
Concurrent Systems
8L for Part IB

Handout 2

Dr. Steven Hand

1

Event Counts & Sequencers

• Alternative synchronization scheme (1979)
• Event Counts: a special type of variable

– Essentially an increasing integer, initialized to zero

• Supports three operations:
– int advance(ec) { ec.val++; return ec.val; }
– int read(ec) { return ec.val; }
– void await(ec, v) { sleep until ec.val >= v; return}

• Can be somewhat lazy
– read() can provide a stale value
– await() can be a little “late”, i.e. (ec.val-v) can be > 0

2

Event Counts: Producer-Consumer

• Very similar to semaphore solution (although free
running counters … problem?)

• Again, no explicit mutual exclusion

// producer thread
while(true) {
 item = produce();
 await(CEV, (in–N)+1);
 buffer[in % N] = item;
 in = in + 1;
 advance(PEV);
}

// consumer thread
while(true) {
 await(PEV, out+1);
 item = buffer[out % N];
 out = out + 1;
 advance(CEV);
 consume(item);
}

int buffer[N]; int in = 0, out = 0;
CEV = new EventCount(); // counts no of “consumptions”
PEV = new EventCount(); // counts no of “productions”

3

Sequencers

• To complete the picture, add Sequencers
– Special type of variable: an integer initialized to 0

• Has just one operation:
– int ticket(seq) { v = seq.val; seq.val++; return v; }

– atomically produces a unique (increasing) value

• Can use an event count & a sequencer together
to implement a mutual exclusion lock:

4

LOCK(L) {
 turn = ticket(L.SQ);
 await(L.EV, turn);
}

UNLOCK(L) {
 advance(L.EV);
}

Generalized Producer-Consumer

• Safe concurrent access by any { producer , consumer } pair
• A single advance() invocation provides both mutual

exclusion & condition synchronization

// producer threads
while(true) {
 item = produce();
 turn = ticket(PSQ);
 await(PEV, turn);
 await(CEV, (turn-N)+1);
 buffer[turn % N] = item;
 advance(PEV);
}

// consumer threads
while(true) {
 turn = ticket(CSQ);
 await(CEV, turn);
 await(PEV, turn+1);
 item = buffer[turn % N];
 advance(CEV);
 consume(item);
}

int buffer[N];
PEV = new EventCount(); CEV = new EventCount();
PSQ = new Sequencer(); CSQ = new Sequencer();

5

Event Counts & Sequencers: MRSW

• Core of writer is mutual exclusion (WSQ, WEV)

• Q: why does reader need to await()?

6

// a writer thread
advance(REV);
turn = ticket(WSQ);
await(WEV, turn);
.. perform update to data
advance(WEV);

// a reader thread
do {
 v1 = read(REV);
 await(WEV, v1);
 .. read data
 v2 = read(REV);
} while(v1 != v2);

WEV = new EventCount(); // counts no of updates (writes)
WSQ = new Sequencer(); // for writer mutual exclusion
REV = new EventCount(); // „version‟ of data

Event Counts & Sequencers: Summary

• A different scheme than semaphores
– Basic primitives are synchronization & ordering

– (tho can be used to build mutual exclusion)

• Lazy semantics allow efficient implementation
– Originally designed for multiprocessors

• Can lead to simpler *well, shorter+ code…
– But still pretty low-level and hard to use

– (convince yourself all the examples are correct;-)

• A higher-level paradigm would be nice!

7

Conditional Critical Regions

shared int A, B, C;
region A, B {
 await(/* arbitrary condition */);
 // critical code using A and B
}

8

• Compiler automatically declares and manages underlying
primitives for mutual exclusion or synchronization
– e.g. wait/signal, read/await/advance, …

• Easier for programmer (c/f previous implementations)

• One early (1970s) effort was CCRs
– Variables can be explicitly declared as ‘shared’
– Code can be tagged as using those variables, e.g.

