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Event Counts & Sequencers 

• Alternative synchronization scheme (1979) 
• Event Counts: a special type of variable  

– Essentially an increasing integer, initialized to zero 

• Supports three operations:  
– int advance(ec) { ec.val++; return ec.val; } 
– int read(ec) { return ec.val; } 
– void await(ec, v) { sleep until ec.val >= v; return}  

• Can be somewhat lazy 
– read() can provide a stale value  
– await() can be a little “late”, i.e. (ec.val-v) can be > 0 
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Event Counts: Producer-Consumer 

• Very similar to semaphore solution (although free 
running counters … problem?) 

• Again, no explicit mutual exclusion 

// producer thread 
while(true) { 
  item = produce();  
  await(CEV, (in–N)+1);  
  buffer[in % N] = item; 
  in = in + 1; 
  advance(PEV); 
} 

// consumer thread  
while(true) { 
  await(PEV, out+1);  
  item = buffer[out % N];  
  out  = out + 1; 
  advance(CEV); 
  consume(item); 
} 

int buffer[N]; int in = 0, out = 0; 
CEV = new EventCount();  // counts no of “consumptions” 
PEV = new EventCount();  // counts no of “productions” 
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Sequencers 

• To complete the picture, add Sequencers 
– Special type of variable: an integer initialized to 0 

• Has just one operation:  
– int ticket(seq) { v = seq.val; seq.val++; return v; } 

– atomically produces a unique (increasing) value  

• Can use an event count & a sequencer together 
to implement a mutual exclusion lock: 
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LOCK(L) {  
  turn = ticket(L.SQ); 
  await(L.EV, turn); 
} 

UNLOCK(L) {  
  advance(L.EV); 
} 
 



Generalized Producer-Consumer 

• Safe concurrent access by any { producer , consumer } pair 
• A single advance() invocation provides both mutual 

exclusion & condition synchronization 
 

// producer threads 
while(true) { 
  item = produce();  
  turn = ticket(PSQ); 
  await(PEV, turn); 
  await(CEV, (turn-N)+1);  
  buffer[turn % N] = item; 
  advance(PEV); 
} 

// consumer threads  
while(true) { 
  turn = ticket(CSQ); 
  await(CEV, turn);  
  await(PEV, turn+1);  
  item = buffer[turn % N];  
  advance(CEV); 
  consume(item); 
} 

int buffer[N];  
PEV = new EventCount(); CEV = new EventCount(); 
PSQ = new Sequencer();  CSQ = new Sequencer();    
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Event Counts & Sequencers: MRSW 

• Core of writer is mutual exclusion (WSQ, WEV)  

• Q: why does reader need to await()? 

6 

// a writer thread  
advance(REV); 
turn = ticket(WSQ); 
await(WEV, turn); 
.. perform update to data 
advance(WEV); 
 

// a reader thread 
do {  
  v1 = read(REV); 
  await(WEV, v1); 
  .. read data  
  v2 = read(REV); 
} while(v1 != v2); 

WEV = new EventCount();  // counts no of updates (writes) 
WSQ = new Sequencer();   // for writer mutual exclusion 
REV = new EventCount();  // „version‟ of data 



Event Counts & Sequencers: Summary 

• A different scheme than semaphores 
– Basic primitives are synchronization & ordering 

– (tho can be used to build mutual exclusion) 

• Lazy semantics allow efficient implementation  
– Originally designed for multiprocessors 

• Can lead to simpler *well, shorter+ code… 
– But still pretty low-level and hard to use 

– (convince yourself all the examples are correct;-) 

• A higher-level paradigm would be nice!  
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Conditional Critical Regions 

shared int A, B, C;  
region A, B { 
    await( /* arbitrary condition */);  
    // critical code using A and B 
} 
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• Compiler automatically declares and manages underlying 
primitives for mutual exclusion or synchronization  
– e.g. wait/signal, read/await/advance, …  

• Easier for programmer (c/f previous implementations) 

• One early (1970s) effort was CCRs 
– Variables can be explicitly declared as ‘shared’ 
– Code can be tagged as using those variables, e.g. 



