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Recommended Reading
e “Operating Systems, Concurrent and
Distributed Software Design®, Jean Bacon and
Tim Harris, Addison-Wesley 2003
— or “Concurrent Systems”, (2"9 Ed), Jean Bacon,

Addison-Wesley 1997

e “Modern Operating Systems”, (3" Ed), Andrew
Tannenbaum, Prentice-Hall 2007

e “Java Concurrency in Practice”, Brian Goetz
and others, Addison-Wesley 2006
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e Computers can appear to do many things at once
— e.g. running multiple programs on your laptop

— e.g. writing back data buffered in memory to the hard disk
while the program(s) continue to execute

e |n the first case, this may actually be an illusion
— e.g. processes time-sharing a single CPU

* |Inthe second, there is true parallelism

— e.g. DMA engine transfers data from memory and writes to
disk at the same time as the CPU executes code

* |n both cases, we have a concurrency
— many things are occurring “at the same time”
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* |nvestigate the ways in which concurrency can
occur in a computer system;

— processes, threads, interrupts, hardware

 Consider how to control concurrency;

— mutual exclusion (locks, semaphores), condition
synchronization, lock-free programming

e Learn about how to handle deadlock; and
— prevention, avoidance, detection, recovery

e See how abstraction can provide support for
correct & fault-tolerant concurrent execution

— transactions, serializability, concurrency control
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A processis a program in execution
— Unit of protection & resource allocation

— Has an associated virtual address space (VAS); and
one or more threads

 Athread is an entity managed by the scheduler
— Represents an individual execution context

— Managed by a thread control block (TCB) which holds
the saved context (registers), scheduler info, etc

 Threads run in the VAS of their containing process
— (or within the kernel address space)
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e Process / OS Concurrency
— Process X runs for a while (until blocks or interrupted)
— OS runs for a while (e.g. does some TCP processing)
— Process X resumes where it left off...

e Inter-Process Concurrency

— Process X runs for a while; then OS; then Process Y;
then OS; then Process Z; etc

* |Intra-Process Concurrency
— Process X has multiple threads X1, X2, X3, ...
— X1 runs for a while; then X3; then X1; then X2; then ...
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* With just one CPU, can think of concurrency as
the interleaving of different executions, e.g.

Proc(A) OS Proc(B) OS Proc(B) OS Proc(C) OS Proc(A)

time
timer interrupt disk interrupt  system call page fault

e Exactly where execution is interrupted and
resumed is not usually known in advance...

e this makes concurrency challenging!
 Generally should assume worst case behavior
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e Many modern systems have multiple CPUs
— And even if don’t, have other processing elements

 Hence things can occur in parallel, e.g.

(o 0[Vl Proc(A) OS = Proc(B) OS Proc(B) OS Proc(C) OS

(o Ukl Proc(C) OS Proc(D) Proc(A) OS  Proc(A)
time —————l ey
* Notice that the OS runs on both CPUs: tricky!

 More generally can have different threads of the
same process executing on different CPUs too
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Threads can be user-level or kernel-level
User-level threads

— OS schedules a single process (e.g. JVM)

— User-code (or a user-mode library) implements threading
calls, a scheduler, and context switching code

Advantages include:

— lightweight creation/termination and context switch;
application-specific scheduling; OS independence

Disadvantages:

— awkward to implement preemption, or to handle blocking
system calls or page faults; and cannot use multiple CPUs

Examples: Java greenthreads, stackless Python, Haskell
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e Kernel-level threads

— OS aware of both processes and threads

— By default, a process has one main thread...

