Complexity Theory

Complexity Theory Lecture 5

Anuj Dawar

University of Cambridge Computer Laboratory Lent Term 2012

http://www.cl.cam.ac.uk/teaching/1112/Complexity/

Complexity Theory

Anuj Dawar

February 29, 2012

3

1

Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L_1 is polynomial time reducible to L_2 .

$$L_1 <_P L_2$$

If f is also computable in $\mathsf{SPACE}(\log n)$, we write

$$L_1 \leq_L L_2$$

Complexity Theory

Reductions

Given two languages $L_1 \subseteq \Sigma_1^{\star}$, and $L_2 \subseteq \Sigma_2^{\star}$,

A reduction of L_1 to L_2 is a computable function

$$f: \Sigma_1^{\star} \to \Sigma_2^{\star}$$

such that for every string $x \in \Sigma_1^*$,

 $f(x) \in L_2$ if, and only if, $x \in L_1$

Anuj Dawar

Anuj Dawar

Complexity Theory

February 29, 2012

Reductions 2

If $L_1 \leq_P L_2$ we understand that L_1 is no more difficult to solve than L_2 , at least as far as polynomial time computation is concerned.

That is to say,

If
$$L_1 \leq_P L_2$$
 and $L_2 \in P$, then $L_1 \in P$

We can get an algorithm to decide L_1 by first computing f, and then using the polynomial time algorithm for L_2 .

Anuj Dawar

February 29, 2012

February 29, 2012

Complexity Theory

Completeness

The usefulness of reductions is that they allow us to establish the *relative* complexity of problems, even when we cannot prove absolute lower bounds.

Cook (1972) first showed that there are problems in NP that are maximally difficult.

A language L is said to be NP-hard if for every language $A \in NP$, $A \leq_P L$.

A language L is NP-complete if it is in NP and it is NP-hard.

Anuj Dawar

February 29, 2012

7

Complexity Theory

SAT is NP-complete

Cook showed that the language SAT of satisfiable Boolean expressions is NP-complete.

To establish this, we need to show that for every language L in NP, there is a polynomial time reduction from L to SAT.

Since L is in NP, there is a nondeterministic Turing machine

$$M = (Q, \Sigma, s, \delta)$$

and a bound n^k such that a string x is in L if, and only if, it is accepted by M within n^k steps.

Anuj Dawar

Complexity Theory

Boolean Formula

We need to give, for each $x \in \Sigma^*$, a Boolean expression f(x) which is satisfiable if, and only if, there is an accepting computation of Mon input x.

f(x) has the following variables:

$$S_{i,q}$$
 for each $i \leq n^k$ and $q \in Q$
 $T_{i,j,\sigma}$ for each $i, j \leq n^k$ and $\sigma \in \Sigma$
 $H_{i,j}$ for each $i, j \leq n^k$

Complexity Theory

Intuitively, these variables are intended to mean:

- $S_{i,q}$ the state of the machine at time i is q.
- $T_{i,j,\sigma}$ at time i, the symbol at position j of the tape is σ .
- $H_{i,j}$ at time i, the tape head is pointing at tape cell j.

We now have to see how to write the formula f(x), so that it enforces these meanings.

Anuj Dawar

February 29, 2012

February 29, 2012

February 29, 2012

Anuj Dawai

Complexity Theory

Initial state is s and the head is initially at the beginning of the tape.

$$S_{1,s} \wedge H_{1,1}$$

The head is never in two places at once

$$\bigwedge_{i} \bigwedge_{j} (H_{i,j} \to \bigwedge_{j' \neq j} (\neg H_{i,j'}))$$

The machine is never in two states at once

$$\bigwedge_{q} \bigwedge_{i} (S_{i,q} \to \bigwedge_{q' \neq q} (\neg S_{i,q'}))$$

Each tape cell contains only one symbol

$$\bigwedge_{i} \bigwedge_{j} \bigwedge_{\sigma} (T_{i,j,\sigma} \to \bigwedge_{\sigma' \neq \sigma} (\neg T_{i,j,\sigma'}))$$

Anuj Dawar

February 29, 2012

11

9

Complexity Theory

where Δ is the set of all triples (q', σ', D) such that $((q,\sigma),(q',\sigma',D)) \in \delta$ and

$$j' = \begin{cases} j & \text{if } D = S \\ j - 1 & \text{if } D = L \\ j + 1 & \text{if } D = R \end{cases}$$