CCR Example: Producer-Consumer 

• Explicit (scoped) declaration of  critical sections 
– automatically acquire mutual exclusion lock on region entry 

• Powerful await(): any evaluable predicate  
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// producer thread 
while(true) { 
  item = produce();  
  region in, out, buffer { 
    await((in–out) < N); 
    buffer[in % N] = item; 
    in = in + 1; 
  } 
} 

// consumer thread  
while(true) { 
  region in, out, buffer {   
    await((in-out) > 0);  
    item = buffer[out%N];  
    out  = out + 1; 
  } 
  consume(item); 
} 

shared int buffer[N];  
shared int in = 0; shared int out = 0; 



CCR Pros and Cons 

• On the surface seems like a definite step up 
– Programmer focuses on variables to be protected, 

compiler generates appropriate semaphores (etc) 
– Compiler can also check that shared variables are 

never accessed outside a CCR 
– (still rely on programmer annotating correctly) 

• But await(<expr>) is problematic… 
– What to do if the (arbitrary) <expr> is not true?  
– very difficult to work out when it becomes true? 
– Solution was to leave region & try to re-enter: this is 

busy waiting, which is very inefficient… 
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Monitors 

• Monitors are similar to CCRs (implicit mutual 
exclusion), but modify them in two ways 
– Waiting is limited to explicit condition variables 
– All related routines are combined together, along with 

initialization code, in a single construct 

• Idea is that only one thread can ever be executing 
‘within’ the monitor 
– If a thread invokes a monitor method, it will block 

(queue) if there is another thread active inside 
– Hence all methods within the monitor can proceed on 

the basis that mutual exclusion has been ensured 
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Example Monitor Syntax 
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monitor <foo> { 
 
 // declarations of shared variables  
 
 // set of procedures (or methods)  
 procedure P1(...) { ... } 
 procedure P2(...) { ... } 
 ... 
 procedure PN(...) { ... } 
 
 {  
    /* monitor initialization code */  
 } 
 
} 

All related data and 
methods kept together 

Shared variables can be 
initialized here 

Invoking any procedure 
causes an [implicit] mutual 
exclusion lock to be taken 



Condition Variables 

• Mutual exclusion not always sufficient 
– e.g. may need to wait for a condition to occur 

• Monitors allow condition variables 
– Explicitly declared & managed by programmer 
– Support three operations: 
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wait(cv) {  
   suspend thread and add it to the queue 
   for cv; release monitor lock   
} 
signal(cv) {  
   if any threads queued on cv, wake one; 
} 
broadcast(cv) {  
   wake all threads queued on cv; 
} 



Monitor Producer-Consumer Solution?  
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monitor ProducerConsumer { 
 int in, out, buf[N];  
 condition notfull, notempty;  
 
 procedure produce(item) {  
   if( (in-out) == N) wait(notfull);  
   buf[in % N] = item;  
   if( (in-out) == 0) signal(notempty); 
   in = in + 1;  
 } 
 procedure int consume() {  
   if( (in-out) == 0) wait(notempty);  
   item = buf[out % N];  
   if( (in-out) == N) signal(notfull); 
   out = out + 1; 
 } 
 /* init */ { in = out = 0; } 
} 

If buffer is full (in==out+N), 
must wait for consumer 

If buffer was full before, 
signal the producer 

If buffer is empty (in==out), 
must wait for producer 

If buffer was full (in==out), 
signal the consumer 



Does this work? 

• Depends on implementation of wait() & signal() 
• Imagine two threads, T1 and T2 

– T1 enters the monitor and calls wait(C) – this suspends T1, 
places it on the queue for C, and unlocks the monitor 

– Next T2 enters the monitor, and invokes signal(C) 
– Now T1 is unblocked (i.e. capable of running again)…  
– … but can only have one thread active inside a monitor! 

