Complexity Theory Lecture 12

Anuj Dawar

University of Cambridge Computer Laboratory Lent Term 2012

http://www.cl.cam.ac.uk/teaching/1112/Complexity/

Complexity Classes

We have established the following inclusions among complexity classes:

$\mathsf{L}\subseteq\mathsf{N}\mathsf{L}\subseteq\mathsf{P}\subseteq\mathsf{N}\mathsf{P}\subseteq\mathsf{P}\mathsf{SPACE}\subseteq\mathsf{EXP}$

Showing that a problem is NP-complete or PSPACE-complete, we often say that we have proved it intractable.

While this is not strictly correct, a proof of completeness for these classes does tell us that the problem is structurally difficult.

Similarly, we say that PSPACE-complete problems are harder than NP-complete ones, even if the running time is not higher.

Logarithmic Space Reductions

We write

 $A \leq_L B$

if there is a reduction f of A to B that is computable by a deterministic Turing machine using $O(\log n)$ workspace (with a *read-only* input tape and *write-only* output tape).

Note: We can compose \leq_L reductions. So,

if $A \leq_L B$ and $B \leq_L C$ then $A \leq_L C$

Anuj Dawar

NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of NP-completeness, we can see that SAT and the various other NP-complete problems are actually complete under \leq_L reductions.

Thus, if $SAT \leq_L A$ for some problem in L then not only P = NP but also L = NP.

P-complete Problems

It makes little sense to talk of complete problems for the class P with respect to polynomial time reducibility \leq_P .

There are problems that are complete for P with respect to *logarithmic space* reductions \leq_L .

One example is CVP —the circuit value problem.

- If $\mathsf{CVP} \in \mathsf{L}$ then $\mathsf{L} = \mathsf{P}$.
- If $CVP \in NL$ then NL = P.

Provable Intractability

Our aim now is to show that there are languages (*or, equivalently, decision problems*) that we can prove are not in P.

This is done by showing that, for every *reasonable* function f, there is a language that is not in $\mathsf{TIME}(f(n))$.

The proof is based on the diagonal method, as in the proof of the undecidability of the halting problem.

6

Constructible Functions

A complexity class such as $\mathsf{TIME}(f(n))$ can be very unnatural, if f(n) is.

We restrict our bounding functions f(n) to be proper functions:

Definition

A function $f : \mathbb{N} \to \mathbb{N}$ is *constructible* if:

- f is non-decreasing, i.e. $f(n+1) \ge f(n)$ for all n; and
- there is a deterministic machine M which, on any input of length n, replaces the input with the string $0^{f(n)}$, and M runs in time O(n + f(n)) and uses O(f(n)) work space.

Examples

All of the following functions are constructible:

- $\lceil \log n \rceil;$
- n^2 ;
- *n*;
- 2^n .

If f and g are constructible functions, then so are f + g, $f \cdot g$, 2^{f} and f(g) (this last, provided that f(n) > n).

Using Constructible Functions

NTIME(f(n)) can be defined as the class of those languages L accepted by a *nondeterministic* Turing machine M, such that for every $x \in L$, there is an accepting computation of M on x of length at most O(f(n)).

If f is a constructible function then any language in $\mathsf{NTIME}(f(n))$ is accepted by a machine for which all computations are of length at most O(f(n)).

Also, given a Turing machine M and a constructible function f, we can define a machine that simulates M for f(n) steps.

Inclusions

The inclusions we proved between complexity classes:

- $\mathsf{NTIME}(f(n)) \subseteq \mathsf{SPACE}(f(n));$
- NSPACE $(f(n)) \subseteq \mathsf{TIME}(k^{\log n + f(n)});$
- $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f(n)^2)$

really only work for *constructible* functions f.

The inclusions are established by showing that a deterministic machine can simulate a nondeterministic machine M for f(n) steps. For this, we have to be able to compute f within the required bounds.

Time Hierarchy Theorem

For any constructible function f, with $f(n) \ge n$, define the f-bounded halting language to be:

 $H_f = \{ [M], x \mid M \text{ accepts } x \text{ in } f(|x|) \text{ steps} \}$

where [M] is a description of M in some fixed encoding scheme. Then, we can show

 $H_f \in \mathsf{TIME}(f(n)^3) \text{ and } H_f \notin \mathsf{TIME}(f(\lfloor n/2 \rfloor))$

Time Hierarchy Theorem

For any constructible function $f(n) \ge n$, $\mathsf{TIME}(f(n))$ is properly contained in $\mathsf{TIME}(f(2n+1)^3)$.

Strong Hierarchy Theorems

For any constructible function $f(n) \ge n$, $\mathsf{TIME}(f(n))$ is properly contained in $\mathsf{TIME}(f(n)(\log f(n)))$.

Space Hierarchy Theorem

For any pair of constructible functions f and g, with f = O(g) and $g \neq O(f)$, there is a language in $\mathsf{SPACE}(g(n))$ that is not in $\mathsf{SPACE}(f(n))$.

Similar results can be established for nondeterministic time and space classes.

Consequences

- For each k, $\mathsf{TIME}(n^k) \neq \mathsf{P}$.
- $P \neq EXP$.
- $L \neq PSPACE$.
- Any language that is **EXP**-complete is not in **P**.
- There are no problems in P that are complete under linear time reductions.

The End

Please provide *feedback*:

https://camtools.cam.ac.uk/direct/eval-evaluation/6508