Distributed Systems
8L for Part IB

Additional Material
(Case Studies)

Dr. Steven Hand



Introduction

* The Distributed Systems course covers a wide
range of topics in a variety of areas

* This handout includes 3 case studies (all of which
are distributed storage systems):
— AFS, Coda & Bayou

* Aimis to illustrate how entire systems:
— use replication,
— maintain consistency, and
— handle failure

* The hope is that these will aid understand of core
concepts: details covered are not examinable



The Andrew File System (1983)

* A different approach to remote file access

* Meant to service a large organization
— Scaling is a major goal
* Basic AFS model:

— Files are stored permanently at file server machines

— Users work from workstation machines
* With their own private namespace

— Andrew provides mechanisms to cache user’s files
from shared namespace

* Even “local” accesses go via client



Vice, Virtue and Venus...

_User Venus Virtue RPC
drog)rein Virtue RPC oo
UI\lgrnel

LUser Venus Virtue RPC ;N:: :E:ne':

program

UI\lgrnel
=
Venus Virtue RPC

~User

program
[___UN grnel |




Basic Idea: Whole File Caching

* Andrew caches entire files from the system.
— On open Venus caches files from Vice
— On close, [modified] copies are witten back

* Reading and writing bytes of a file are done on
the cached copy by the local kernel

 Venus also caches contents of directories and
symbolic links, for path-name translation

— Exceptions for modifications to made directly on
the server responsible for that directory



Why do Whole-File Caching?

* Minimizes communications with server
— Less network traffic
— Better performance
* Most files used in entirety anyway (prefetch)
* Simpler cache management
* However does requires substantial free disk
space on workstations

— Can be an issue for huge files
— Later versions allow caching part of a file



Andrew Shared Namespace

* An AFS installation has a global shared namespace
* A fid identifies a Vice file or directory

e Afid is 96 bits long and has three 32-bit components:
— volume number (a unit holding the files of a single client)
— vnode number (basically an inode for a single volume)

— uniquifier (generation number for vnodes numbers,
thereby keeping certain data structures, compact

* High degree of name and location transparency
— Fids do not embed any notion of location
— Every server stores volume->server mapping



AFS Consistency

Aiming to provide “local” semantics

Implemented by callbacks:
— On open, Venus checks if client already has copy

— If not, then requests from Vice server that is custodian
of that particular file

— Server returns contents along with a callback promise
(and logs this to durable storage)

Whenever a client sends back an updated copy
(e.g. on close), invoke all callbacks

Same scheme used for volume map



AFS Pros and Cons (1)

e Performance

— Most file operations are done locally (and most files
typically have one writer in a time window)

— Little load on servers beyond open/close timescales
Location transparency

— Indirection via volume map makes it easy to move volumes
— Also can do limited replication (read-only files)
Scalability

— Initial design aimed for 200:1 client-server ratio

— Indirection and caching makes this easily achievable
“Single System Image”

— Clients (workstations) essentially interchangeable



AFS Pros and Cons (2)

* Good Security
— Client machines untrusted (only Vice servers trusted)
— Strong initial authentication via Kerberos
— Can use encryption used to protect transmissions

e But:

— Complex and invasive to install (“take over the world”)

— Usability issues, e.g. ticket expiration, weird “last close
wins” semantics for concurrent update

e Ultimately AFS popular only in niche domains...



Coda (CMU, 1987+)

e A file-system with optimistic replication
— Essentially client/server (developed from AFS)

* Motivated by the emergence of laptops

— When connected to network, laptop operated just
like any other Andrew workstation

— When disconnected, however, no file updates
allowed once the leases expired

— This was fine for temporary outages in AFS (e.g.
reboot or network glitch), but not for mobile use



Coda Operation

* Change the Venus cache manager to operate
in three different modes:

1. Hoarding

— “Normal” operation

2. Emulating
Comting > ———>

— Disconnected
3. Reintegrating

— Reconciling changes back to the server
* Few changes required to Vice or Virtue




Coda: Hoarding

 “Normal” operation a little different than AFS
— Aggressively cache copies of files on local disk

 Add a Hoard Database (HDB) to Coda clients

— Specifies files to be cached on local disk
— User can tweak HDB, and add priorities
* Laptop disks were small back in the day
— Files actually cached a function of hoard priority and
actual usage — can pickup dependencies
* Perform hoard walk periodically (or on request)
to ensure disk has only highest priority files



Coda: Emulating

* When disconnected, attempts to access files
not in the cache appear as failures to apps

