

• Assumption that, if no more updates, all 
servers will end up with the same data 

• Relies on two underlying properties: 
– Total propagation: every server eventually 

receives every update (perhaps via intermediaries)  

– Consistent ordering: every server can agree on the 
order of all (non-commutative) updates 

• To achieve these Bayou relies on anti-entropy, 
logical ordering, and a commit protocol 
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Bayou Contributions 

• Three key contributions:  
– Definition of various session guarantees 

– Design and implementation of database, anti-entropy 
scheme, and means to achieve total ordering 

– Application-specific conflict management  

• Session guarantees 
– Clients can get confused by lack of read/write 

ordering in a weakly replicated system 

– Global (“one-copy”) ordering at odds with weak 
consistency – but what if just focus on one session? 
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Guarantees for sessions 

• Basic operations are generalized reads and writes 
– Read: database ‘query’, or just a request for a given file 

– Write: creating, modifying, or deleting items 

• Guarantees from single client session point of view 
– Which may span multiple servers 

• E.g. Read your writes (RYW): 
– Reads should reflect previous session writes 

– e.g. Password change in Grapevine system  

• “Guarantees” in that data system will either ensure 
them for each read/write, or notify that it can’t  



Read Your Writes 

• Want to ensure that if a session writes 
something, a subsequent read sees it 

• Imagine each write at a server is assigned a 
globally unique id (WID), e.g. <server, seq>  

• Servers maintain DB(S): ordered list of all WIDs 
• Client remembers its session write set 

– List of WIDs for all of its writes  

• Then can provide RYW by:  
– Before doing a read, client asks server S for DB(S)  
– Only continue if write set if a subset of DB(S) 



Monotonic Reads 

• Ensure that every session read sees a non-
decreasing set of writes 
– I.e. don’t want to operate on older version of data 
– E.g. client requests list of new email messages, and 

then requests full body of one of them 

• To achieve this, on every read the server returns 
the relevant writes: minimal subset of WIDs 

• Client adds this to its session read set 
• Then can provide monotonic reads by: 

– Before doing read from server S, ask for DB(S) 
– Only proceed if read set is a subset of DB(S)  



Writes Follow Reads 

• Ensures traditional write after read 
dependencies apply at all servers 
– If a session has a write W following a read(s), then 

W will be ordered at every server after any writes 
whose effects were seen by that read(s) 

• Affects users outside the session: 
– Essentially says casual order within session must 

become the overall order 

• Needs a bit more work than previous two… 



Ensuring WFR 

• If a server S accepts a write W at time t, it must 
ensure W > W* for any W* in DB(S,t) 
– i.e. new writes must be ordered after known ones 

• When anti-entropy is performed between S and 
S2, then any W in DB(S,t) can only be propagated 
if all W* < W in DB(S,t) are also 
– i.e. must transfer complete history 

• If these two hold, can implement WFR as: 
– On any session read, add relevant writes to read-set 
– Before writing to S, check read set is a subset of DB(S) 

  



Monotonic Writes 

• Essentially provides traditional write ordering 

– i.e. if W1 precedes W2 in a session then, for any S, if 
W2 is in DB(S) then W1 is too, and W1<W2 

• Relies on the same two additional properties as 
writes follow reads 

• With these, ensuring monotonic writes means: 

– Client maintains write set  

– Before  writing to S, ask for DB(S)  

– Only continue if write set is a subset of DB(S) 

 



Session Guarantees: Summary 

• Four independent (but related) properties 

 

 

 

 

• First two require little support 

• Second two require: (a) new writes ordered after 
existing ones, and (b) propagation is inclusive 
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Bayou Implementation 

• Inspired by session guarantee model, but made 
more practical  
– Model suggests servers maintain log of updates for 

ever which leads to massive read/write sets 

• Basic idea: at each server, consider writes to be in 
one of two states: 
– Tentative Writes, and    
– Stable (or Committed) Writes 

• Stable writes are those who have been globally 
agreed upon – hence server can “collapse” these 
into resulting data and forget about WIDs etc. 



Tentative and Committed Writes 

• When a write is accepted by a server, it is initially 
deemed tentative 
– Given WID of <server, timestamp> 

• Timestamps in Bayou are logical clocks: 
– Initially synchronized to local system clock  

– However if receive message (e.g. during anti-entropy) 
with larger clock, warp clock forward 

• At some stage, writes become committed 
– All committed writes are ordered before any tentative 

ones, i.e.  [ W1 < W2 < .. WN ] < [ TW1 < TW2 < TW3 ] 

 



Committing Writes 

• For W to be committed, everyone must agree on: 
– Total order of all previous committed entries 
– Fact that W is next in total order 
– Fact that all uncommitted entries are “after” W 

• Bayou does this via a primary commit protocol 
• “Primary” replica marks each write it receives 

with permanent CSN (commit sequence number) 
– That write is now committed 

• Nodes exchange CSNs via gossip  
– CSNs define total order for committed writes 

 
30 



Why Primary Commit? 

• Chosen to match expected environment 
– Many servers may be unavailable at any time  

– Primary commit means that progress (in terms of 
commitment) can be made with just one node 

– Can have different primaries for different subsets 

• In partitioned network may end up with servers 
having lots of tentative writes 
– That’s what session guarantees are for! 

– When network heals, commit order becomes known 

– “recent” tentative writes may be ordered quite “late”  



Write Log Management 

• Each server maintains partitioned log 
– Front has (subset of) committed writes 

– Back has tentative writes in arrival order 

– Log entries used during anti-entropy 

• Also has tuple store for serving reads 
– Represents view of world for reads 

– Tuples have 2-bit tag { committed , tentative } 

• Also has undo log for every tentative entry 
– So can recompute “world” if reordering occurs 



Anti-Entropy Algorithm 

• Each server maintains vector V[S1, S2, …, SN] 
– Entry V[S] contains highest sequence number of 

update received from server S 

• Maintain prefix property: 
– If get W from S2, also get all W* < W in DB(S2) 

• Algorithm for sever S1 to update server S2:  
– Get S2’s version vector V2 

– For each write W in S1’s write log, let R=server[W] 
• If V2[R] < W, update S2 with W* <= W for W* in DB(R) 

 



Bayou: Dependency Checks 

• So far have talked about reads and writes in 
very general way 

• In practice, this can lead to problems with 
conflicts, e.g. consider calendar application 
– Update W1 adds booking for Room 5 at 10-11 

– Update W2 adds booking for Room 5 at 11-12 

– Stupid conflict detection might think there’s a 
conflict since both updates affect same tables 

• Bayou proposed novel way to handle this… 



Make “Writes” into Programs 

• Rather that just submitting writes, submit a short 
program in a scripting language 
– includes a dependency check, and a merge procedure 

• E.g. { Book meeting Room 5 10-11 if free; 
otherwise book Room 8 12-1; else fail }  

• The dependency check here is “if free” 
– Essentially a query on the state of the database 

• “Merge procedure” here is just try another room 
– But can be considerably more sophisticated 

depending on application.. see SOSP paper for details   



Bayou: Summary 

• Weak consistency for high availability  

• Recognized that clients can get confused by 
arbitrary ordering: session guarantees 

• (Some assumptions on servers required)  

• Also argued that applications on such systems 
must be aware of weaker semantics 

– Need to handle notion of tentative writes 

– Can use programmatic updates for ‘atomicity’ 