CCR Example: Producer-Consumer

• Explicit (scoped) declaration of critical sections
– automatically acquire mutual exclusion lock on region entry

• Powerful await(): any evaluable predicate

9

// producer thread
while(true) {
 item = produce();
 region in, out, buffer {
 await((in–out) < N);
 buffer[in % N] = item;
 in = in + 1;
 }
}

// consumer thread
while(true) {
 region in, out, buffer {
 await((in-out) > 0);
 item = buffer[out%N];
 out = out + 1;
 }
 consume(item);
}

shared int buffer[N];
shared int in = 0; shared int out = 0;

CCR Pros and Cons

• On the surface seems like a definite step up
– Programmer focuses on variables to be protected,

compiler generates appropriate semaphores (etc)
– Compiler can also check that shared variables are

never accessed outside a CCR
– (still rely on programmer annotating correctly)

• But await(<expr>) is problematic…
– What to do if the (arbitrary) <expr> is not true?
– very difficult to work out when it becomes true?
– Solution was to leave region & try to re-enter: this is

busy waiting, which is very inefficient…

10

Monitors

• Monitors are similar to CCRs (implicit mutual
exclusion), but modify them in two ways
– Waiting is limited to explicit condition variables
– All related routines are combined together, along with

initialization code, in a single construct

• Idea is that only one thread can ever be executing
‘within’ the monitor
– If a thread invokes a monitor method, it will block

(queue) if there is another thread active inside
– Hence all methods within the monitor can proceed on

the basis that mutual exclusion has been ensured

11

Example Monitor Syntax

12

monitor <foo> {

 // declarations of shared variables

 // set of procedures (or methods)
 procedure P1(...) { ... }
 procedure P2(...) { ... }
 ...
 procedure PN(...) { ... }

 {
 /* monitor initialization code */
 }

}

All related data and
methods kept together

Shared variables can be
initialized here

Invoking any procedure
causes an [implicit] mutual
exclusion lock to be taken

Condition Variables

• Mutual exclusion not always sufficient
– e.g. may need to wait for a condition to occur

• Monitors allow condition variables
– Explicitly declared & managed by programmer
– Support three operations:

13

wait(cv) {
 suspend thread and add it to the queue
 for cv; release monitor lock
}
signal(cv) {
 if any threads queued on cv, wake one;
}
broadcast(cv) {
 wake all threads queued on cv;
}

Monitor Producer-Consumer Solution?

14

monitor ProducerConsumer {
 int in, out, buf[N];
 condition notfull, notempty;

 procedure produce(item) {
 if((in-out) == N) wait(notfull);
 buf[in % N] = item;
 if((in-out) == 0) signal(notempty);
 in = in + 1;
 }
 procedure int consume() {
 if((in-out) == 0) wait(notempty);
 item = buf[out % N];
 if((in-out) == N) signal(notfull);
 out = out + 1;
 }
 /* init */ { in = out = 0; }
}

If buffer is full (in==out+N),
must wait for consumer

If buffer was full before,
signal the producer

If buffer is empty (in==out),
must wait for producer

If buffer was full (in==out),
signal the consumer

Does this work?

• Depends on implementation of wait() & signal()
• Imagine two threads, T1 and T2

– T1 enters the monitor and calls wait(C) – this suspends T1,
places it on the queue for C, and unlocks the monitor

– Next T2 enters the monitor, and invokes signal(C)
– Now T1 is unblocked (i.e. capable of running again)…
– … but can only have one thread active inside a monitor!

• If we let T2 continue (so-called “signal-and-continue”),
T1 must queue for re-entry to the monitor
– And no guarantee it will be next to enter

• Otherwise T2 must be suspended (“signal-and-wait”),
allowing T1 to continue…

15

Signal-and-Wait (“Hoare Monitors”)

• Consider a queue E to enter monitor
– If monitor is occupied, threads are added to E

– May not be FIFO, but should be fair

• If thread T1 waits on C, added to queue C

• If T2 enters monitor & signals, waking T1
– T2 is added to a new queue S “in front of” E

– T1 continues and eventually exits (or re-waits)

• Some thread on S chosen to resume
– Only admit a thread from E when S is empty

16

Signal-and-Wait Pros and Cons

• We call signal() exactly when condition is true,
then directly transfer control to waking thread
– Hence condition will still be true!

• But more difficult to implement…

• And can be difficult to reason about (a call to
signal may or may not result in a context switch)
– Hence we must ensure that any invariants are

maintained at time we invoke signal()

• With these semantics, example on p14 is broken:
– we signal() before incrementing in/out

17

Signal-and-Continue

• Alternative semantics introduced by Mesa
programming language (Xerox PARC)

• An invocation of signal() moves a thread from
the condition queue C to the entry queue E
– Invoking threads continues until exits (or waits)

• Simpler to build… but now not guaranteed
that condition is true when resume!
– Other threads may have executed after the signal,

but before you continue

18

Signal-and-Continue Example

• Consider multiple producer-consumer threads
1. P1 enters. Buffer is full so blocks on queue for C
2. C1 enters.
3. P2 tries to enter; occupied, so queues on E
4. C1 continues, consumes, and signals C (“notfull”)
5. P1 unblocks; monitor occupied, so queues on E
6. C1 exits, allowing P2 to enter
7. P2 fills buffer, and exits monitor
8. P1 resumes and tries to add item – BUG!

