Concurrent Systems
8L for Part IB

Handout 4

Dr. Steven Hand

ADI . DAlllkAaAl,
LZIL. \N\VUIIVdU

e Recall that transactions can abort
— Could be to run-time conflicts (non-strict 2PL), or
could be programmed (e.g. on an exception)
e Using locking for isolation works, but means that
updates are made ‘in place’

— i n nNnro ﬁf‘ﬂllirﬂ \AIV¥r
1.C. UINILT aLyuii< vvi

y
— If txaction aborts, need to make sure no effects visible

e Rollback is the process of returning the world to
the state it in was before the start of the txaction

Alllkhacl,e 1l A
VIl U

dCK:. unao

IMV\IAM 2 Vel
Hmpieme |5

 One strategy is to undo operations, e.g.
— Keep a log of all operations, in order: O,, O,, .. O,
— On abort, undo changes of O, O,), .- Oy

e Must know how to undo an operation:

— Assume we log both operations and parameters

— Programmer can provide an explicit counter action
e UNDO(credit(A, x)) < debit(A, x);

 May not be sufficient (e.g. setBalance(A, x))

— Would need to record previous balance, which we
may not have explicitly read within transaction...

Alllkharl,
vlivd

\ 7

Copy

dCK

IMV\IAM 2 Vel
Hmpieme |5

A more brute-force approach is to take a copy of
an object before [first] modification

— On abort, just revert to original copy
e Has some advantages:

— Doesn’t require programmer effort

— Undo is simple, and can be efficient (e.g. if there are
many operations, and/or they are complex)

e However can lead to high overhead if objects are
large ... and may not be needed if don’t abort!

— Can reduce overhead with partial copying

||||CL |||J u |S\|JU

e’

e 2PL and Strict 2PL are widely used in practice
— But can limit concurrency (certainly the latter)
— And must be able to deal with deadlock

 TSO is an alternative approach:
— As a transaction begins, it is assigned a timestamp

— Timestamps are comparable, and unique (can think of
as e.g. current time — or as a ticket from a sequencer)

— Every object O records the timestamp of the last
transaction to successfully access it: V(O)

— T can access object O iff V(T) >=V(O), where V(T) is
the timestamp of T (otherwise rejected as “too late”)

TCN L\ Xa ol '1

19U LA II}J

T1 transaction { T2 transaction {
s = getBalance(S); debit(S, 100);
c = getBalance(C); credit(C, 100);
return = s + c; return true;

+ +

Imagine S and C start off with version 10

1. T1 and T2 both start concurrently:

e T1 gets timestamp 27, T2 gets timestamp 29

T1 reads S => ok! (27 >= 10); S gets timestamp 27

T2 does debit S, 100 => ok! (29 >= 27); S gets timestamp 29
T1 reads C => ok! (27 => 10); C gets timestamp 27

T2 does credit C, 100 => ok! (29 >= 27); C gets timestamp 29
Both transactions commit.

o s WN

TCN L\ Xa ol ’)

19U LA II}J

T1 transaction { T2 transaction {
s = getBalance(S); debit(S, 100);
c = getBalance(C); credit(C, 100);
return = s + c; return true;

+ +

As before, S and C start off with version 10

1. T1 and T2 both start concurrently:

e T1 gets timestamp 27, T2 gets timestamp 29

T1 reads S => ok! (27 >=0); S gets timestamp 27

T2 does debit S, 100 => ok! (29 >= 27); S gets timestamp 29
T2 does credit C, 100 => ok! (29 >= 0); C gets timestamp 29
T1 reads C => FAIL! (27 < 29); T1 aborts

T2 commits; T1 restarts, gets timestamp 30...

o s WN

N
M

A
U

AacocnfT
vantages oOf |

CN
I

Deadlock free

Can allow more concurrency than 2PC
Can be implemented in a decentralized fashion

Can be augmented to distinguish reads & writes
— objects have read timestamp R & write timestamp W

READ(O, T) {
1IT(V(T) < W(0)) abort;
// do actual read

R(O): =

MAXCV(T) . R(O));

Iy safe to read if no-

WRITE(O, T) {
1IT(V(T) < R(0)) abort;
1ITQV(T) < W(O))_return;

\AZ \ 7

I_II\ 7\ M\
11UV VT

e
1.

 TSO needs a rollback mechanism (like 2PC)
TSO does not provide strict isolation:
— hence subject to cascading aborts

— (can provide strict TSO by locking objects when access is
granted — still remains deadlock free)

 TSO decides a priori on one serialization
— even if others might have been possible
 And TSO does not perform well under contention
— will repeatedly have transactions aborting & retrying & ...

