Complexity Theory Lecture 7

Anuj Dawar

University of Cambridge Computer Laboratory Lent Term 2012

http://www.cl.cam.ac.uk/teaching/1112/Complexity/

Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to be NP-complete.

Literally hundreds of naturally arising problems have been proved NP-complete, in areas involving network design, scheduling, optimisation, data storage and retrieval, artificial intelligence and many others.

Such problems arise naturally whenever we have to construct a solution within constraints, and the most effective way appears to be an exhaustive search of an exponential solution space.

We now examine three more NP-complete problems, whose significance lies in that they have been used to prove a large number of other problems NP-complete, through reductions.

3D Matching

The decision problem of 3D Matching is defined as:

Given three disjoint sets X, Y and Z, and a set of triples $M \subseteq X \times Y \times Z$, does M contain a matching? I.e. is there a subset $M' \subseteq M$, such that each element of X, Y and Z appears in exactly one triple of M'?

We can show that **3DM** is **NP**-complete by a reduction from **3SAT**.

3

Reduction

If a Boolean expression ϕ in **3CNF** has *n* variables, and *m* clauses, we construct for each variable *v* the following gadget.

4

In addition, for every clause c, we have two elements x_c and y_c . If the literal v occurs in c, we include the triple

 (x_c, y_c, z_{vc})

in M.

Similarly, if $\neg v$ occurs in c, we include the triple

 $(x_c, y_c, \overline{z}_{vc})$

in M.

Finally, we include extra dummy elements in X and Y to make the numbers match up.

Exact Set Covering

Two other well known problems are proved NP-complete by immediate reduction from 3DM.

Exact Cover by 3-Sets is defined by:

Given a set U with 3n elements, and a collection $S = \{S_1, \ldots, S_m\}$ of three-element subsets of U, is there a sub collection containing exactly n of these sets whose union is all of U?

The reduction from 3DM simply takes $U = X \cup Y \cup Z$, and S to be the collection of three-element subsets resulting from M.

Set Covering

More generally, we have the *Set Covering* problem:

Given a set U, a collection of $S = \{S_1, \ldots, S_m\}$ subsets of U and an integer budget B, is there a collection of B sets in S whose union is U?

KNAPSACK is a problem which generalises many natural scheduling and optimisation problems, and through reductions has been used to show many such problems NP-complete.

In the problem, we are given n items, each with a positive integer value v_i and weight w_i .

We are also given a maximum total weight W, and a minimum total value V.

Can we select a subset of the items whose total weight does not exceed W, and whose total value exceeds V?

The proof that KNAPSACK is NP-complete is by a reduction from the problem of Exact Cover by 3-Sets.

Given a set $U = \{1, ..., 3n\}$ and a collection of 3-element subsets of $U, S = \{S_1, ..., S_m\}$.

We map this to an instance of KNAPSACK with m elements each corresponding to one of the S_i , and having weight and value

 $\sum_{j \in S_i} (m+1)^{j-1}$

and set the target weight and value both to

 $\sum_{j=0}^{3n-1} (m+1)^j$

Scheduling

Some examples of the kinds of scheduling tasks that have been proved NP-complete include:

Timetable Design

Given a set H of *work periods*, a set W of *workers* each with an associated subset of H (available periods), a set Tof *tasks* and an assignment $r: W \times T \to \mathbb{N}$ of *required work*, is there a mapping $f: W \times T \times H \to \{0, 1\}$ which completes all tasks?

Scheduling

Sequencing with Deadlines

Given a set T of *tasks* and for each task a *length* $l \in \mathbb{N}$, a release time $r \in \mathbb{N}$ and a deadline $d \in \mathbb{N}$, is there a work schedule which completes each task between its release time and its deadline?

Job Scheduling

Given a set T of *tasks*, a number $m \in \mathbb{N}$ of processors a length $l \in \mathbb{N}$ for each task, and an overall deadline $D \in \mathbb{N}$, is there a multi-processor schedule which completes all tasks by the deadline?

Responses to NP-Completeness

Confronted by an NP-complete problem, say constructing a timetable, what can one do?

- It's a single instance, does asymptotic complexity matter?
- What's the critical size? Is scalability important?
- Are there guaranteed restrictions on the input? Will a special purpose algorithm suffice?
- Will an approximate solution suffice? Are performance guarantees required?
- Are there useful heuristics that can constrain a search? Ways of ordering choices to control backtracking?