• If we let T2 continue (so-called “signal-and-continue”), 
T1 must queue for re-entry to the monitor  
– And no guarantee it will be next to enter 

• Otherwise T2 must be suspended (“signal-and-wait”), 
allowing T1 to continue… 
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Signal-and-Wait (“Hoare Monitors”) 

• Consider a queue E to enter monitor 
– If monitor is occupied, threads are added to E 

– May not be FIFO, but should be fair 

• If thread T1 waits on C, added to queue C 

• If T2 enters monitor & signals, waking T1 
– T2 is added to a new queue S “in front of” E 

– T1 continues and eventually exits (or re-waits) 

• Some thread on S chosen to resume  
– Only admit a thread from E when S is empty 
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Signal-and-Wait Pros and Cons 

• We call signal() exactly when condition is true, 
then directly transfer control to waking thread 
– Hence condition will still be true!  

• But more difficult to implement…  

• And can be difficult to reason about (a call to 
signal may or may not result in a context switch) 
– Hence we must ensure that any invariants are 

maintained at time we invoke signal() 

• With these semantics, example on p14 is broken: 
– we signal() before incrementing in/out  

 
17 



Signal-and-Continue 

• Alternative semantics introduced by Mesa 
programming language (Xerox PARC) 

• An invocation of signal() moves a thread from 
the condition queue C to the entry queue E 
– Invoking threads continues until exits (or waits) 

• Simpler to build…  but now not guaranteed 
that condition is true when resume! 
– Other threads may have executed after the signal, 

but before you continue 
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Signal-and-Continue Example 

• Consider multiple producer-consumer threads 
1. P1 enters. Buffer is full so blocks on queue for C 
2. C1 enters. 
3. P2 tries to enter; occupied, so queues on E 
4. C1 continues, consumes, and signals C (“notfull”) 
5. P1 unblocks; monitor occupied, so queues on E 
6. C1 exits, allowing P2 to enter 
7. P2 fills buffer, and exits monitor 
8. P1 resumes and tries to add item – BUG! 

• Hence must re-test condition:  
– i.e. while( (in-out) == N) wait(notfull); 
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Monitors: Summary 

• Structured concurrency control 
– groups together shared data and methods 

– (today we’d call this object-oriented) 

• Considerably simpler than semaphores (or event 
counts), but still perilous in places 

• May be overly conservative sometimes:  
– e.g. for MRSW cannot have >1 reader in monitor 

– Typically must work around with entry and exit 
methods (BeginRead(), EndRead(), BeginWrite(), etc) 

• Exercise: sketch a MRSW monitor implementation 
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Concurrency in Practice 

• Seen a number of abstractions for 
concurrency control  

– Mutual exclusion and condition synchronization  

• Next let’s look at some concrete examples: 

– Linux kernel 

– POSIX pthreads (C/C++ API)  

– Java 

– C# 
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Example: Linux Kernel 

• Kernel provides spinlocks & semaphores 
– Spinlocks busy wait so only hold for short time 

– (dynamically optimized out on UP kernels) 

22 

DEFINE_SPINLOCK(mylock);  

spin_lock_irqsave(&mylock, flags);  

// do stuff (not much!) 

spin_lock_irqrestore(&mylock, flags); 

• Also get reader-writer spinlock variants 

• allows many readers or a single writer 

• (mostly deprecated now in favor of RCU) 



Example: pthreads 

• A thread calling lock() blocks if the mutex is held 
– trylock() is a non-blocking variant: returns immediately; 

returns 0 if lock acquired, or non-zero if not.  
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int pthread_mutex_init(pthread_mutex_t *mutex, ...); 

int pthread_mutex_lock(pthread_mutex_t *mutex);  

int pthread_mutex_trylock(pthread_mutex_t *mutex); 

int pthread_mutex_unlock(pthread_mutex_t *mutex); 

• Standard (POSIX) threading API for C, C++, etc 
• mutexes, condition variables and barriers 

• Mutexes are essentially binary semaphores: 