Finally, the accepting state is reached

$$\bigvee_{i} S_{i,\mathrm{acc}}$$

Complexity Theory

The initial tape contents are x

$$\bigwedge_{j \le n} T_{1,j,x_j} \wedge \bigwedge_{n < j} T_{1,j,\sqcup}$$

The tape does not change except under the head

$$\bigwedge_{i} \bigwedge_{j} \bigwedge_{j' \neq j} \bigwedge_{\sigma} (H_{i,j} \wedge T_{i,j',\sigma}) \to T_{i+1,j',\sigma}$$

Each step is according to δ .

$$\bigwedge_{i} \bigwedge_{j} \bigwedge_{\sigma} \bigwedge_{q} (H_{i,j} \wedge S_{i,q} \wedge T_{i,j,\sigma})$$

$$\rightarrow \bigvee_{\Delta} (H_{i+1,j'} \wedge S_{i+1,q'} \wedge T_{i+1,j,\sigma'})$$

Anuj Dawar

Anuj Dawar

February 29, 2012

12

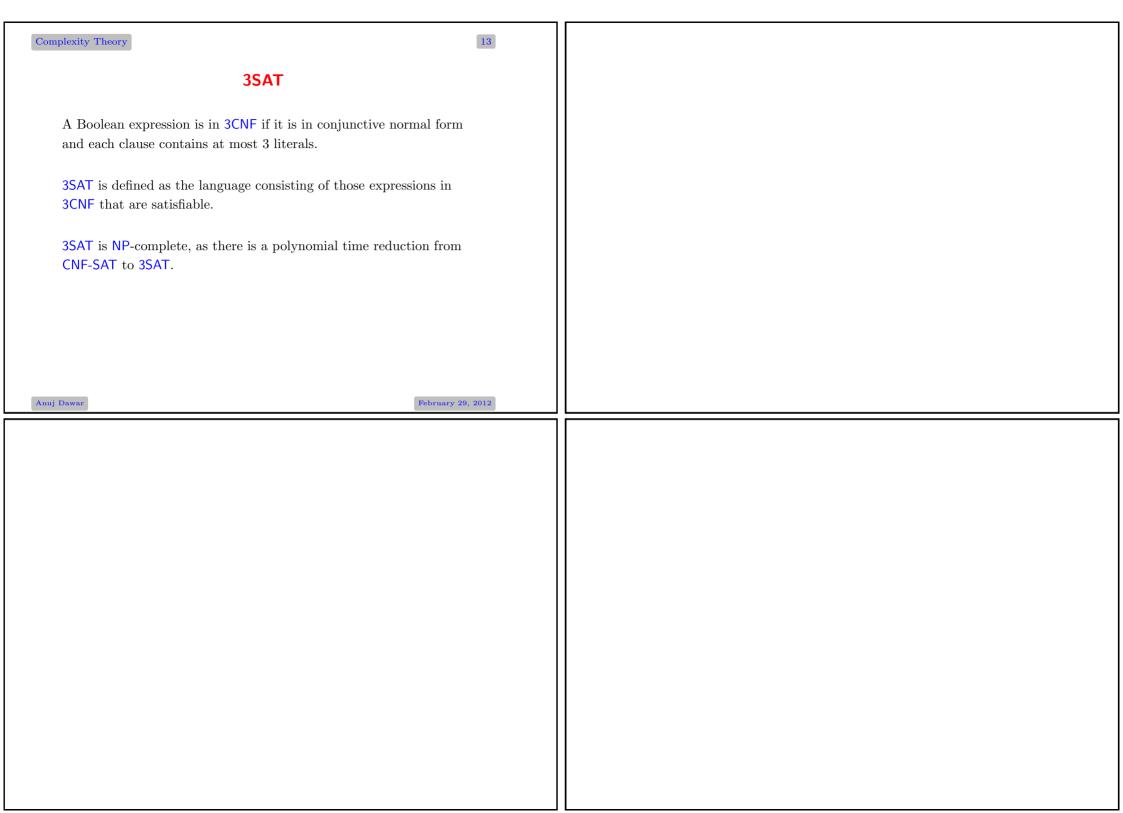
10

Complexity Theory

CNF

A Boolean expression is in *conjunctive normal form* if it is the conjunction of a set of *clauses*, each of which is the disjunction of a set of *literals*, each of these being either a *variable* or the *negation* of a variable.

For any Boolean expression ϕ , there is an equivalent expression ψ in conjunctive normal form.


 ψ can be exponentially longer than ϕ .

However, CNF-SAT, the collection of satisfiable CNF expressions, is NP-complete.

Anuj Dawar

February 29, 2012

February 29, 2012