— ... but can create more via system call interface

— Kernel schedules threads (and performs context switching)
 Advantages:

— Easy to handle preemption or blocking system calls

— Relatively straightforward to utilize multiple CPUs
* Disadvantages:

— Higher overhead (trap to kernel); less flexible; less portable

e Examples: Windows NT, modern Linux

10
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e |deally would like the best of both worlds
— i.e. advantages of user- and kernel-level threads

e Various hybrid solutions proposed (first-class threads,
scheduler activations, Solaris LWP)

— OS and user-space co-operate in scheduling
— User-space registers an activation handler
— OS either resumes a context, or “upcalls” the handler

— The former provides transparent kernel-thread scheduling;
the latter, notifications of blocking events

— On an upcall, handler can switch to another thread
 Mostly experimental in OSes, widely used in VMMs
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e Allows us to overlap computation and 1/O on a
single machine

e Can simplify code structuring and/or improve
responsiveness

— e.g. one thread redraws the GUI, another handles
user input, and another computes game logic

— e.g. one thread per HTTP request
— e.g. background GC thread in JVM/CLR

 Enables the seamless (?!) use of multiple CPUs
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e |n general, have some number of processes...
— ... each with some number of threads ...
— ... running on some number of computers...
— ... each with some number of CPUs.
e For this half of the course we’ll focus on a single
computer running a multi-threaded process

— most problems & solutions generalize to multiple
processes, CPUs, and machines, but more complex

— (weé’ll look at distributed systems in Lent term)
e Challenge: threads share the address space
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e Thread 1 (person 1)  Thread 2 (person 2)
1. Lookin fridge 1. Lookin fridge
2. Ifnobeer,gobuybeer 2. If nobeer, gobuybeer
3. Put beerin fridge 3. Put beerin fridge

* |n most cases, this works just fine...

e Butif both people look (step 1) before either refills the
fridge (step 3)... we’ll end up with too much beer!

. Obviously more worrying if “look in fridge” is “check
reactor”, and “buy beer” is “toggle safety system” ;-)
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e Thread 1 (person 1)  Thread 2 (person 2)

1. Look in fridge 1. Look in fridge

2. If no beer & no note 2. If no beer & no note
1. Leave note on fridge 1. Leave note on fridge
2. Go buy beer 2. Go buy beer
3. Put beerin fridge 3. Put beerin fridge
4. Remove note 4. Remove note

* Probably works for human beings...
e But computers are stooopid!
e Can you see the problem?

15
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// thread 1 // thread 2
beer = checkFridge(Q); beer = checkFridge();
i1T(1beer) { i1T(1beer) {
iIf('note) { iIf('note) {
note = 1; note = 1;
buyBeer(); buyBeer();
note = 0O; note = 0O;
ks ¥
¥ ¥

e Easier to see with pseudo-code...

16
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// thread 1 // thread 2
beer = checkFridge();
iIf('beer) {
iIf(Inote) { context switch
beer = checkFridge(Q);
iIT('beer) {

iIf(Inote) {
note = 1;
buyBeer();
) note = O;
oA context switch
note = 1;
buyBeer();
note = 0; }
+ +

}
e Easier to see with pseudo-code...
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e Of course this won’t happen all the time

— Need threads to interleave in the just the right
way (or just the wrong way ;-)
e Unfortunately code that is ‘mostly correct’ is
much worse than code that is ‘mostly wrong’!
— Difficult to catch in testing, as occurs rarely
— May even go away when running under debugger

e e.g. only context switches threads when they block
e (such bugs are sometimes called “Heisenbugs”)
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 The high-level problem here is that we have two
threads trying to solve the same problem

— Both execute buyBeer() concurrently
— |deally want only one thread doing that at a time
 We call this code a critical section

— a piece of code which should never be concurrently
executed by more than one thread

* Ensuring this involves mutual exclusion

— |f one thread is executing within a critical section, all
other threads are prohibited from entering it
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* One way is to let only one thread ever execute a
particular critical section — e.g. a nominated beer
buyer — but this restricts concurrency

e Alternatively our (broken) solution #1 was trying
to provide mutual exclusion via the note
— Leaving a note means “I’'m in the critical section”;
— Removing the note means “I’'m done”
— But, as we saw, it didn’t work ;-)

* This was since we could experience a context
switch between reading ‘note’, and setting it
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// thread 1 // thread 2

beer = checkFridge();

iIf('beer) {

if(Inote) { context switch
beer = checkFridge();