Example: pthreads 

• No proper monitors: must manually code e.g.  
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• Condition variables are Mesa-style: 
int pthread_cond_init(pthread_cond_t *cond, ...);  

int pthread_cond_wait(pthread_cond_t *cond,  

    pthread_mutex_t *mutex); 

int pthread_cond_signal(pthread_cond_t *cond); 

int pthread_cond_broadcast(pthread_cond_t *cond); 

pthread_mutex_lock(&M);  

while(!condition)  

   pthread_cond_wait(&C,&M); 

// do stuff  

if(condition) pthread_cond_broadcast(&C); 

pthread_mutex_unlock (&M); 



Example: pthreads 
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• Barriers: explicit synchronization mechanism 

• Wait until all threads reach some point 

pthread_barrier_init(&B, ..., NTHREADS);  

for(i=0; i<NTHREADS; i++)  

   pthread_create(..., worker, ...); 

 

worker() {  

   while(!done) {   

     // do work for this round  

     pthread_barrier_wait(&B); 

   } 

} 

int pthread_barrier_init(pthread_barrier_t *b, ...,  N); 

int pthread_barrier_wait(pthread_barrier_t *b); 



Example: Java [original] 

• Synchronization inspired by monitors 
– Objects already encapsulate data & methods! 

• Mesa-style, but no explicit condition variables  
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public class MyClass { 

   //  

   public synchronized void myMethod() throws ...{ 

     while(!condition)  

        wait(); 

     // do stuff  

     if(condition) 

        notifyAll(); 

   } 

} 

• Java 5 provides many additional options… 



Example: C# 

• Very similar to Java, tho explicit arguments 
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public class MyClass { 

   //  

   public void myMethod() { 

     lock(this) { 

        while(!condition)  

            Monitor.Wait(this); 

        // do stuff  

        if(condition) 

        Monitor.PulseAll(this); 

     } 

   } 

} 

• Also provides spinlocks, reader-writer locks, 
semaphores, barriers, event synchronization, …  



Concurrency Primitives: Summary 

• Concurrent systems require means to ensure: 

– Safety (mutual exclusion in critical sections), and 

– Progress (condition synchronization) 

• Seen spinlocks (busy wait); semaphores; event 
counts / sequencers; CCRs and monitors  

• Almost all of these are still used in practice 

– subtle minor differences can be dangerous 

– require care to avoid bugs 
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Safety and Liveness 

• Desirable properties for concurrent systems 

– Safety: bad things don’t happen 

– Liveness: good things (eventually) happen 

• Mutual exclusion is primarily about safety 

– Want to ensure two threads don’t “collide” in 
terms of accessing shared data 

• …but may have consequences for liveness too! 

– i.e. must ensure our program doesn’t get stuck 
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Liveness Properties 

• From a theoretical viewpoint must ensure that 
we eventually make progress, i.e. want to avoid 

– Deadlock (threads sleep waiting for each other), and 

– Livelock (threads execute but make no progress) 

• Practically speaking, also want good performance 

– No starvation (single thread must make progress) 

– (more generally may aim for fairness)  

– Minimality (no unnecessary waiting or signalling) 

• The properties are often at odds with safety :-( 
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Deadlock 

• Set of k threads go asleep and cannot wake up 
– each can only be woken by another who’s asleep! 

• Real-life example (Kansas, 1920s):  
– “When two trains approach each other at a crossing, both 

shall come to a full stop and neither shall start up again 
until the other has gone.” 

• In concurrent programs, tends to involve the taking of 
mutual exclusion locks, e.g.: 
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// thread 2 
lock(Y); 
  ...  
  if(<cond>) { 
    lock(X);  
    ... 