* |n general TSO is a good choice for distributed systems
[decentralized management] where conflicts are rare

If\ r.f\lf'\f\l NHal 2 VY aValWi PI\V\'I‘IFI\I
LIL LUITICLUTITTTILY CUITILTUI

p m

e OCCis an alternative to 2PC or TSO

e Optimistic since assume conflicts are rare
— Execute transaction on a shadow [copy] of the data

— On commit, check if all “OK”; if so, apply updates;
otherwise discard shadows & retry

“OK” means:

— All shadows read were mutually consistent, and

— No-one else has committed changes to any object that
we are hoping to update

* Advantages: no deadlock, no cascading aborts
— And “rollback” comes pretty much for free!

10

||||P|C|||C||L|||5 UL

e Various efficient schemes for shadowing
— e.g. write buffering, page-based copy-on-write.

e Complexity arises in performing validation when
a transaction T finishes & tries to commit

e Read Validation:

— Must ensure that all versions of data read by T (all
shadows) were valid at some particular time t

— This becomes the tentative start time for T
» Serializability Validation:

— Must ensure that there are no conflicts with any
transactions which have an earlier start time

11

OCC Examp|
ULL CXdMmpie

"‘\
\/

e All objects are tagged with a version

— Validation timestamp of the transaction which most
recently wrote its updates to that object

 Many threads execute transactions

— When wish to read an object, take a shadow copy, and
take note of the version number

— If wish to write: first take copy, then update that

e When a thread finishes a transaction, it submits
the versions to a single threaded validator

12

OCC Examp|
ULL CXdMmpie

——
N
——

e Validator keeps track of last k validated transactions,
their timestamps, and the objects they updated

 The versions of the objects are as follows:

e T7 has started, but not finished, writeback

(A has been updated, but not E)

OCC Example (3)

e Consider T8: { write(B), write(E) };
e T8 executes and makes shadows of B & E
— Records timestamps: B@10, E@9
— When done, T8 submits for validation
 Phase 1: read validation
— Check shadows are part of a consistent snapshot
— Latest committed start time is 11 = ok (10, 9 < 11)
* Phase 2: serializability validation

— Check T8 against all later transactions (here, T7)
— Conflict detected! (T7 updates E, but T8 read old E)

14

11 \AZJ

lecem ~ o i+l NNCC
1I0UCOS VVILIT UUCLGU

* Preceding example uses a simple validator
— Possible will abort even when don’t need to
— (e.g. can search for a ‘better’ start time)

* |n general OCC can find more serializable
schedules than TSO

— Timestamps assigned after the fact, and taking the
actual data read and written into account

e However OCC is not suitable when high conflict
— Can perform lots of work with ‘stale’ data => wasteful!
— Livelock possible if conflicting set continually retries

15

:f\lf'\ Q- Pnnn
IVIT QU CUILIU

1 1 v\

4 tivrrAanrn v C -~
L 11 CI Ly.J iiilid

v\ 7
|

y

If‘f\l"\
1oVlild

e 2PL explicitly locks items as required, then releases
— Guarantees a serializable schedule
— Strict 2PC avoids cascading aborts
— Can limit concurrency; & prone to deadlock
e TSO assigns timestamps when transactions start
— Cannot deadlock, but may miss serializable schedules
— Suitable for distributed/decentralized systems
* OCC executes with shadow copies, then validates
— Validation assigns timestamps when transactions end
— Lots of concurrency, & admits many serializable schedules
— No deadlock but potential livelock when contention is high

16

PV“'\I“L\ Df\f‘f\\l’\l"\l Q- I I\f“f\‘:lﬂf"
LirdSN necovery & LOggin

* Transactions require ACID properties
— So far have focused on | (and implicitly C).

e How can we ensure Atomicity & Durability?

— Need to make sure that if a transaction always done
entirely or not at all

— Need to make sure that a transaction reported as
committed remains so, even after a crash

e Consider for now a fail-stop model:
— If system crashes, all in-memory contents are lost
— Data on disk, however, remains available after reboot

17

N Y ictkAannt C+ -~ T
|5 SISTEeENT o>t S

e Simplest “solution”: write all updated objects
to disk on commit, read back on reboot

— Doesn’t work, since crash could occur during write
— Can fail to provide Atomicity and/or Consistency

e Instead split update into two stages
1 \I\lr+ s |nr~|

i VVIILC p Op Cu |JU S
2. Write actual updates
e Crash during #1 => no actual updates done

e Crash during #2 => use log to redo, or undo

18

\Write_Ahe N o
ritce-Aneaad Log |5

g
VVIIL

 Ordered append-only file on disk

e Contains entries like <txid, obj, op, old, new>

— |ID of transaction, object modified, (optionally) the
operation performed, the old value and the new value

