Responses to NP-Completeness

Confronted by an NP-complete problem, say constructing a timetable, what can one do?

- It's a single instance, does asymptotic complexity matter?
- What's the critical size? Is scalability important?
- Are there guaranteed restrictions on the input? Will a special purpose algorithm suffice?
- Will an approximate solution suffice? Are performance guarantees required?
- Are there useful heuristics that can constrain a search? Ways of ordering choices to control backtracking?

Complexity Theory

Anuj Dawar

3

March 9, 2012

Validity

Complexity Theory Lecture 8

Anuj Dawar

University of Cambridge Computer Laboratory

Lent Term 2012

http://www.cl.cam.ac.uk/teaching/1112/Complexity/

We define VAL—the set of *valid* Boolean expressions—to be those Boolean expressions for which every assignment of truth values to variables yields an expression equivalent to **true**.

 $\phi \in \mathsf{VAL} \quad \Leftrightarrow \quad \neg \phi \not\in \mathsf{SAT}$

By an exhaustive search algorithm similar to the one for SAT, VAL is in $\mathsf{TIME}(n^2 2^n)$.

Is $VAL \in NP$?

Complexity Theory

Anuj Dawar

Validity

 $\overline{\mathsf{VAL}} = \{ \phi \mid \phi \notin \mathsf{VAL} \}$ —the *complement* of VAL is in NP.

Guess a *falsifying* truth assignment and verify it.

Such an algorithm does not work for VAL.

In this case, we have to determine whether *every* truth assignment results in **true**—a requirement that does not sit as well with the definition of acceptance by a nondeterministic machine.

2

March 9, 2012

4

languages.

Define,

Anuj Dawar

5

Succinct Certificates

The complexity class NP can be characterised as the collection of languages of the form:

 $L = \{x \mid \exists y R(x, y)\}$

Where R is a relation on strings satisfying two key conditions

- 1. R is decidable in polynomial time.
- 2. *R* is *polynomially balanced*. That is, there is a polynomial *p* such that if R(x, y) and the length of *x* is *n*, then the length of *y* is no more than p(n).

Anuj Dawar	March 9, 2012	Anuj Dawar March 9, 2013	2	
Complexity Theory	7	Complexity Theory	8	
Succinct Certificates		co-NP		
y is a <i>certificate</i> for the membership of x in L . Example: If L is SAT, then for a satisfiable expression x , a certificate would be a satisfying truth assignment.		As co-NP is the collection of complements of languages in NP, and P is closed under complementation, co-NP can also be characterised as the collection of languages of the form: $L = \{x \mid \forall y \mid y \mid < p(x) \rightarrow R'(x, y)\}$		
		 NP – the collection of languages with succinct certificates of membership. co-NP – the collection of languages with succinct certificates of disqualification. 		

March 9, 2012

Complementation

If we interchange accepting and rejecting states in a deterministic

machine that accepts the language L, we get one that accepts \overline{L} .

Complexity classes defined in terms of nondeterministic machine models are not necessarily closed under complementation of

If a language $L \in \mathsf{P}$, then also $\overline{L} \in \mathsf{P}$.

co-NP – the languages whose complements are in NP.

knowledge:

• P = NP = co-NP

• $P = NP \cap co-NP \neq NP \neq co-NP$

• $P \neq NP \cap co-NP = NP = co-NP$

• $P \neq NP \cap co-NP \neq NP \neq co-NP$

NP

Ρ

Any of the situations is consistent with our present state of

co-NP

9

co-NP-complete

VAL – the collection of Boolean expressions that are *valid* is *co-NP-complete*.

Any language L that is the complement of an NP-complete language is *co-NP-complete*.

Any reduction of a language L_1 to L_2 is also a reduction of $\overline{L_1}$ -the complement of L_1 -to $\overline{L_2}$ -the complement of L_2 .

There is an easy reduction from the complement of SAT to VAL, namely the map that takes an expression to its negation.

 $VAL \in P \Rightarrow P = NP = co-NP$

 $VAL \in NP \Rightarrow NP = co-NP$

Anuj Dawar	March 9, 2012	Anuj Dawar	March 9, 2012
Complexity Theory	11	Complexity Theory	12
Prime Numbers		Pi	imality
Consider the decision problem PRIME :		Another way of putting this is	that Composite is in NP.
Given a number x , is it prime? This problem is in co-NP.		Pratt (1976) showed that PRIN certificates of primality based of	IE is in NP, by exhibiting succinct on:
$\forall y(y < x \rightarrow (y = 1 \lor \neg(\operatorname{div}(y, x))))$		A number $p > 2$ is prime in $r, 1 < r < p$, such that r^{p-1} $r^{\frac{p-1}{q}} \neq 1 \mod p$ for all prime	
Note again, the algorithm that checks for all number \sqrt{n} whether any of them divides n , is not polynom \sqrt{n} is not polynomial in the size of the input string is $\log n$.	ial, as		
Anui Dawar	March 9, 2012	Anuj Dawar	March 9, 2012