* All changes made to anything are written in a
persistent log (the client modification log)

— In implementation was managed by using
lightweight recoverable virtual memory (IRVM)

— Simplifies Venus itself

* Venus purges unnecessary entries from the
CML (e.g. updates to files later deleted)



Coda: Reintegrating

* Once acodaclientis reconnected, it initiates a
reintegration process
— Performed one volume at a time
— Venue ships replay to each volume
— Volumes execute a log replay algorithm
— Basic conflict detection and ‘resolution’

e Lessons learned:

— Reintegration can take a long time (need fast network)

— Conflicts rare in practice (0.75% chance of update of
same file by two users within 24 hours)



Coda: Summary

* Generally better than AFS
— Inherits most AFS advantages, but adds more
— e.g. replicated Vice servers with writable replicas

— e.g. CML can end up coalescing updates (or
removing them entirely) => less traffic, server load

 Much simpler than peer-to-peer schemes:
— Client only needs to reconcile with “its” server
— Servers themselves strongly connected + robust
— Garbage collection straightforward



Bayou (Xerox PARC, 1994)

* Bayou is a weakly consistent distributed storage
system

— Assumes a set of nodes (e.g. laptops, PDAs) which are
only occasionally connected

— Clients talk to servers, each of which manages a
‘database’ (= set of data items)

— (clients and servers can be co-located on a node)

— Any client is allowed to read from or write to any
server with which it can communicate

 Built around idea of eventual consistency




Eventual Consistency

e Assumption that, if no more updates, all
servers will end up with the same data

* Relies on two underlying properties:

— Total propagation: every server eventually
receives every update (perhaps via intermediaries)

— Consistent ordering: every server can agree on the
order of all (hon-commutative) updates

* To achieve these Bayou relies on anti-entropy,
logical ordering, and a commit protocol



The Bayou Architecture

o Storage Storage
/ Application \ System System

Bayou API

< > V\
/ Server State

. Read \ )
Client

Server

Client Stub

Server State

:,..:'":Anti-entropy

'Server

Storage
System A

— » Storage
/ Application \ o System

Server State ¥

Bayou API

Client Stub A

Write

Server State

Server

Client

Server 19



Bayou Contributions

* Three key contributions:
— Definition of various session guarantees

— Design and implementation of database, anti-entropy
scheme, and means to achieve total ordering

— Application-specific conflict management

* Session guarantees

— Clients can get confused by lack of read/write
ordering in a weakly replicated system

— Global (“one-copy”) ordering at odds with weak
consistency — but what if just focus on one session?



Guarantees for sessions

* Basic operations are generalized reads and writes
— Read: database ‘query’, or just a request for a given file
— Write: creating, modifying, or deleting items

* Guarantees from single client session point of view
— Which may span multiple servers

e E.g. Read your writes (RYW):
— Reads should reflect previous session writes
— e.g. Password change in Grapevine system

* “Guarantees” in that data system will either ensure
them for each read/write, or notify that it can’t



Read Your Writes

 Want to ensure that if a session writes
something, a subsequent read sees it

* Imagine each write at a server is assigned a
globally unique id (WID), e.g. <server, seq>

e Servers maintain DB(S): ordered list of all WIDs

e Client remembers its session write set
— List of WIDs for all of its writes
* Then can provide RYW by:

— Before doing a read, client asks server S for DB(S)
— Only continue if write set if a subset of DB(S)



Monotonic Reads

Ensure that every session read sees a non-
decreasing set of writes

— |.e. don’t want to operate on older version of data

— E.g. client requests list of new email messages, and
then requests full body of one of them

To achieve this, on every read the server returns
the relevant writes: minimal subset of WIDs

Client adds this to its session read set

Then can provide monotonic reads by:
— Before doing read from server S, ask for DB(S)
— Only proceed if read set is a subset of DB(S)



Writes Follow Reads

* Ensures traditional write after read
dependencies apply at all servers

— |f a session has a write W following a read(s), then
W will be ordered at every server after any writes
whose effects were seen by that read(s)

o Affects users outside the session:

— Essentially says casual order within session must
become the overall order

* Needs a bit more work than previous two...