• Hence must re-test condition:
– i.e. while((in-out) == N) wait(notfull);

19

Monitors: Summary

• Structured concurrency control
– groups together shared data and methods

– (today we’d call this object-oriented)

• Considerably simpler than semaphores (or event
counts), but still perilous in places

• May be overly conservative sometimes:
– e.g. for MRSW cannot have >1 reader in monitor

– Typically must work around with entry and exit
methods (BeginRead(), EndRead(), BeginWrite(), etc)

• Exercise: sketch a MRSW monitor implementation

20

Concurrency in Practice

• Seen a number of abstractions for
concurrency control

– Mutual exclusion and condition synchronization

• Next let’s look at some concrete examples:

– Linux kernel

– POSIX pthreads (C/C++ API)

– Java

– C#

21

Example: Linux Kernel

• Kernel provides spinlocks & semaphores
– Spinlocks busy wait so only hold for short time

– (dynamically optimized out on UP kernels)

22

DEFINE_SPINLOCK(mylock);

spin_lock_irqsave(&mylock, flags);

// do stuff (not much!)

spin_lock_irqrestore(&mylock, flags);

• Also get reader-writer spinlock variants

• allows many readers or a single writer

• (mostly deprecated now in favor of RCU)

Example: pthreads

• A thread calling lock() blocks if the mutex is held
– trylock() is a non-blocking variant: returns immediately;

returns 0 if lock acquired, or non-zero if not.

23

int pthread_mutex_init(pthread_mutex_t *mutex, ...);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

• Standard (POSIX) threading API for C, C++, etc
• mutexes, condition variables and barriers

• Mutexes are essentially binary semaphores:

Example: pthreads

• No proper monitors: must manually code e.g.

24

• Condition variables are Mesa-style:
int pthread_cond_init(pthread_cond_t *cond, ...);

int pthread_cond_wait(pthread_cond_t *cond,

 pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

pthread_mutex_lock(&M);

while(!condition)

 pthread_cond_wait(&C,&M);

// do stuff

if(condition) pthread_cond_broadcast(&C);

pthread_mutex_unlock (&M);

Example: pthreads

25

• Barriers: explicit synchronization mechanism

• Wait until all threads reach some point

pthread_barrier_init(&B, ..., NTHREADS);

for(i=0; i<NTHREADS; i++)

 pthread_create(..., worker, ...);

worker() {

 while(!done) {

 // do work for this round

 pthread_barrier_wait(&B);

 }

}

int pthread_barrier_init(pthread_barrier_t *b, ..., N);

int pthread_barrier_wait(pthread_barrier_t *b);

Example: Java [original]

• Synchronization inspired by monitors
– Objects already encapsulate data & methods!

• Mesa-style, but no explicit condition variables

26

public class MyClass {

 //

 public synchronized void myMethod() throws ...{

 while(!condition)

 wait();

 // do stuff

 if(condition)

 notifyAll();

 }

}

• Java 5 provides many additional options…

Example: C#

• Very similar to Java, tho explicit arguments

27

public class MyClass {

 //

 public void myMethod() {

 lock(this) {

 while(!condition)

 Monitor.Wait(this);

 // do stuff

 if(condition)

 Monitor.PulseAll(this);

 }

 }

}

• Also provides spinlocks, reader-writer locks,
semaphores, barriers, event synchronization, …

Concurrency Primitives: Summary

• Concurrent systems require means to ensure:

– Safety (mutual exclusion in critical sections), and

– Progress (condition synchronization)

• Seen spinlocks (busy wait); semaphores; event
counts / sequencers; CCRs and monitors

• Almost all of these are still used in practice

– subtle minor differences can be dangerous

– require care to avoid bugs

28

Safety and Liveness

• Desirable properties for concurrent systems

– Safety: bad things don’t happen

– Liveness: good things (eventually) happen

• Mutual exclusion is primarily about safety

– Want to ensure two threads don’t “collide” in
terms of accessing shared data

• …but may have consequences for liveness too!