We decide to 1f('beer) {

enter the critical
section here...

fact here ...

note = 1;
buyBeer();
note = 0O;

But only mark the

context switch

iIf(Inote) {

note = 1;
buyBeer();
note = 0O;

21
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 What we want is for the checking of note and the
(conditional) setting of note to happen without any

other thread being involved
— We don’t care if another thread reads it after we’re done;
or sets it before we start our check
— But once we start our check, we want to continue without
any interruption
e |f a sequence of operations (e.g. read-and-set) occur as
if one operation, we call them atomic
— Since indivisible from the point of view of the program

 An atomic “read-and-set” operation is sufficient for us
to implement a correct beer program

22
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// thread 1 // thread 2
beer = checkFridge(); beer = checkFridge();
1T(1beer) { 1T(1beer) {
1T(read-and-set(note)) { 1T(read-and-set(note)) {
buyBeer(); buyBeer();
note = 0O; note = 0O;
+ +
+ +
e read-and-set(&address) atomically checks the value in

memory and iff it is zero, sets it to one
— returns 1 iff the value was changed from 0 ->1

* This prevents the behavior we saw before, and is
sufficient to implement a correct program...

— although this is not that program :-)
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// thread 1 // thread 2
beer = checkFridge();
iIT(1beer) {
context switch
beer = checkFridge();
iIT(lbeer) {
if(read-and-set(note)) {
buyBeer();
context switch nhote = O;
1f(read-and-set(note)) {
buyBeer(); ¥
note = O; }
+
+

e Qur critical section doesn’t cover enough!
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 More generally, we would like the ability to
define a region of code as a critical section e.g.

// thread 1
ENTER_CSQ);
beer = checkFridge();
1T('beer)

buyBeer();
LEAVE _CSQ);

e This should work ...

// thread 2
ENTER_CSQ);
beer = checkFridge();
1T('beer)

buyBeer();

1 CA\/E NP\ -
LCAVE_LOo(J,

e ... providing that our implementation of
ENTER_CS() / LEAVE_CS() is correct
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* One option is to prevent context switches

— e.g. disable interrupts (for kernel threads), or set an
in-memory flag (for user threads)
e ENTER_CS() = “disable context switches”;
LEAVE_CS() = “re-enable context switches”

 Can work but:
— Rather brute force (stnnc all other threads, not just

those who want to enter the critical sectlon)

— Potentially unsafe (if disable interrupts and then sleep
waiting for a timer interrupt ;-)

— And doesn’t work across multiple CPUs

1.
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e Associate a mutual exclusion lock with each
critical section, e.g. a variable L

e (must ensure use correct lock variable!)

e ENTER_CS() = “LOCK(L)”
LEAVE_CS() = “UNLOCK(L)”

e Can implement LOCK() using read-and-set():

LOCK(L) { UNLOCK(L) {
while(!read-and-set(L)) L = O;
. // do nothing }
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// thread 1 // thread 2
LOCK(fridgelLock); LOCK(fridgelLock) ;
beer = checkFridge(Q); beer = checkFridge();
1T('beer) 1T('beer)
buyBeer(); buyBeer();

UNLOCK(fridgelLock); UNLOCK(fridgelLock) ;

e This is—finally! —a correct program
 Still not perfect
— Lock might be held for quite a long time (e.g.
imagine another person wanting to get the milk!)

— Waiting threads waste CPU time (or worse)
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e Solution #3 requires an atomic ‘read-and-set’
operation... but what if we don’t have one?
 Option 1:
— Fake atomic operation by disabling interrupts (or context
switches) between read and set
— But doesn’t work across multiple CPUs
 Option 2:
— Build a mutual exclusion scheme which only relies on
atomic reads and writes!
— Hot topic in the 1970s/80s; mostly irrelevant now

* |n practice, we almost always build mutual exclusion on
top of atomic instructions like CAS, TAS, LL/SC, ...