— This means we can both “roll forward” (redo
operations) and “rollback” (undo operations)

 When persisting a transaction to disk:
— First log a special entry <txid, START>
— Next log a number of entries to describe operations
— Finally log another special entry <txid, COMMIT>

19

I ~

11 n_.ANhead |l Ao
cC-AliIcdUu LUS

Uo |

-~ 4
1€ a VVIiT

e When executing transactions, perform updates to objects
in memory with lazy write back

— i.e. the OS can push changes to disk whenever it wants
e |[nitially can do the same with the log entries...
e But when wish to commit a transaction, must first
synchronously flush a commit record to the log

— Assume there is a ‘fsync’ operation or similar which allows us to
force data out to disk

— Only report transaction as committed when fsync returns
e Canimprove performance by delaying flush until we have a
number of transaction to commit

— Hence at any point in time we have some prefix of the write-
ahead log on disk, and the rest in memory

20

|
I Object Values Log Entries :
: TL |
| % = 3 T2, ABORT I
RAM I y = 27 1A L0L TR P2 I
| B o !
o e — _'
_____________________________ -
: I
I Object Values Log Entries I
! T2y 2 g | |
Disk : x = 1 T2, START I
: y = 17 Sl I
_ TO, COMMIT l
I z = 42 :
I p oS Haililiz :
: TOE=C AR :
|

older vers

Newer Log Entries

Older Log Entries

N

21

Che 'p ints

e As described, log will get very long
— And need to process every entry in log to recover

e Better to periodically write a checkpoint
— Flush all current in-memory log records to disk

— Write a special checkpoint record to log which
contains a list of active transactions

— Flush all ‘dirty’ objects (i.e. ensure object values on
disk are up to date)

— Flush location of new checkpoint record to disk
 (Not fatal if crash during final write)

22

Che 'p nts

Df\f\f\
N\NCLYV

gl
|

/)

y

o Key benefit of a checkpoint is it lets us focus
our attention on possibly affected txactions

Checkpoint Time

Failure Time

Time

T1: no action required
T2: REDO

73: UNDO

T4: REDO

T1:UNDO

23

Df\f\f\\l V'\l f" L\
Recovery Aigorithm

e |nitialize undo list U = { set of active txactions }
e Also have redo list R, initially empty

 Walk log forward from checkpoint record:
— If see a START record, add txaction to U
— If see a COMMIT record, move txaction from U->R

e When hit end of log, perform undo:
— Walk backward and undo all records for all Tx in U

* When reach checkpoint record again, Redo:
— Walk forward, and re-do all records for all Tx in R

24

@Y

dNSacC

[

IONS

1 1 ¥\ VA

T 4 . C -~ ¥\ 7
11 L « I 1iiiial

)4

e Standard mutual exclusion techniques not great
for dealing with >1 object

— intricate locking (& lock order) required, or
— single coarse-grained lock, limiting concurrency

 Transactions allow us a better way:

— potentially many operations (reads and updates) on
many objects, but should execute as if atomically

— underlying system deals with providing isolation,
allowing safe concurrency, and even fault tolerance!

e Transactions widely used in database systems

fJ\l @Y
U

vdadliL T U

A [opICS
o Will briefly look at two advanced topics
— lock-free data structures, and

— transactional memory

e This is informational & not examinable!
— but worth knowing at least something about
 (Those of you who are super keen are invited
to attend Tim Harris’s ACS course:
— 4pm-6pm on Thu Nov 3, 10 and 17; in SW01)

26

I _fv
=1

f\f\ n
1CCT Il

Loc Oogramn ||i"|g
e What’s wrong with locks?
— Difficult to get right (if locks are fine-grained)
— Don’t scale well (if locks too coarse-grained)
— Don’t compose well (deadlock!)
— Poor cache behavior (e.g. convoying)
— Priority inversion
— And can be expensive
e Lock-free programming involves getting rid of
locks ... but not at the cost of safety!

27

Assumbpt
ASSUMPtL

o

Oons

 We have a shared memory system
* Low-level (assembly instructions) include:

val = read(addr); // atomic read from memory
(void) write(addr, val); // atomic write to memory
done = CAS(addr, old, new); // atomic compare-and-swap

e Compare-and-Swap (CAS) is atomic

e reads value of addr (‘val’), compares with ‘old’, and
updates memory to ‘new’ iff old==val -- without
interruption!

e something like this instruction common on most modern
processors (e.g. cmpxchg on x86)

e Typically used to build spinlocks (or mutexes, or
semaphores, or sequencers, or whatever...)