– i.e. must ensure our program doesn’t get stuck

29

Liveness Properties

• From a theoretical viewpoint must ensure that
we eventually make progress, i.e. want to avoid

– Deadlock (threads sleep waiting for each other), and

– Livelock (threads execute but make no progress)

• Practically speaking, also want good performance

– No starvation (single thread must make progress)

– (more generally may aim for fairness)

– Minimality (no unnecessary waiting or signalling)

• The properties are often at odds with safety :-(

30

Deadlock

• Set of k threads go asleep and cannot wake up
– each can only be woken by another who’s asleep!

• Real-life example (Kansas, 1920s):
– “When two trains approach each other at a crossing, both

shall come to a full stop and neither shall start up again
until the other has gone.”

• In concurrent programs, tends to involve the taking of
mutual exclusion locks, e.g.:

31

// thread 2
lock(Y);
 ...
 if(<cond>) {
 lock(X);
 ...

// thread 1
lock(X);
 ...
 lock(Y);
 // critical section
 unlock(Y);

Risk of deadlock if
we get here…

Requirements for Deadlock

• Like all concurrency bugs, deadlock may be rare
(e.g. imagine <cond> is mostly false)

• In practice there are four necessary conditions

1. Mutual Exclusion: resources have bounded #owners

2. Hold-and-Wait: can get Rx and wait for Ry

3. No Preemption: keep Rx until you release it

4. Circular Wait: cyclic dependency

• Require all four to be true to get deadlock

– But most modern systems always satisfy 1, 2, 3

32

Resource Allocation Graphs

• Graphical way of thinking about deadlock

• Circles are threads (or processes), boxes are single
owner resources (e.g. mutual exclusion locks)

• A cycle means we (will) have deadlock

33

T1 T3 T2

Ra Rb Rc Rd

Thick line R->T means
T holds resource R

Dashed line T->R
T wants resource R

Resource Allocation Graphs

• Can generalize to resources which can have K
distinct users (c/f semaphores)

• Absence of a cycle means no deadlock…
– but presence only means may have deadlock, e.g.

34

T1 T3 T2

Ra(1) Rb(2) Rc(2) Rd(1)

T4

Dealing with Deadlock

1. Ensure it never happens
– Deadlock prevention

– Deadlock avoidance (Banker’s Algorithm)

2. Let it happen, but recover
– Deadlock detection & recovery

3. Ignore it!
– The so-called “Ostrich Algorithm” ;-)

– i.e. let the programmer fix it

– Very widely used in practice!

35

Deadlock Prevention

1. Mutual Exclusion: resources have bounded #owners
– Could always allow access… but probably unsafe ;-(
– However can help e.g. by using MRSW locks

2. Hold-and-Wait: can get Rx and wait for Ry
– Require that we request all resources simultaneously;

deny the request if any resource is not available now
– But must know maximal resource set in advance = hard?

3. No Preemption: keep Rx until you release it
– Stealing a resource generally unsafe (tho see later)

4. Circular Wait: cyclic dependency
– Impose a partial order on resource acquisition
– Can work: but requires programmer discipline

36

Example: Dining Philosophers

• 5 philosophers, 5 forks, round table…

37

while(true) { // philosopher i
 think();
 wait(fork[i]);
 wait(fork[(i+1) % 5];
 eat();
 signal(fork[i]);
 signal(fork[(i+1) % 5];
}

Semaphore forks[] = new Semaphore[5];

• Possible for everyone to acquire ‘left’ fork (i)
• Q: what happens if we swap order of signal()s?

Example: Dining Philosophers

• (one) Solution: always take lower fork first

38

while(true) { // philosopher i
 think();
 first = MIN(i, (i+1) % 5);
 second = MAX(i, (i+1) % 5);
 wait(fork[first]);
 wait(fork[second];
 eat();
 signal(fork[second]);
 signal(fork[first]);
}

Semaphore forks[] = new Semaphore[5];

• Now even if 0, 1 2, 3 are held, 4 will not acquire final fork

Deadlock Avoidance

• Prevention aims for deadlock-free “by design”

• Deadlock Avoidance is a dynamic scheme:
– Assume we know maximum possible resource

allocation for every process / thread

– Track actual allocations in real-time

– When a request is made, only grant if guaranteed no
deadlock even if all others take max resources