// thread 1 
lock(X); 
 ... 
 lock(Y);  
 // critical section     
 unlock(Y);  

Risk of deadlock if 
we get here… 



Requirements for Deadlock 

• Like all concurrency bugs, deadlock may be rare 
(e.g. imagine <cond> is mostly false) 

• In practice there are four necessary conditions 

1. Mutual Exclusion: resources have bounded #owners 

2. Hold-and-Wait: can get Rx and wait for Ry 

3. No Preemption: keep Rx until you release it 

4. Circular Wait: cyclic dependency 

• Require all four to be true to get deadlock 

– But most modern systems always satisfy 1, 2, 3  
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Resource Allocation Graphs 

• Graphical way of thinking about deadlock 

• Circles are threads (or processes), boxes are single 
owner resources (e.g. mutual exclusion locks) 

• A cycle means we (will) have deadlock 
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T1 T3 T2 

Ra Rb Rc Rd 

Thick line R->T means 
T holds resource R 

Dashed line T->R 
T wants resource R 



Resource Allocation Graphs 

• Can generalize to resources which can have K 
distinct users (c/f semaphores) 

• Absence of a cycle means no deadlock… 
– but presence only means may have deadlock, e.g. 
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T1 T3 T2 

Ra(1) Rb(2) Rc(2) Rd(1) 

T4 



Dealing with Deadlock 

1. Ensure it never happens 
– Deadlock prevention  

– Deadlock avoidance (Banker’s Algorithm) 

2. Let it happen, but recover 
– Deadlock detection & recovery 

3. Ignore it!  
– The so-called “Ostrich Algorithm” ;-) 

– i.e. let the programmer fix it 

– Very widely used in practice!  
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Deadlock Prevention 

1. Mutual Exclusion: resources have bounded #owners 
– Could always allow access… but probably unsafe ;-( 
– However can help e.g. by using MRSW locks  

2. Hold-and-Wait: can get Rx and wait for Ry 
– Require that we request all resources simultaneously; 

deny the request if any resource is not available now 
– But must know maximal resource set in advance = hard? 

3. No Preemption: keep Rx until you release it 
– Stealing a resource generally unsafe (tho see later) 

4. Circular Wait: cyclic dependency 
– Impose a partial order on resource acquisition 
– Can work: but requires programmer discipline 
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Example: Dining Philosophers 

• 5 philosophers, 5 forks, round table… 
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while(true) {        // philosopher i 
   think(); 
   wait(fork[i]); 
   wait(fork[(i+1) % 5]; 
   eat();  
   signal(fork[i]); 
   signal(fork[(i+1) % 5]; 
} 

Semaphore forks[] = new Semaphore[5]; 

• Possible for everyone to acquire ‘left’ fork (i) 
• Q: what happens if we swap order of signal()s?  

 



Example: Dining Philosophers 

• (one) Solution: always take lower fork first  
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while(true) {        // philosopher i  
   think(); 
   first = MIN(i, (i+1) % 5); 
   second = MAX(i, (i+1) % 5);  
   wait(fork[first]); 
   wait(fork[second]; 
   eat();  
   signal(fork[second]); 
   signal(fork[first]); 
} 

Semaphore forks[] = new Semaphore[5]; 

• Now even if 0, 1 2, 3 are held, 4 will not acquire final fork 



Deadlock Avoidance 

• Prevention aims for deadlock-free “by design” 

• Deadlock Avoidance is a dynamic scheme:  
– Assume we know maximum possible resource 

allocation for every process / thread 

– Track actual allocations in real-time 

– When a request is made, only grant  if guaranteed no 
deadlock even if all others take max resources 

• e.g. Banker’s Algorithm – see textbooks  
– Not really useful in general as need a priori knowledge 

of #processes/threads, and their max resource needs 
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Deadlock Detection 

• A dynamic scheme which attempts to 
determine if deadlock exists  

• When only a single instance of each resource, 
can explicitly check for a cycle: 
– Keep track which object each thread is waiting for 

– From time to time, iterate over all threads and 
build the resource allocation graph 

– Run a cycle detection algorithm on graph O(n2)  

• More difficult if have multi-instance resources 
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Deadlock Detection 

• Have m distinct resources and n threads 

• V[0:m-1], vector of available resources 

• A, the m x n resource allocation matrix, and R, 
the m x n (outstanding) request matrix 
– Ai,j is the number of objects of type j owned by i 