29
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e Examples for N-process mutual exclusion are:

— Eisenberg M. A. and McGuire M. R., Further
comments on Dijkstra’s concurrent programming
control problem, CACM 15(11), 1972

— Lamport L, A new solution to Dijkstra’s concurrent

nroaoromminn nrohlem CACN 17(R) 1974
r/' vyl u""""'y r/' vv'\.—"" o § \VIVI’ -l \UI’ -ef J T

(this is his N-process bakery algorithm)

 These algorithms impose large overhead, and
may not even be correct in modern CPUs



<< Solution — or Non-Solution? - #4 >>
// thread 1 // thread 2

flagl = 1; flag2 = 1;

while(flag2 == 1) iIfT(1flagl) {

, // do nothing beer = checkFridge();

beer = checkFridge(Q); 1T('beer)

1T(!beer) buyBeer();

buyBeer(); }
flagl = O; flag2 = 0O;

e Question: does this work?

 (And even if it does, would you want to have
to write — or read — this kind of code??)
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 Even with atomic operations, busy waiting for
a lock is inefficient...

— Better to sleep until resource available
e Dijkstra (THE, 1968) proposed semaphores

— New type of variable
Y \I I I II“I 'F I I \
1 ailu \ Uil ,

C

e Supports two operations: wait() and signal()

— Sometimes called down() and up()
— (and originally called P() and V() ... blurk!)
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 Implemented as an integer and a queue

walt(sem) {
if(sem > 0) {
sem = sem-1;
} else suspend caller & add to queue for sem

}

signal (sem) {
iIT no threads are waiting {
sem = sem + 1;
} else wake up some thread on queue

ks
* Method bodies are implemented atomically
e “suspend” and “wake” invoke threading APIs
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asem A B C

1 —
EEI—» wait (aSem)
IIIEI—’B wait|(aSem)
CS B blocked
0] 4— B, C wait (aSem)
0 . C blocked
—1—>C signal (dSem)
CS
0| signal (aSem)
CS
11, signal (aSem)

e |nitialize semaphore to 1; wait() is lock(), signal() is unlock()

34
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wait before signal signal before wait
A B A B
aSem
aSem
0| 1 011,
m wait|(aSem)
A ! signall (aSem)
A blocked “wake-up waiting”
EE_, signall(aSem) wait (aSem)
(0] ] A continues
A continues
v v v v

e |[nitialize semaphore to 0; A proceeds only after B signals

35
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e Suppose there are N instances of a resource
— e.g. N printers attached to a DTP system

 Can manage allocation with a semaphore sem,
initialized to N

— Anyone wanting printer does wait(sem)

— After N people get a printer, next will sleep

— To release resource, signal(sem)
 Will wake someone if anyone is waiting

* Will typically also require mutual exclusion
— e.g. to decide which printers are free

36
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e Semaphores are quite powerful
— Can solve mutual exclusion...

— Can also provide condition synchronization
* Thread waits until some condition is true

e Let’s look at some examples:

1. One producer thread, one consumer thread, with a
N-slot shared memory buffer

2. Any number of producer and consumer threads,
again using an N-slot shared memory buffer

3. Multiple reader, single writer synchronization

37
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e Shared buffer B[] with N slots, initially empty

e Producer thread wants to:
— Produce an item
— If there’s room, insert into next slot;
— Otherwise, wait until there is room
e Consumer thread wants to:

— If there’s anything in buffer, remove an item (and
consume it)

— Otherwise, wait until there is something

* General concurrent programming paradigm
— e.g. pipelines in Unix; staged servers; work stealing

38



nlf'f\AI Valal'a PI\V\(“
FrTUUuUCLCTI =CUUlIoUul

1 1 ¥

e

e 'aY a)
| Ul

1y o4
IUL

CAhA
SV

int buffer[N];
spaces = new Semaphore(N);
items new Semaphore(0);

iInt in = 0, out

= 0;