• e.g. Banker’s Algorithm – see textbooks
– Not really useful in general as need a priori knowledge

of #processes/threads, and their max resource needs

 39

Deadlock Detection

• A dynamic scheme which attempts to
determine if deadlock exists

• When only a single instance of each resource,
can explicitly check for a cycle:
– Keep track which object each thread is waiting for

– From time to time, iterate over all threads and
build the resource allocation graph

– Run a cycle detection algorithm on graph O(n2)

• More difficult if have multi-instance resources

40

Deadlock Detection

• Have m distinct resources and n threads

• V[0:m-1], vector of available resources

• A, the m x n resource allocation matrix, and R,
the m x n (outstanding) request matrix
– Ai,j is the number of objects of type j owned by i

– Ri,j is the number of objects of type j needed by i

• Proceed by marking rows in A for threads that
are not part of a deadlocked set
– If we cannot mark all rows of A we have deadlock

41

Deadlock Detection Algorithm

• Mark all zero rows of A (since a thread holding
zero resources can’t be part of deadlock set)

• Initialize a working vector W[0:m-1] to V

• Select an unmarked row i of A s.t. R[i] <= W

– (i.e. find a thread who’s request can be satisfied)

– Set W = W + A[i]; mark row i, and repeat

• Terminate when no such row can be found

– Unmarked rows (if any) are in the deadlock set

42

Deadlock Detection Example 1

• Five threads and three resources (none free)

43

 X Y Z X Y Z X Y Z
T0 0 1 0 0 0 0 0 0 0
T1 2 0 0 2 0 2
T2 3 0 3 0 0 0
T3 2 1 1 1 0 0
T4 0 0 1 0 0 2

 A R V

• Find an unmarked row, mark it, and update W

• T0, T2, T3, T4, T1

 W

X Y Z
0 0 0
X Y Z
0 1 0
X Y Z
3 1 3
X Y Z
5 2 4
X Y Z
5 2 5
X Y Z
7 2 5

Deadlock Detection Example 2

• Five threads and three resources (none free)

44

 X Y Z X Y Z X Y Z
T0 0 1 0 0 0 0 0 0 0
T1 2 0 0 2 0 2
T2 3 0 3 0 0 1
T3 2 1 1 1 0 0
T4 0 0 1 0 0 2

 A R V

• One minor tweak to T2’s request vector…

 W

X Y Z
0 0 0
X Y Z
0 1 0

Cannot find a row in
R <= W!!

Now wants one unit
of resource Z

Threads T1, T2, T3 &
T4 in deadlock set

Deadlock Recovery

• What can we do when we detect deadlock?
• Simplest solution: kill someone!

– Ideally someone in the deadlock set ;-)

• Brutal, and not guaranteed to work
– But sometimes the best we can do
– E.g. linux OOM killer (better than system reboot?)

• Could also resume from checkpoint
– Assuming we have one

• In practice computer systems seldom detect or
recover from deadlock: rely on programmer

45

Livelock

• Deadlock is at least ‘easy’ to detect by humans
– System basically blocks & stops making any progress

• Livelock is less easy to detect as threads continue
to run… but do nothing useful

• Often occurs from trying to be clever, e.g.:

46

// thread 2
lock(Y);
 ...
 while(!trylock(X)) {
 unlock(Y);
 yield();
 lock(Y);
 }
 ...

// thread 1
lock(X);
 ...
 while (!trylock(Y)) {
 unlock(X);
 yield();
 lock(X);
 }
 ...

Priority Inversion

• Another liveness problem…
– Due to interaction between locking and scheduler

• Consider three threads: T1, T2, T3
– T1 is high priority, T2 low priority, T3 is medium

– T2 gets lucky and acquires lock L…

– … T1 preempts him and sleeps waiting for L…

– … then T3 runs, preventing T2 from releasing L!

• This is not deadlock or livelock
– But not very desirable (particularly in RT systems)

47

Handling Priority Inversion

• Typical solution is priority inheritance:
– Temporarily boost priority of lock holder to that of the

highest waiting thread

– Hard to reason about resulting behaviour

– (some RT systems (like VxWorks) allow you specify on
a per-mutex basis *to Rover’s detriment ;-])

• Windows “solution”
– Check if any ready thread hasn’t run for 300 ticks

– If so, double its quantum and boost its priority to 15

–

48