Lock-Tree Approacn

e Directly use CAS to update shared date

e As an example consider a lock-free linked list
of integer values

— list is singly linked, and sorted

 Represents the ‘set’ abstract data type, i.e.
— find(int) -> bool
— insert(int) -> bool
— delete(int) -> bool

29

b
(Vp)

O

QL
)
S

o,
¥

g

Q0o
-

e

O
S

¢
QL
)

e find(20):

find(20) -> false

30

)

O

i -
b

-

&
Q
e

-
qe

00
-

=
—
QL
(Vs
C

e insert(20):

]
[

insert(20) -> true

31

)

O

i -
b

=

&
Q
e

-
qe

00
-

=
—
QL
(Vs
C

e insert(25):

e insert(20):

]
[

32

Q
)
- b
vl X

=| .
QD o
o]0 o
O r
+ Q
o c
- .I

o m— °

e
(-

G—

Am)
- w
(O O
eo| A

=

i - o
o] o
A 5o
| £
QD Y—

V) °

33

~hhi

Sedircning ana fi

|U|5 ogether

e find(20) -> false e insert(20) -> true

...but this thread
succeeded in putting

This thread saw 20

was not in the set...

itin!

* Is this a correct implementation of a set?

e Should the programmer be surprised if this happens?

34

lirnAaaviogalhili+y g
LIHiIcdl LdUlllLy

* As with transactions, we return to a conceptual
model to define correctness

— a lock-free data structure is ‘correct’ if all changes
(and return values) consistent with some serial view:
we call this a linearizable schedule

 Hence in the previous example, we were ok:
— can just deem the find() to have occurred first

 Gets a lot more complicated for more
complicated data structures & operations!

— see Tim Harris’s course for more gory details...

35

Tw
11

@Y

- ~~r~ "
adliodlUL

1 "\I “Il v\ 7
1vlidl

A [TNAN)
vieimo 1y \l \l]

Steal idea from databases!

. | lock(&mylock);
Instead of: shared[i] *= shared[j] + 17;

unlock(&mylock);

Use: atomic {
shared[1] *= shared[j] + 17;
+

Has “obvious” semantics, i.e. all operations within
block occur as if atomically

Transactional since under the hood it looks like:

do { txid = tx begin(&thd);
shared[1] *= shared[j] + 17;
} while '(tx_commit(txid));

1'“1"

AIJ\I
IVI AU

vantages

e Simplicity:
— programmer just puts atomic { } around anything
he/she wants to occur in isolation

e Composability:

— unlike locks, atomic { } blocks nest, e.g:

credit(a, x) = atomic {
setbal(a, readbal(a) + x);
+
debit(a, x) = atomic {
setbal(a, readbal(a) - x);
+
transfter(a, b, x) = atomic {
debit(a, X);
credit(b, X);

TNAN
11

AIJ\I
Vi AU

vantages

e Cannot deadlock:
— No locks, so don’t have to worry about locking order
— (Though may get livelock if not careful)

 No races (kinda):

— Cannot forget to take a lock (although you can forget

nnnnn nA Al

4
1o |JUL atomic 1 f arouna your Cr itical secti

~An o)
ion ,-)
e Scalability:

— High performance possible via OCC
— No need to worry about complex fine-grained locking

Tl\,l :f‘ \ VW VaY 2 VWi V\V‘f\m:f‘:lf\f"
LIVI 1o vVEly MITUITTHTOITNS...

e Essentially does ‘ACI" butno D
— no need to worry about crash recovery
— can work entirely in memory
— some hardware support emerging (or promised)

* But not a panacea
— Contention management can get ugly

— Difficulties with irrevocable actions (e.g. 10)

— Still working out exact semantics (type of atomicity,
handling exceptions, signaling, ...)

 For more details, see Tim Harris’s course

@Y

PI\ ' o
CUIIL

\ 7

tivrrAant CuickAarmace CrirmAarma
||C|LJYDLC||D.J iiilid

v\ 7
|

y

e Concurrency is essential in modern systems
— overlapping 1/0 with computation
— exploiting multi-core
— building distributed systems

e But throws up a lot of challenges

— need to ensure safety, allow synchronization, and
avoid issues of liveness (deadlock, livelock, ...)

 Major risk of over-engineering
— generally worth building sequential system first

— and worth using existing libraries, tools and design
patterns rather than rolling your own!