– Ri,j is the number of objects of type j needed by i 

• Proceed by marking rows in A for threads that 
are not part of a deadlocked set  
– If we cannot mark all rows of A we have deadlock 
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Deadlock Detection Algorithm 

• Mark all zero rows of A (since a thread holding 
zero resources can’t be part of deadlock set) 

• Initialize a working vector W[0:m-1] to V  

• Select an unmarked row i of A s.t. R[i] <= W 

– (i.e. find a thread who’s request can be satisfied) 

– Set W = W + A[i]; mark row i, and repeat 

• Terminate when no such row can be found 

– Unmarked rows (if any) are in the deadlock set 
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Deadlock Detection Example 1 

• Five threads and three resources (none free) 
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     X Y Z     X Y Z     X Y Z  
T0   0 1 0     0 0 0     0 0 0  
T1   2 0 0     2 0 2  
T2   3 0 3     0 0 0  
T3   2 1 1     1 0 0  
T4   0 0 1     0 0 2 

       A         R         V 

• Find an unmarked row, mark it, and update W 

• T0, T2, T3, T4, T1  

  W 

X Y Z 
0 0 0  
X Y Z 
0 1 0  
X Y Z 
3 1 3  
X Y Z 
5 2 4  
X Y Z 
5 2 5  
X Y Z 
7 2 5  



Deadlock Detection Example 2 

• Five threads and three resources (none free) 
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     X Y Z     X Y Z     X Y Z  
T0   0 1 0     0 0 0     0 0 0  
T1   2 0 0     2 0 2  
T2   3 0 3     0 0 1  
T3   2 1 1     1 0 0  
T4   0 0 1     0 0 2 

       A         R         V 

• One minor tweak to T2’s request vector… 

  W 

X Y Z 
0 0 0  
X Y Z 
0 1 0  

Cannot find a row in 
R <= W!! 

Now wants one unit 
of  resource Z 

Threads T1, T2, T3 & 
T4 in deadlock set 



Deadlock Recovery 

• What can we do when we detect deadlock? 
• Simplest solution: kill someone! 

– Ideally someone in the deadlock set ;-) 

• Brutal, and not guaranteed to work  
– But sometimes the best we can do  
– E.g. linux OOM killer (better than system reboot?)  

• Could also resume from checkpoint 
– Assuming we have one 

• In practice computer systems seldom detect or 
recover from deadlock: rely on programmer 
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Livelock 

• Deadlock is at least ‘easy’ to detect by humans 
– System basically blocks & stops making any progress 

• Livelock is less easy to detect as threads continue 
to run… but do nothing useful 

• Often occurs from trying to be clever, e.g.: 
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// thread 2 
lock(Y); 
  ...  
  while(!trylock(X)) { 
    unlock(Y);  
    yield(); 
    lock(Y); 
  } 
  ... 

// thread 1 
lock(X); 
 ... 
 while (!trylock(Y)) { 
   unlock(X);  
   yield(); 
   lock(X);  
 }  
 ... 



Priority Inversion 

• Another liveness problem… 
– Due to interaction between locking and scheduler 

• Consider three threads: T1, T2, T3 
– T1 is high priority, T2 low priority, T3 is medium 

– T2 gets lucky and acquires lock L…  

– … T1 preempts him and sleeps waiting for L… 

– … then T3 runs, preventing T2 from releasing L! 

• This is not deadlock or livelock 
– But not very desirable (particularly in RT systems) 
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Handling Priority Inversion 

• Typical solution is priority inheritance:  
– Temporarily boost priority of lock holder to that of the 

highest waiting thread 

– Hard to reason about resulting behaviour  

– (some RT systems (like VxWorks) allow you specify on 
a per-mutex basis *to Rover’s detriment ;-]) 

• Windows “solution” 
– Check if any ready thread hasn’t run for 300 ticks 

– If so, double its quantum and boost its priority to 15 

–  
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