// producer thread
while(true) {
item = produce

buffer[in] = 1tem;

in = (in + 1) % N;
ks

ks

// consumer thread

while
item = buffer|out];
out = (out + 1) % N;
+
consume(item);
+

buffer

39
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int buffer[N]; int in = 0, out = 0;
spaces = new Semaphore(N);
items = new Semaphore(0);
// producer thread // consumer thread
while(true) { while(true) {
item = produce(); wait(items);
wait(spaces); item = bufferfout];
buffer[in] = 1tem; out = (out + 1) % N;
in = (in + 1) % N; signhal (spaces);
signal (items); consume(item);
+ +
buffer
0 N-1

40
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e Use of semaphores for N-resource allocation
— In this case, “resource” is a slot in the buffer
— “spaces” allocates empty slots (for producer)
— “items” allocates full slots (for consumer)

* No explicit mutual exclusion
— threads will never try to access the same slot at
the same time; if “in == out” then either

e buffer is empty (and consumer will sleep on ‘items’), or
e buffer is full (and producer will sleep on ‘spaces’)
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Previously had exactly one producer thread,
and exactly one consumer thread

More generally might have many threads
adding items, and many removing them

If so, we do need explicit mutual exclusion

— e.g. to prevent two consumers from trying to
remove (and consume) the same item

Can implement with one more semaphore...
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int buffer[N]; int in = 0, out = 0;

spaces = new Semaphore(N);
items = new Semaphore(0);
guard = new Semaphore(l);

// producer thread
while(true) {
item = produce();
walit(spaces);
wait(guard);
buffer[in] = 1tem;
in = (in + 1) % N;
signal (guard);
signal(items);

}

// Tor mutual exclusion

// consumer thread
while(true) {
wait(items);

wait(guard);
item = buffer|out];
out = (out + 1) % N;

signal (guard);
signal (spaces);
consume(item);

}

Exercise: allow 1 producer and 1 consumer concurrent access
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 Another common paradigm is MRSW

— Shared resource accessed by a set of threads
e e.g. cached set of DNS results

— Safe for many threads to read simultaneously, but a
writer (updating) must have exclusive access

* Simplest solution uses a single semaphore as a
mutual exclusion lock for write access

— Any writer must wait to acquire this
— First reader also acquires this; last reader releases it
— Manage reader counts using another semaphore
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int nr = 0; // number of readers

rSem = new Semaphore(l); // protects access to nr
wSem = new Semaphore(l); // protects access to data
// a writer thread // a reader thread
wait(wSem) ; wait(rSem);

. perform update to data 4 nr = nr + 1;
signal (wSem) ; é iIT (nr == 1) // first in

wait(wSem) ;
signal (rSem);
i = .. read data

e S A , wait(rSem);
nr = nr - 1;
iIf (nr == 0) // last out
: : signal (wSem) ;
e e signal (rSem);

L 45
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e Solution on previous slide is “correct”

— Only one writer will be able to access data
structure, but — providing there is no writer — any
number of readers can access it

e However writers can starve

— If readers continue to arrive, a writer might wait
forever (since readers will not release wSem)

— Would be fairer if a writer only had to wait for all
current readers to exit...

— Can implement this with an additional semaphore
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int nr = 0; // number of readers
rsem = new Semaphore(l); // protects access to nr
wSem = new Semaphore(l); // protects access to data
turn = new Semaphore(l); // for more fairness!

ny further
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i/ a writer thread
wait(turn);
wairt(wSem) ;

. perform update to data
signal (turn);
signal (wSem) ;

// a reader thread

walt(turn);

signal (turn);

wait(rSem);

nr = nr + 1;

iIT (nr == 1) // Tirst In
wait(wSem) ;

signal (rSem);

.. read data

wait(rSem);

nr = nr - 1;

iIf (nr == 0) // last out
signal (wSem) ;

signal (rSem); 47
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 Powerful abstraction for implementing
concurrency control:

— mutual exclusion & condition synchronization
e Better than read-and-set()... but correct use
requires considerable care
— e.g. forget to wait(), can corrupt data
— e.g. forget to signal(), can lead to infinite delay
— generally get more complex as add more semaphores

 Used internally in some OSes and libraries, but
generally deprecated for other mechanisms...