Ensuring WER

* |f a server S accepts a write W at time t, it must
ensure W > W* for any W* in DB(S,t)

— i.e. new writes must be ordered after known ones

* When anti-entropy is performed between S and
S2, then any W in DB(S,t) can only be propagated
if all W* < W in DB(S,t) are also
— i.e. must transfer complete history

* |f these two hold, can implement WFR as:

— On any session read, add relevant writes to read-set
— Before writing to S, check read set is a subset of DB(S)



Monotonic Writes

e Essentially provides traditional write ordering

— i.e. if W1 precedes W2 in a session then, for any S, if
W2 is in DB(S) then W1 is too, and W1<W?2

* Relies on the same two additional properties as
writes follow reads

* With these, ensuring monotonic writes means:

— Client maintains write set
— Before writing to S, ask for DB(S)
— Only continue if write set is a subset of DB(S)



Session Guarantees: Summary

* Four independent (but related) properties

_ Session State Updated | Session State Checked

Read Your Writes Write Read
Monotonic Reads Read Read
Writes Follow Reads Read Write
Monotonic Writes Write Write

* First two require little support

e Second two require: (a) new writes ordered after
existing ones, and (b) propagation is inclusive



Bayou Implementation

* Inspired by session guarantee model, but made
more practical
— Model suggests servers maintain log of updates for

ever which leads to massive read/write sets

e Basic idea: at each server, consider writes to be in
one of two states:
— Tentative Writes, and
— Stable (or Committed) Writes

* Stable writes are those who have been globally

agreed upon — hence server can “collapse” these
into resulting data and forget about WIDs etc.



Tentative and Committed Writes

* When a write is accepted by a server, it is initially
deemed tentative

— Given WID of <server, timestamp>

* Timestamps in Bayou are logical clocks:
— Initially synchronized to local system clock

— However if receive message (e.g. during anti-entropy)
with larger clock, warp clock forward

* At some stage, writes become committed

— All committed writes are ordered before any tentative
ones,i.e. [W; <W,<. W ]<[TW,<TW,<TW,]



Committing Writes

 For W to be committed, everyone must agree on:
— Total order of all previous committed entries
— Fact that W is next in total order
— Fact that all uncommitted entries are “after” W

* Bayou does this via a primary commit protocol

* “Primary” replica marks each write it receives
with permanent CSN (commit sequence number)

— That write is now committed

* Nodes exchange CSNs via gossip
— CSNs define total order for committed writes



Why Primary Commit?

* Chosen to match expected environment
— Many servers may be unavailable at any time

— Primary commit means that progress (in terms of
commitment) can be made with just one node

— Can have different primaries for different subsets

* |n partitioned network may end up with servers
having lots of tentative writes
— That’s what session guarantees are for!
— When network heals, commit order becomes known
— “recent” tentative writes may be ordered quite “late”



Write Log Management

* Each server maintains partitioned log
— Front has (subset of) committed writes
— Back has tentative writes in arrival order
— Log entries used during anti-entropy
* Also has tuple store for serving reads
— Represents view of world for reads
— Tuples have 2-bit tag { committed , tentative }
* Also has undo log for every tentative entry
— So can recompute “world” if reordering occurs



Anti-Entropy Algorithm

* Each server maintains vector V[S,, S,, ..., S\l

— Entry V[S] contains highest sequence number of
update received from server S

* Maintain prefix property:
— If get W from S2, also get all W* < W in DB(S2)
e Algorithm for sever S1 to update server S2:

— Get S2’s version vector V2

— For each write W in S1’s write log, let R=server[W]
* If V2[R] < W, update S2 with W* <= W for W* in DB(R)



Bayou: Dependency Checks

e So far have talked about reads and writes in
very general way

* |n practice, this can lead to problems with
conflicts, e.g. consider calendar application
— Update W1 adds booking for Room 5 at 10-11
— Update W2 adds booking for Room 5 at 11-12

— Stupid conflict detection might think there’s a
conflict since both updates affect same tables

* Bayou proposed novel way to handle this...



Make “Writes” into Programs

* Rather that just submitting writes, submit a short
program in a scripting language
— includes a dependency check, and a merge procedure
* E.g. { Book meeting Room 5 10-11 if free;
otherwise book Room 8 12-1; else fail }
* The dependency check here is “if free”
— Essentially a query on the state of the database

 “Merge procedure” here is just try another room

— But can be considerably more sophisticated
depending on application.. see SOSP paper for details



Bayou: Summary

Weak consistency for high availability

Recognized that clients can get confused by
arbitrary ordering: session guarantees

(Some assumptions on servers required)

Also argued that applications on such systems
must be aware of weaker semantics

— Need to handle notion of tentative writes
— Can use programmatic updates for ‘atomicity’



